02-QoS配置
本章节下载: 02-QoS配置 (793.28 KB)
QoS(Quality of Service)即服务质量。对于网络业务,影响服务质量的因素包括传输的带宽、传送的时延、数据的丢包率等。在网络中可以通过保证传输的带宽、降低传送的时延、降低数据的丢包率以及时延抖动等措施来提高服务质量。
网络资源总是有限的,只要存在抢夺网络资源的情况,就会出现服务质量的要求。服务质量是相对网络业务而言的,在保证某类业务的服务质量的同时,可能就是在损害其它业务的服务质量。例如,在网络总带宽固定的情况下,如果某类业务占用的带宽越多,那么其他业务能使用的带宽就越少,可能会影响其他业务的使用。因此,网络管理者需要根据各种业务的特点来对网络资源进行合理的规划和分配,从而使网络资源得到高效利用。
下面从QoS服务模型出发,对目前使用最多、最成熟的一些QoS技术逐一进行描述。在特定的环境下合理地使用这些技术,可以有效地提高服务质量。
通常QoS提供以下三种服务模型:
· Best-Effort service(尽力而为服务模型)
· Integrated service(综合服务模型,简称IntServ)
· Differentiated service(区分服务模型,简称DiffServ)
Best-Effort是一个单一的服务模型,也是最简单的服务模型。对Best-Effort服务模型,网络尽最大的可能性来发送报文。但对时延、可靠性等性能不提供任何保证。
Best-Effort服务模型是网络的缺省服务模型,通过FIFO队列来实现。它适用于绝大多数网络应用,如FTP、E-Mail等。
IntServ是一个综合服务模型,它可以满足多种QoS需求。该模型使用资源预留协议(RSVP),RSVP运行在从源端到目的端的每个设备上,可以监视每个流,以防止其消耗资源过多。这种体系能够明确区分并保证每一个业务流的服务质量,为网络提供最细粒度化的服务质量区分。
但是,InterServ模型对设备的要求很高,当网络中的数据流数量很大时,设备的存储和处理能力会遇到很大的压力。InterServ模型可扩展性很差,难以在Internet核心网络实施。
DiffServ是一个多服务模型,它可以满足不同的QoS需求。与IntServ不同,它不需要通知网络为每个业务预留资源。区分服务实现简单,扩展性较好。
本文提到的技术都是基于DiffServ服务模型。
QoS技术包括流分类、流量监管、流量整形、接口限速、拥塞管理、拥塞避免等。下面对常用的技术进行简单地介绍。
图1-1 常用QoS技术在网络中的位置
如图1-1所示,流分类、流量监管、流量整形、拥塞管理和拥塞避免主要完成如下功能:
· 流分类:采用一定的规则识别符合某类特征的报文,它是对网络业务进行区分服务的前提和基础。
· 流量监管:对进入或流出设备的特定流量进行监管,以保护网络资源不受损害。可以作用在接口入方向和出方向。
· 流量整形:一种主动调整流的输出速率的流量控制措施,用来使流量适配下游设备可供给的网络资源,避免不必要的报文丢弃,通常作用在接口出方向。
· 拥塞管理:当拥塞发生时制定一个资源的调度策略,决定报文转发的处理次序,通常作用在接口出方向。
· 拥塞避免:监督网络资源的使用情况,当发现拥塞有加剧的趋势时采取主动丢弃报文的策略,通过调整队列长度来解除网络的过载,通常作用在接口出方向。
图1-2 各QoS技术在同一网络设备中的处理顺序
QoS的配置方式分为QoS策略配置方式和非QoS策略配置方式两种。
有些QoS功能只能使用其中一种方式来配置,有些使用两种方式都可以进行配置。在实际应用中,两种配置方式也可以结合起来使用。
QoS策略配置方式是指通过配置QoS策略来实现QoS功能。
QoS策略包含了三个要素:类、流行为、策略。用户可以通过QoS策略将指定的类和流行为绑定起来,灵活地进行QoS配置。
类的要素包括:类的名称和类的规则。
用户可以通过命令定义一系列的规则来对报文进行分类。
流行为用来定义针对报文所做的QoS动作。
流行为的要素包括:流行为的名称和流行为中定义的动作。
用户可以通过命令在一个流行为中定义多个动作。
策略用来将指定的类和流行为绑定起来,对符合分类条件的报文执行流行为中定义的动作。
策略的要素包括:策略名称、绑定在一起的类和流行为的名称。
用户可以在一个策略中定义多个类与流行为的绑定关系。
如图2-1所示:
图2-1 QoS策略配置方式的步骤
定义类首先要创建一个类名称,然后在此类视图下配置其匹配规则。
表2-1 定义类
操作 |
命令 |
说明 |
进入系统视图 |
system-view |
- |
定义一个类,并进入类视图 |
traffic classifier classifier-name [ operator { and | or } ] |
缺省情况下,没有定义类 如果不指定规则之间的逻辑关系,缺省为and |
定义匹配数据包的规则 |
if-match match-criteria |
缺省情况下,没有定义匹配数据包的规则 |
表2-2 match-criteria(类的匹配规则)取值
取值 |
描述 |
acl [ ipv6 ] { acl-number | name acl-name } |
定义匹配ACL的规则 acl-number是ACL的序号,IPv4 ACL序号的取值范围是2000~3999,IPv6 ACL序号的取值范围是2000~3999,二层ACL序号的取值范围是4000~4999 acl-name是ACL的名称,为1~63个字符的字符串,不区分大小写,必须以英文字母a~z或A~Z开头,为避免混淆,ACL的名称不可以使用英文单词all |
any |
定义匹配所有数据包的规则 |
customer-dot1p 8021p-list |
定义匹配用户网络802.1p优先级的规则,8021p-list为802.1p优先级值的列表,最多可以输入8个802.1p优先级值,802.1p优先级取值范围为0~7 |
customer-vlan-id { vlan-id-list | vlan-id1 to vlan-id2 } |
定义匹配用户网络VLAN ID的规则,vlan-id-list为VLAN ID的列表,最多可以输入8个VLAN ID,vlan-id1 to vlan-id2表示一个VLAN ID的范围,vlan-id1的值必须小于vlan-id2的值,VLAN ID取值范围为1~4094 |
destination-mac mac-address |
定义匹配目的MAC地址的规则 |
dscp dscp-list |
定义匹配DSCP的规则,dscp-list为DSCP取值的列表,最多可以输入8个DSCP取值,DSCP取值范围为0~63;也可以输入关键字,具体如表11-4所示 |
ip-precedence ip-precedence-list |
定义匹配IP优先级的规则,ip-precedence-list为IP优先级的列表,最多可以输入8个IP优先级,IP优先级取值范围为0~7 |
protocol protocol-name |
定义匹配协议的规则,protocol-name取值为ip、ipv6 |
qos-local-id local-id-value |
定义匹配QoS本地ID值的规则,local-id-value为QoS本地ID,取值范围为1~4095 在本系列交换机上,能够支持的QoS本地ID值为1~3999 |
service-dot1p 8021p-list |
定义匹配运营商网络802.1p优先级的规则,8021p-list为802.1p优先级值的列表,最多可以输入8个802.1p优先级值,802.1p优先级取值范围为0~7 |
service-vlan-id { vlan-id-list | vlan-id1 to vlan-id2 } |
定义匹配运营商网络VLAN ID的规则,vlan-id-list为VLAN ID的列表,最多可以输入8个VLAN ID,vlan-id1 to vlan-id2表示一个VLAN ID的范围,vlan-id1的值必须小于vlan-id2的值,VLAN ID取值范围为1~4094 |
source-mac mac-address |
定义匹配源MAC地址的规则 |
如果指定类的逻辑关系为and,使用if-match命令定义匹配规则时,有如下注意事项:
· 在一个流分类下,最多只能配置一条匹配ACL的规则,每个ACL中多条匹配规则之间的逻辑关系为or。
· 在一个流分类下配置多条if-match customer-vlan-id的匹配规则时,这些规则之间的逻辑关系实际为or。配置多条if-match service-vlan-id规则时的情况与之相同。
