H3C MSR1000[2600][3600] Routers Configuration Examples All-in-One-R9141-6W100

HomeSupportConfigure & DeployConfiguration ExamplesH3C MSR1000[2600][3600] Routers Configuration Examples All-in-One-R9141-6W100
Table of Contents
Related Documents
28-Basic MPLS Configuration Examples
Title Size Download
28-Basic MPLS Configuration Examples 162.37 KB

 

 

H3C Routers

Basic MPLS Configuration Examples

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Copyright © 2024 New H3C Technologies Co., Ltd. All rights reserved.

No part of this manual may be reproduced or transmitted in any form or by any means without prior written consent of New H3C Technologies Co., Ltd.

Except for the trademarks of New H3C Technologies Co., Ltd., any trademarks that may be mentioned in this document are the property of their respective owners.

The information in this document is subject to change without notice.



Introduction

The following information provides examples for configuring static LSPs and LDP LSPs.

Prerequisites

The following information applies to Comware 9-based routers. Procedures and information in the examples might be slightly different depending on the software or hardware version of the routers.

The configuration examples were created and verified in a lab environment, and all the devices were started with the factory default configuration. When you are working on a live network, make sure you understand the potential impact of every command on your network.

The following information is provided based on the assumption that you have basic knowledge of MPLS and LDP.

Example: Configuring static LSPs

Network configuration

As shown in Figure 1, routers on the carrier network run MPLS. Router A and Router C are MPLS edge devices. Establish an MPLS tunnel that uses static LSPs between Router A and Router C, so that subnets 172.20.2.0/24 and 172.16.2.0/24 can access each other over MPLS.

Figure 1 Network diagram

Analysis

·     To ensure the LSRs to forward packets along the correct path, make sure the outgoing label specified on an LSR is the same as the incoming label specified on the directly connected downstream LSR.

·     LSPs are unidirectional. To implement bidirectional data transmission, you must configure an LSP for each direction of the data forwarding path.

·     For a static LSP, only the ingress node must have a route to reach the FEC destination address. The transit and egress nodes do not need such a route. This example configures static routing on the ingress node.

Software versions used

This configuration example was created and verified on R9141P16 of the MSR2630E-X1 device.

Restrictions and guidelines

·     When you configure a static route for a static LSP, make sure to specify the same outgoing interface or next hop for the static route and the static LSP.

·     When configuring an ingress or transit LSR, the local public network address cannot be specified as the next hop.

·     MPLS will encapsulate one or multiple label into packets. As a best practice to ensure successful packet forwarding, enable the jumboframe on MPLS-enabled interfaces and set a proper frame length according to the actual needs and the number of labels to be added.

Procedures

Table 1 Assign IP addresses to network interfaces.

Configure IP addresses and masks for interfaces as shown in Figure 1. (Details not shown.)

Table 2 Configure a static route on the ingress of each LSP to reach the FEC destination address:

# Configure Router A.

<RouterA> system-view

[RouterA] ip route-static 172.16.2.0 24 10.1.1.2

# Configure Router C.

<RouterC> system-view

[RouterC] ip route-static 172.20.2.0 24 20.1.1.1

# After the configuration is completed, execute the display ip routing-table command on the ingress to view the static route configuration. Take Router A as an example:

[RouterA] display ip routing-table

 

Destinations : 18        Routes : 18

 

Destination/Mask   Proto   Pre Cost        NextHop         Interface

0.0.0.0/32         Direct  0   0           127.0.0.1       InLoop0

1.1.1.9/32         Direct  0   0           127.0.0.1       InLoop0

10.1.1.0/24        Direct  0   0           10.1.1.1        GE0/0/2      

10.1.1.0/32        Direct  0   0           10.1.1.1        GE0/0/2      

10.1.1.1/32        Direct  0   0           127.0.0.1       InLoop0

10.1.1.255/32      Direct  0   0           10.1.1.1        GE0/0/2      

127.0.0.0/8        Direct  0   0           127.0.0.1       InLoop0

127.0.0.0/32       Direct  0   0           127.0.0.1       InLoop0

127.0.0.1/32       Direct  0   0           127.0.0.1       InLoop0

127.255.255.255/32 Direct  0   0           127.0.0.1       InLoop0

172.16.2.0/24      Static  60  0           10.1.1.2        GE0/0/2      

172.20.2.0/24      Direct  0   0           172.20.2.1      GE0/0/1

172.20.2.0/32      Direct  0   0           172.20.2.1      GE0/0/1

172.20.2.1/32      Direct  0   0           127.0.0.1       InLoop0

172.20.2.255/32    Direct  0   0           172.20.2.1      GE0/0/1

224.0.0.0/4        Direct  0   0           0.0.0.0         NULL0

224.0.0.0/24       Direct  0   0           0.0.0.0         NULL0

255.255.255.255/32 Direct  0   0           127.0.0.1       InLoop0

Table 3 Configure basic MPLS on the routers:

# Configure Router A.

[RouterA] mpls lsr-id 1.1.1.9

[RouterA] interface gigabitethernet 0/0/2

[RouterA-GigabitEthernet0/0/2] mpls enable

[RouterA-GigabitEthernet0/0/2] quit

# Configure Router B.

[RouterB] mpls lsr-id 2.2.2.9

[RouterB] interface gigabitethernet 0/0/1

[RouterB-GigabitEthernet0/0/1] mpls enable

[RouterB-GigabitEthernet0/0/1] quit

[RouterB] interface gigabitethernet 0/0/2

[RouterB-GigabitEthernet0/0/2] mpls enable

[RouterB-GigabitEthernet0/0/2] quit

# Configure Router C.

[RouterC] mpls lsr-id 3.3.3.9

[RouterC] interface gigabitethernet 0/0/1

[RouterC-GigabitEthernet0/0/1] mpls enable

[RouterC-GigabitEthernet0/0/1] quit

Table 4 Configure a static LSP from Router A to Router C:

# Configure the LSP ingress node, Router A.

[RouterA] static-lsp ingress AtoC destination 172.16.2.1 24 nexthop 10.1.1.2 out-label 30

# Configure the LSP transit node, Router B.

[RouterB] static-lsp transit AtoC in-label 30 nexthop 20.1.1.2 out-label 50

# Configure the LSP egress node, Router C.

[RouterC] static-lsp egress AtoC in-label 50

Table 5 Configure a static LSP from Router C to Router A:

# Configure the LSP ingress node, Router C.

[RouterC] static-lsp ingress CtoA destination 172.20.2.1 24 nexthop 20.1.1.1 out-label 40

# Configure the LSP transit node, Router B.

[RouterB] static-lsp transit CtoA in-label 40 nexthop 10.1.1.1 out-label 70

# Configure the LSP egress node, Router A.

[RouterA] static-lsp egress CtoA in-label 70

Verifying the configuration

# After the configuration is completed, display static LSP information on each router by using the display mpls static-lsp command. Take Router A as an example:

[RouterA] display mpls static-lsp

Total: 2

Name            FEC                In/Out Label Nexthop/Out Interface    State

AtoC            172.16.2.0/24      NULL/30      10.1.1.2                 Up

CtoA            -/-                70/NULL      -                        Up

# Test the connectivity of the static LSP from Router A to Router C.

[RouterA] ping mpls -a 172.20.2.1 ipv4 172.16.2.0 24

MPLS ping FEC 172.16.2.0/24 with 100 bytes of data:

100 bytes from 20.1.1.2: Sequence=1 time=3 ms

100 bytes from 20.1.1.2: Sequence=2 time=2 ms

100 bytes from 20.1.1.2: Sequence=3 time=2 ms

100 bytes from 20.1.1.2: Sequence=4 time=2 ms

100 bytes from 20.1.1.2: Sequence=5 time=27 ms

 

--- Ping statistics for FEC 172.16.2.0/24 ---

5 packets transmitted, 5 packets received, 0.0% packet loss

Round-trip min/avg/max = 2/7/27 ms

# Test the connectivity of the static LSP from Router C to Router A.

[RouterC] ping mpls -a 172.16.2.1 ipv4 172.20.2.0 24

MPLS ping FEC 172.20.2.0/24 with 100 bytes of data:

100 bytes from 10.1.1.1: Sequence=1 time=3 ms

100 bytes from 10.1.1.1: Sequence=2 time=2 ms

100 bytes from 10.1.1.1: Sequence=3 time=2 ms

100 bytes from 10.1.1.1: Sequence=4 time=2 ms

100 bytes from 10.1.1.1: Sequence=5 time=27 ms

 

--- Ping statistics for FEC 172.20.2.0/24 ---

5 packets transmitted, 5 packets received, 0.0% packet loss

Round-trip min/avg/max = 2/7/27 ms

Configuration files

·     Router A:

#

 mpls lsr-id 1.1.1.9

#

interface LoopBack0

 ip address 1.1.1.9 255,255,255,255

#

interface GigabitEthernet0/0/1

 port link-mode route

ip address 172.20.2.1 255.255.255.0

#

interface GigabitEthernet0/0/2

 port link-mode route

ip address 10.1.1.1 255.255.255.0

 mpls enable

#

 ip route-static 172.16.2.0 24 10.1.1.2

#

 static-lsp ingress AtoC destination 172.16.2.0 24 nexthop 10.1.1.2 out-label 30

 static-lsp egress CtoA in-label 70

#

·     Router B:

#

 mpls lsr-id 2.2.2.9

#

interface LoopBack0

 ip address 2.2.2.9 255,255,255,255

#

interface GigabitEthernet0/0/1

 port link-mode route

ip address 10.1.1.2 255.255.255.0

 mpls enable

#

interface GigabitEthernet0/0/2

 port link-mode route

ip address 20.1.1.1 255.255.255.0

 mpls enable

#

 static-lsp transit AtoC in-label 30 nexthop 20.1.1.2 out-label 50

 static-lsp transit CtoA in-label 40 nexthop 10.1.1.1 out-label 70

#

·     Router C:

#

 mpls lsr-id 3.3.3.9

#

interface LoopBack0

 ip address 3.3.3.9 255,255,255,255

#

interface GigabitEthernet0/0/1

 port link-mode route

ip address 20.1.1.2 255.255.255.0

 mpls enable

#

interface GigabitEthernet0/0/2

 port link-mode route

ip address 172.16.2.1 255.255.255.0

#

 ip route-static 172.20.2.1 255.255.255.0 20.1.1.1

#

 static-lsp ingress CtoA destination 172.20.2.0 24 nexthop 20.1.1.1 out-label 40

 static-lsp egress AtoC in-label 50

#

Example: Configuring dynamical LSPs by using LDP

Network configuration

As shown in Figure 2, on the MPLS network of the carrier, PE 1 and PE 2 have two routes to each other.

·     Configure LDP on the MPLS network to dynamically establish LSPs, so subnets 192.168.10.0/24 and 192.168.20.0/24 can transmit packets to each other over the LSPs.

·     By default, packets are transmitted over LSP 1. When LSP 1 fails, packets are transmitted over LSP 2.

·     All devices on the MPLS network allow only routes destined for 1.1.1.1/32, 2.2.2.2/32, 3.3.3.3/32, 4.4.4.4/32, 5.5.5.5/32, 192.168.10.0/24, and 192.168.20.0/24 to trigger LDP to establish LSPs. Other routes are not allowed to trigger LSP establishment to avoid affecting device performance due to excessive LSPs.

Figure 2 Network diagram

Analysis

·     To create LSPs dynamically through LDP, configure a routing protocol to ensure IP connectivity between the LSRs. This example uses OSPF.

·     To use LSP 1 as the primary LSP and LSP 2 as the backup LSP for packet forwarding, configure the primary route between subnet 192.168.10.0/24 and 192.168.20.0/24 as LSP 1 and the backup route as LSP 2. In this example, OSPF automatically calculates the route cost for LSP 1 to be smaller than that for LSP 2, so LSP 1 is preferred.  

·     To ensure that LDP establishes LSPs only for specific routes, configure LSP generation policies on each LSR.

Software versions used

This configuration example was created and verified on R9141P16 of the MSR2630E-X1 device.

Procedures

Table 1 Assign IP addresses to the network interfaces.

Configure IP addresses and masks for interfaces as shown in Figure 2. (Details not shown.)

Table 2 Configure OSPF on each router to ensure IP connectivity between them:

# Configure PE 1.

[PE1] ospf 1

[PE1-ospf-1] area 0

[PE1-ospf-1-area-0.0.0.0] network 1.1.1.1 0.0.0.0

[PE1-ospf-1-area-0.0.0.0] network 12.12.12.0 0.0.0.255

[PE1-ospf-1-area-0.0.0.0] network 14.14.14.0 0.0.0.255

[PE1-ospf-1-area-0.0.0.0] network 192.168.10.0 0.0.0.255

[PE1-ospf-1-area-0.0.0.0] quit

[PE1-ospf-1] quit

# Configure P 1.

[P1] ospf 1

[P1-ospf-1] area 0

[P1-ospf-1-area-0.0.0.0] network 2.2.2.2 0.0.0.0

[P1-ospf-1-area-0.0.0.0] network 12.12.12.0 0.0.0.255

[P1-ospf-1-area-0.0.0.0] network 23.23.23.0 0.0.0.255

[P1-ospf-1-area-0.0.0.0] quit

[P1-ospf-1] quit

# Configure P 2.

[P2] ospf 1

[P2-ospf-1] area 0

[P2-ospf-1-area-0.0.0.0] network 4.4.4.4 0.0.0.0

[P2-ospf-1-area-0.0.0.0] network 14.14.14.0 0.0.0.255

[P2-ospf-1-area-0.0.0.0] network 45.45.45.0 0.0.0.255

[P2-ospf-1-area-0.0.0.0] quit

[P2-ospf-1] quit

# Configure P 3.

[P3] ospf 1

[P3-ospf-1] area 0

[P3-ospf-1-area-0.0.0.0] network 5.5.5.5 0.0.0.0

[P3-ospf-1-area-0.0.0.0] network 45.45.45.0 0.0.0.255

[P3-ospf-1-area-0.0.0.0] network 35.35.35.0 0.0.0.255

[P3-ospf-1-area-0.0.0.0] quit

[P3-ospf-1] quit

# Configure PE 2.

[PE2] ospf 1

[PE2-ospf-1] area 0

[PE2-ospf-1-area-0.0.0.0] network 3.3.3.3 0.0.0.0

[PE2-ospf-1-area-0.0.0.0] network 23.23.23.0 0.0.0.255

[PE2-ospf-1-area-0.0.0.0] network 35.35.35.0 0.0.0.255

[PE2-ospf-1-area-0.0.0.0] network 192.168.20.0 0.0.0.255

[PE2-ospf-1-area-0.0.0.0] quit

[PE2-ospf-1] quit

# After the configuration is completed, execute the display ospf routing command on each router to verify that the routers have learned the routes to each other. Use PE1 as an example:

[PE1] display ospf routing

 

       OSPF Process 1 with Router ID 1.1.1.1

                   Routing Table

 

 Routing for network

 Destination        Cost     Type    NextHop         AdvRouter       Area

 45.45.45.0/24      2        Transit 14.14.14.4      5.5.5.5         0.0.0.0

 35.35.35.0/24      3        Transit 14.14.14.4      5.5.5.5         0.0.0.0

 35.35.35.0/24      3        Transit 12.12.12.2      5.5.5.5         0.0.0.0

 192.168.10.0/24    1        Stub    192.168.10.1    1.1.1.1         0.0.0.0

 5.5.5.5/32         2        Stub    14.14.14.4      5.5.5.5         0.0.0.0

 14.14.14.0/24      1        Transit 14.14.14.1      4.4.4.4         0.0.0.0

 23.23.23.0/24      2        Transit 12.12.12.2      3.3.3.3         0.0.0.0

 4.4.4.4/32         1        Stub    14.14.14.4      4.4.4.4         0.0.0.0

 3.3.3.3/32         2        Stub    12.12.12.2      3.3.3.3         0.0.0.0

 12.12.12.0/24      1        Transit 12.12.12.1      2.2.2.2         0.0.0.0

 2.2.2.2/32         1        Stub    12.12.12.2      2.2.2.2         0.0.0.0

 1.1.1.1/32         0        Stub    1.1.1.1         1.1.1.1         0.0.0.0

 192.168.20.0/24    3        Stub    12.12.12.2      3.3.3.3         0.0.0.0

 

 Total nets: 13

 Intra area: 13  Inter area: 0  ASE: 0  NSSA: 0

PE 1 should have established OSPF peering with P 1 and P 2, and PE 2 with P 2 and P 3. Execute the display ospf peer verbose command to verify that the OSPF neighbors are in Full state. Use PE1 as an example:

[PE1] display ospf peer verbose

          OSPF Process 1 with Router ID 1.1.1.1

                  Neighbors

 

 Area 0.0.0.0 interface 14.14.14.1(GigabitEthernet0/0/2)'s neighbors

 Router ID: 4.4.4.4          Address: 14.14.14.4       GR state: Normal

   State:  Full  Mode: Nbr is master  Priority: 1

   DR: 14.14.14.4  BDR: 14.14.14.1  MTU: 0

   Options is 0x42 (-|O|-|-|-|-|E|-)

   Dead timer due in 40  sec

   Neighbor is up for 00:03:30

   Authentication Sequence: [ 0 ]

   Neighbor state change count: 6

   BFD status: Disabled

 

                  Neighbors

 

 Area 0.0.0.0 interface 12.12.12.1(GigabitEthernet0/0/1)'s neighbors

 Router ID: 2.2.2.2          Address: 12.12.12.2       GR state: Normal

   State:  Full  Mode: Nbr is master  Priority: 1

   DR: 12.12.12.2  BDR: 12.12.12.1  MTU: 0

   Options is 0x42 (-|O|-|-|-|-|E|-)

   Dead timer due in 36  sec

   Neighbor is up for 00:03:24

   Authentication Sequence: [ 0 ]

   Neighbor state change count: 6

   BFD status: Disabled

Table 3 Enable basic MPLS and MPLS LDP:

# Configure PE 1.

[PE1] mpls lsr-id 1.1.1.1

[PE1] mpls ldp

[PE1-ldp] quit

[PE1] interface gigabitethernet 0/0/1

[PE1-GigabitEthernet0/0/1] mpls enable

[PE1-GigabitEthernet0/0/1] mpls ldp enable

[PE1-GigabitEthernet0/0/1] quit

[PE1] interface gigabitethernet 0/0/2

[PE1-GigabitEthernet0/0/2] mpls enable

[PE1-GigabitEthernet0/0/2] mpls ldp enable

[PE1-GigabitEthernet0/0/2] quit

# Configure P 1.

[P1] mpls lsr-id 2.2.2.2

[P1] mpls ldp

[P1-ldp] quit

[P1] interface gigabitethernet 0/0/1

[P1-GigabitEthernet0/0/1] mpls enable

[P1-GigabitEthernet0/0/1] mpls ldp enable

[P1-GigabitEthernet0/0/1] quit

[P1] interface gigabitethernet 0/0/2

[P1-GigabitEthernet0/0/2] mpls enable

[P1-GigabitEthernet0/0/2] mpls ldp enable

[P1-GigabitEthernet0/0/2] quit

# Configure P 2.

[P2] mpls lsr-id 4.4.4.4

[P2] mpls ldp

[P2-ldp] quit

[P2] interface gigabitethernet 0/0/1

[P2-GigabitEthernet0/0/1] mpls enable

[P2-GigabitEthernet0/0/1] mpls ldp enable

[P2-GigabitEthernet0/0/1] quit

[P2] interface gigabitethernet 0/0/2

[P2-GigabitEthernet0/0/2] mpls enable

[P2-GigabitEthernet0/0/2] mpls ldp enable

[P2-GigabitEthernet0/0/2] quit

# Configure P 3.

[P3] mpls lsr-id 5.5.5.5

[P3] mpls ldp

[P3-ldp] quit

[P3] interface gigabitethernet 0/0/1

[P3-GigabitEthernet0/0/1] mpls enable

[P3-GigabitEthernet0/0/1] mpls ldp enable

[P3-GigabitEthernet0/0/1] quit

[P3] interface gigabitethernet 0/0/2

[P3-GigabitEthernet0/0/2] mpls enable

[P3-GigabitEthernet0/0/2] mpls ldp enable

[P3-GigabitEthernet0/0/2] quit

# Configure PE 2.

[PE2] mpls lsr-id 3.3.3.3

[PE2] mpls ldp

[PE2-ldp] quit

[PE2] interface gigabitethernet 0/0/1

[PE2-GigabitEthernet0/0/1] mpls enable

[PE2-GigabitEthernet0/0/1] mpls ldp enable

[PE2-GigabitEthernet0/0/1] quit

[PE2] interface gigabitethernet 0/0/2

[PE2-GigabitEthernet0/0/2] mpls enable

[PE2-GigabitEthernet0/0/2] mpls ldp enable

[PE2-GigabitEthernet0/0/2] quit

After the configuration is completed, PE 1 should have established local LDP sessions with P 1 and P 2, and PE 2 with P 2 and P 3.

Execute the display mpls ldp peer command on each router to view the LDP peer information. Use PE1 as an example:

[PE1] display mpls ldp peer

Total number of peers: 2

Peer LDP ID             State         Role     GR   MD5  KA Sent/Rcvd

2.2.2.2:0               Operational   Passive  Off  Off  55/55

4.4.4.4:0               Operational   Passive  Off  Off  6/6

Table 4 Configure an LSP generation policy to establish LSPs for routes destined for 1.1.1.1/32, 2.2.2.2/32, 3.3.3.3/32, 4.4.4.4/32, 5.5.5.5/32, 192.168.10.0/24, and 192.168.20.0/24:

# On PE 1, configure IP prefix list PE1, and configure LDP to use only the routes permitted by the prefix list to establish LSPs.

[PE1] ip prefix-list PE1 index 10 permit 1.1.1.1 32

[PE1] ip prefix-list PE1 index 20 permit 2.2.2.2 32

[PE1] ip prefix-list PE1 index 30 permit 3.3.3.3 32

[PE1] ip prefix-list PE1 index 40 permit 4.4.4.4 32

[PE1] ip prefix-list PE1 index 50 permit 5.5.5.5 32

[PE1] ip prefix-list PE1 index 60 permit 192.168.10.0 24

[PE1] ip prefix-list PE1 index 70 permit 192.168.20.0 24

[PE1] mpls ldp

[PE1-ldp] lsp-trigger prefix-list PE1

[PE1-ldp] quit

# On P 1, configure IP prefix list P1, and configure LDP to use only the routes permitted by the prefix list to establish LSPs.

[P1] ip prefix-list P1 index 10 permit 1.1.1.1 32

[P1] ip prefix-list P1 index 20 permit 2.2.2.2 32

[P1] ip prefix-list P1 index 30 permit 3.3.3.3 32

[P1] ip prefix-list P1 index 40 permit 4.4.4.4 32

[P1] ip prefix-list P1 index 50 permit 5.5.5.5 32

[P1] ip prefix-list P1 index 60 permit 192.168.10.0 24

[P1] ip prefix-list P1 index 70 permit 192.168.20.0 24

[P1] mpls ldp

[P1-ldp] lsp-trigger prefix-list P1

[P1-ldp] quit

# On P 2, configure IP prefix list P2, and configure LDP to use only the routes permitted by the prefix list to establish LSPs.