当流分类中各规则之间的逻辑关系为and时,对于以下匹配条件,用户虽然可以通过重复执行if-match命令来配置多条匹配不同取值的规则,或在一条规则中使用list形式输入多个匹配值,但在应用使用该类的QoS策略时,对应该类的流行为将会无法正常执行:
· customer-dot1p 8021p-list
· destination-mac mac-address(不支持list形式)
· dscp dscp-list
· ip-precedence ip-precedence-list
· service-dot1p 8021p-list
· source-mac mac-address(不支持list形式)
如果用户需要创建匹配以上某一字段多个取值的规则,需要在创建流分类时指定各规则之间的逻辑关系为or,然后再通过多次执行if-match命令的方式来配置匹配多个值的规则。
定义流行为首先需要创建一个流行为名称,然后可以在此流行为视图下根据需要配置相应的流行为。每个流行为由一组QoS动作组成。
表2-3 定义流行为
操作 |
命令 |
说明 |
进入系统视图 |
system-view |
- |
定义一个流行为,并进入流行为视图 |
traffic behavior behavior-name |
缺省情况下,没有定义流行为 |
配置流行为的动作 |
流行为就是对应符合流分类的报文做出相应的QoS动作,例如流量监管、流量过滤、重标记、流量统计等,具体情况请参见本文相关章节 |
缺省情况下,没有配置流行为的动作 |
在策略视图下为类指定对应的流行为。以某种匹配规则将流区分为不同的类,再结合不同的流行为就能很灵活的实现各种QoS功能。
表2-4 定义策略
操作 |
命令 |
说明 |
进入系统视图 |
system-view |
- |
定义一个策略,并进入策略视图 |
qos policy policy-name |
缺省情况下,没有定义策略 |
为类指定流行为 |
classifier classifier-name behavior behavior-name |
缺省情况下,没有为类指定流行为 |
如果QoS策略在定义流分类规则时引用了ACL,则直接忽略ACL规则的动作,以流行为中定义的动作为准,报文匹配只使用ACL中的分类域。
QoS策略支持以下应用方式:
· 基于接口应用QoS策略:QoS策略对通过接口接收或发送的流量生效。
· 基于VLAN应用QoS策略:QoS策略对通过同一个VLAN内所有接口接收或发送的流量生效。
· 基于全局应用QoS策略:QoS策略对所有流量生效。
· QoS策略应用后,用户仍然可以修改QoS策略中的流分类规则和流行为,以及二者的对应关系。当流分类规则中匹配的是ACL时,允许删除或修改该ACL(包括向该ACL中添加、删除和修改规则)。
· 在基于端口、基于VLAN和基于全局三种应用QoS策略的方式中,基于端口的方式优先级高于基于VLAN的方式,基于全局的方式优先级最低。即设备对于接收/发送的流量,首先匹配端口上应用的QoS策略中的流分类条件,如果匹配则直接执行端口的QoS策略而不再执行VLAN和全局的策略。
一个策略可以应用于多个接口。接口的每个方向(出和入两个方向)只能应用一个策略。
表2-5 在接口上应用策略
操作 |
命令 |
说明 |
进入系统视图 |
system-view |
- |
进入接口视图 |
interface interface-type interface-number |
- |
在接口上应用QoS策略 |
qos apply policy policy-name { inbound | outbound } |
缺省情况下,没有在接口上应用QoS策略 |
如果QoS策略应用在接口的出方向,则QoS策略对本地协议报文不起作用。本地协议报文是设备内部发起的某些报文,它是维持设备正常运行的重要协议报文。为了确保这些报文能够被不受影响的发送出去,即便在接口的出方向应用了QoS策略,本地协议报文也不会受到QoS策略的限制,从而降低了因配置QoS而误将这些报文丢弃或进行其他处理的风险。一些常见的本地协议报文如下:链路维护报文、OSPF、RIP、BGP、SSH等。
基于VLAN应用QoS策略可以方便对某个VLAN上的所有流量进行管理。
表2-6 基于VLAN应用的QoS策略
操作 |
命令 |
说明 |
进入系统视图 |
system-view |
- |