[P2] ip prefix-list P2 index 10 permit 1.1.1.1 32

[P2] ip prefix-list P2 index 20 permit 2.2.2.2 32

[P2] ip prefix-list P2 index 30 permit 3.3.3.3 32

[P2] ip prefix-list P2 index 40 permit 4.4.4.4 32

[P2] ip prefix-list P2 index 50 permit 5.5.5.5 32

[P2] ip prefix-list P2 index 60 permit 192.168.10.0 24

[P2] ip prefix-list P2 index 70 permit 192.168.20.0 24

[P2] mpls ldp

[P2-ldp] lsp-trigger prefix-list P2

[P2-ldp] quit

# On P 3, configure IP prefix list P3, and configure LDP to use only the routes permitted by the prefix list to establish LSPs.

[P3] ip prefix-list P3 index 10 permit 1.1.1.1 32

[P3] ip prefix-list P3 index 20 permit 2.2.2.2 32

[P3] ip prefix-list P3 index 30 permit 3.3.3.3 32

[P3] ip prefix-list P3 index 40 permit 4.4.4.4 32

[P3] ip prefix-list P3 index 50 permit 5.5.5.5 32

[P3] ip prefix-list P3 index 60 permit 192.168.10.0 24

[P3] ip prefix-list P3 index 70 permit 192.168.20.0 24

[P3] mpls ldp

[P3-ldp] lsp-trigger prefix-list P3

[P3-ldp] quit

# On PE 2, configure IP prefix list PE 2, and configure LDP to use only the routes permitted by the prefix list to establish LSPs.

[PE2] ip prefix-list PE2 index 10 permit 1.1.1.1 32

[PE2] ip prefix-list PE2 index 20 permit 2.2.2.2 32

[PE2] ip prefix-list PE2 index 30 permit 3.3.3.3 32

[PE2] ip prefix-list PE2 index 40 permit 4.4.4.4 32

[PE2] ip prefix-list PE2 index 50 permit 5.5.5.5 32

[PE2] ip prefix-list PE2 index 60 permit 192.168.10.0 24

[PE2] ip prefix-list PE2 index 70 permit 192.168.20.0 24

[PE2] mpls ldp

[PE2-ldp] lsp-trigger prefix-list PE2

[PE2-ldp] quit

Verifying the configuration

After the configuration is completed, execute the display mpls ldp lsp command on PE 1 to view LDP LSP information. The output shows that the LSP destined for subnet 192.168.20.0/24 uses P 1 as the next hop by default.

[PE1] display mpls ldp lsp

Status Flags: * - stale, L - liberal, B - backup

  FECs: 7      Ingress LSPs: 5     Transit LSPs: 5     Egress LSPs: 2

 

FEC                In/Out Label    Nexthop         OutInterface

1.1.1.1/32         3/-

                   -/1151(L)

                   -/1151(L)

2.2.2.2/32         -/3             12.12.12.2      GE0/0/1

                   1151/3          12.12.12.2      GE0/0/1

                   -/1150(L)

3.3.3.3/32         -/1150          12.12.12.2      GE0/0/1

                   1150/1150       12.12.12.2      GE0/0/1

                   -/1148(L)

4.4.4.4/32         -/1149(L)

                   -/3             14.14.14.4      GE0/0/2      

                   1149/3          14.14.14.4      GE0/0/2      

5.5.5.5/32         -/1148(L)

                   -/1149          14.14.14.4      GE0/0/2      

                   1148/1149       14.14.14.4      GE0/0/2      

192.168.10.0/24    1145/-

                   -/1146(L)

                   -/1146(L)

192.168.20.0/24    -/1147          12.12.12.2      GE0/0/1

                   1146/1147       12.12.12.2      GE0/0/1

                   -/1147(L)

# Perform MPLS ping to test the validity and reachability of an MPLS LSP.

[PE1] ping mpls -a 192.168.10.1 ipv4 192.168.20.0 24

MPLS ping FEC 192.168.20.0/24 with 100 bytes of data:

100 bytes from 23.23.23.3: Sequence=1 time=2 ms

100 bytes from 23.23.23.3: Sequence=2 time=2 ms

100 bytes from 23.23.23.3: Sequence=3 time=2 ms

100 bytes from 23.23.23.3: Sequence=4 time=2 ms

100 bytes from 23.23.23.3: Sequence=5 time=2 ms

 

--- Ping statistics for FEC 192.168.20.0/24 ---

5 packets transmitted, 5 packets received, 0.0% packet loss

Round-trip min/avg/max = 2/2/2 ms

# When P 1 fails, execute the display mpls ldp lsp command. The output shows that the LSP destined for subnet 192.168.20.0/24 uses P 2 as the next hop. 

[PE1] display mpls ldp lsp

Status Flags: * - stale, L - liberal, B - backup

  FECs: 7      Ingress LSPs: 5     Transit LSPs: 5     Egress LSPs: 2

 

FEC                In/Out Label    Nexthop         OutInterface

1.1.1.1/32         3/-

                   -/1150(L)

2.2.2.2/32         -/1149          14.14.14.4      GE0/0/2      

                   1150/1149       14.14.14.4      GE0/0/2      

3.3.3.3/32         -/1148          14.14.14.4      GE0/0/2      

                   1147/1148       14.14.14.4      GE0/0/2      

4.4.4.4/32         -/3             14.14.14.4      GE0/0/2      

                   1149/3          14.14.14.4      GE0/0/2      

5.5.5.5/32         -/1151          14.14.14.4      GE0/0/2      

                   1148/1151       14.14.14.4      GE0/0/2      

192.168.10.0/24    1151/-

                   -/1146(L)

                   -/1146(L)

192.168.20.0/24    -/1147          14.14.14.4      GE0/0/2      

                   1146/1147       14.14.14.4      GE0/0/2      

# Perform MPLS ping to test the validity and reachability of an MPLS LSP.

[PE1] ping mpls -a 192.168.10.1 ipv4 192.168.20.0 24

MPLS ping FEC 192.168.20.0/24 with 100 bytes of data:

100 bytes from 35.35.35.3: Sequence=1 time=1 ms

100 bytes from 35.35.35.3: Sequence=2 time=1 ms

100 bytes from 35.35.35.3: Sequence=3 time=1 ms

100 bytes from 35.35.35.3: Sequence=4 time=1 ms

100 bytes from 35.35.35.3: Sequence=5 time=1 ms

 

--- Ping statistics for FEC 192.168.20.0/24 ---

5 packets transmitted, 5 packets received, 0.0% packet loss

Round-trip min/avg/max = 1/1/1 ms

Configuration files

·     PE 1:

#

ospf 1

 area 0.0.0.0

  network 1.1.1.1 0.0.0.0

  network 12.12.12.0 0.0.0.255

  network 14.14.14.0 0.0.0.255

  network 192.168.10.0 0.0.0.255

#

 mpls lsr-id 1.1.1.1

#

mpls ldp

 lsp-trigger prefix-list PE1

#

interface LoopBack0

 ip address 1.1.1.1 255,255,255,255

#

interface GigabitEthernet0/0/1

 port link-mode route

ip address 12.12.12.1 255.255.255.0

 mpls enable

 mpls ldp enable

#

interface GigabitEthernet0/0/2

 port link-mode route

ip address 14.14.14.1 255.255.255.0

 mpls enable

 mpls ldp enable

#

interface GigabitEthernet0/0/3

 port link-mode route

ip address 192.168.10.1 255.255.255.0

#

 ip prefix-list PE1 index 10 permit 1.1.1.1 32

 ip prefix-list PE1 index 20 permit 2.2.2.2 32

 ip prefix-list PE1 index 30 permit 3.3.3.3 32

 ip prefix-list PE1 index 40 permit 4.4.4.4 32

 ip prefix-list PE1 index 50 permit 5.5.5.5 32

 ip prefix-list PE1 index 60 permit 192.168.10.0 24

 ip prefix-list PE1 index 70 permit 192.168.20.0 24

·     P 1:

#

ospf 1

 area 0.0.0.0

  network 2.2.2.2 0.0.0.0

  network 12.12.12.0 0.0.0.255

  network 23.23.23.0 0.0.0.255

#

 mpls lsr-id 2.2.2.2

#

mpls ldp

 lsp-trigger prefix-list P1

#

interface LoopBack0

 ip address 2.2.2.2 255,255,255,255

#

interface GigabitEthernet0/0/1

 port link-mode route

ip address 12.12.12.2 255.255.255.0

 mpls enable

 mpls ldp enable

#

interface GigabitEthernet0/0/2

 port link-mode route

ip address 23.23.23.2 255.255.255.0

 mpls enable

 mpls ldp enable

#

 ip prefix-list P1 index 10 permit 1.1.1.1 32

 ip prefix-list P1 index 20 permit 2.2.2.2 32

 ip prefix-list P1 index 30 permit 3.3.3.3 32

 ip prefix-list P1 index 40 permit 4.4.4.4 32

 ip prefix-list P1 index 50 permit 5.5.5.5 32

 ip prefix-list P1 index 60 permit 192.168.10.0 24

 ip prefix-list P1 index 70 permit 192.168.20.0 24

#

·     P 2:

#

ospf 1

 area 0.0.0.0

  network 4.4.4.4 0.0.0.0

  network 14.14.14.0 0.0.0.255

  network 45.45.45.0 0.0.0.255

#

 mpls lsr-id 4.4.4.4

#

mpls ldp

 lsp-trigger prefix-list P2

#

interface LoopBack0

 ip address 4.4.4.4 255,255,255,255

#

interface GigabitEthernet0/0/1

 port link-mode route

ip address 45.45.45.4 255.255.255.0

 mpls enable

 mpls ldp enable

#

interface GigabitEthernet0/0/2

port link-mode route

 ip address 14.14.14.4 255.255.255.0

 mpls enable

 mpls ldp enable

#

 ip prefix-list P2 index 10 permit 1.1.1.1 32

 ip prefix-list P2 index 20 permit 2.2.2.2 32

 ip prefix-list P2 index 30 permit 3.3.3.3 32

 ip prefix-list P2 index 40 permit 4.4.4.4 32

 ip prefix-list P2 index 50 permit 5.5.5.5 32

 ip prefix-list P2 index 60 permit 192.168.10.0 24

 ip prefix-list P2 index 70 permit 192.168.20.0 24

#

·     P 3:

#

ospf 1

 area 0.0.0.0

  network 5.5.5.5 0.0.0.0

  network 35.35.35.0 0.0.0.255

  network 45.45.45.0 0.0.0.255

#

 mpls lsr-id 5.5.5.5

#

mpls ldp

 lsp-trigger prefix-list P3

#

interface LoopBack0

 ip address 2.2.2.2 255,255,255,255

#

interface GigabitEthernet0/0/1

 port link-mode route

ip address 35.35.35.5 255.255.255.0

 mpls enable

 mpls ldp enable

#

interface GigabitEthernet0/0/1

 port link-mode route

ip address 45.45.45.5 255.255.255.0

 mpls enable

 mpls ldp enable

#

 ip prefix-list P3 index 10 permit 1.1.1.1 32

 ip prefix-list P3 index 20 permit 2.2.2.2 32

 ip prefix-list P3 index 30 permit 3.3.3.3 32

 ip prefix-list P3 index 40 permit 4.4.4.4 32

 ip prefix-list P3 index 50 permit 5.5.5.5 32

 ip prefix-list P3 index 60 permit 192.168.10.0 24

 ip prefix-list P3 index 70 permit 192.168.20.0 24

#

·     PE 2:

#

ospf 1

 area 0.0.0.0

  network 3.3.3.3 0.0.0.0

  network 23.23.23.0 0.0.0.255

  network 33.0.0.0 0.0.0.255

  network 192.168.20.0 0.0.0.255

#

 mpls lsr-id 3.3.3.3

#

mpls ldp

 lsp-trigger prefix-list PE2

#

interface LoopBack0

 ip address 3.3.3.3 255,255,255,255

#

interface GigabitEthernet0/0/1

 port link-mode route

ip address 35.35.35.3 255.255.255.0

 mpls enable

 mpls ldp enable

#

interface GigabitEthernet0/0/2

 port link-mode route

ip address 23.23.23.3 255.255.255.0

 mpls enable

 mpls ldp enable

#

interface GigabitEthernet0/0/3

 port link-mode route

ip address 192.168.20.1 255.255.255.0

#

 ip prefix-list PE2 index 10 permit 1.1.1.1 32

 ip prefix-list PE2 index 20 permit 2.2.2.2 32

 ip prefix-list PE2 index 30 permit 3.3.3.3 32

 ip prefix-list PE2 index 40 permit 4.4.4.4 32

 ip prefix-list PE2 index 50 permit 5.5.5.5 32

 ip prefix-list PE2 index 60 permit 192.168.10.0 24

 ip prefix-list PE2 index 70 permit 192.168.20.0 24

#

Related documentation

·     MPLS Configuration Guide in H3C MSR1000[2600][3600] Routers Configuration Guides (V9)

·     MPLS Command Reference in H3C MSR1000[2600][3600] Routers Command References (V9)

 

  • Cloud & AI
  • InterConnect
  • Intelligent Computing
  • Intelligent Storage
  • Security
  • SMB Products
  • Intelligent Terminal Products
  • Product Support Services
  • Technical Service Solutions
All Services
  • Resource Center
  • Policy
  • Online Help
  • Technical Blogs
All Support
  • Become A Partner
  • Partner Policy & Program
  • Global Learning
  • Partner Sales Resources
  • Partner Business Management
  • Service Business
All Partners
  • Profile
  • News & Events
  • Online Exhibition Center
  • Contact Us
All About Us
新华三官网