在指定VLAN上应用QoS策略 |
qos vlan-policy policy-name vlan vlan-id-list { inbound | outbound } |
缺省情况下,没有在指定VLAN上应用QoS策略 |
基于VLAN应用的QoS策略不能应用在动态VLAN上,例如GVRP协议创建的VLAN。
基于全局应用QoS策略可以方便对设备上的所有流量进行管理。
表2-7 基于全局应用QoS策略
操作 |
命令 |
说明 |
进入系统视图 |
system-view |
- |
全局应用QoS策略 |
qos apply policy policy-name global { inbound | outbound } |
缺省情况下,没有在全局应用QoS策略 |
在任意视图下执行display命令可以显示QoS策略的运行情况,通过查看显示信息验证配置的效果。
在用户视图下执行reset命令可以清除QoS策略的统计信息。
表2-8 QoS策略显示和维护
操作 |
命令 |
显示类的配置信息 |
display traffic classifier user-defined [ classifier-name ] |
显示流行为的配置信息 |
display traffic behavior user-defined [ behavior-name ] |
显示用户定义策略的配置信息 |
display qos policy user-defined [ policy-name [ classifier classifier-name ] ] |
显示接口上QoS策略的配置信息和运行情况 |
display qos policy interface [ interface-type interface-number ] [ inbound | outbound ] |
显示基于VLAN应用QoS策略的信息 |
display qos vlan-policy { name policy-name | vlan vlan-id } [ slot slot-number ] [ inbound | outbound ] |
显示基于全局应用QoS策略的信息 |
display qos policy global [ slot slot-number ] [ inbound | outbound ] |
清除VLAN应用QoS策略的统计信息 |
reset qos vlan-policy [ vlan vlan-id ] [ inbound | outbound ] |
清除全局应用QoS策略的统计信息 |
reset qos policy global [ inbound | outbound ] |
报文在进入设备以后,设备会根据映射规则分配或修改报文的各种优先级的值,为队列调度和拥塞控制服务。
优先级映射功能通过报文所携带的优先级字段来映射其他优先级字段值,就可以获得决定报文调度能力的各种优先级字段,从而为全面有效的控制报文的转发调度等级提供依据。
优先级用于标识报文传输的优先程度,可以分为两类:报文携带优先级和设备调度优先级。
报文携带优先级包括:802.1p优先级、DSCP优先级、IP优先级、EXP优先级等。这些优先级都是根据公认的标准和协议生成,体现了报文自身的优先等级。相关介绍请参见11.2 附录 B 各种优先级介绍。
设备调度优先级是指报文在设备内转发时所使用的优先级,只对当前设备自身有效。设备调度优先级包括以下几种:
· 本地优先级(LP):设备为报文分配的一种具有本地意义的优先级,每个本地优先级对应一个队列,本地优先级值越大的报文,进入的队列优先级越高,从而能够获得优先的调度。
· 丢弃优先级(DP):在进行报文丢弃时参考的参数,丢弃优先级值越大的报文越被优先丢弃。
设备提供了多张优先级映射表,分别对应不同的优先级映射关系:
· dot1p-dp:802.1p优先级到丢弃优先级映射表;
l dot1p-lp:802.1p优先级到本地优先级映射表;
l dscp-dot1p:DSCP到802.1p优先级映射表,仅对IP报文生效;
l dscp-dp:DSCP到丢弃优先级映射表,仅对IP报文生效;
· dscp-dscp:DSCP到DSCP映射表,仅对IP报文生效;
通常情况下,设备可以通过查找缺省优先级映射表(11.1 附录 A 缺省优先级映射表)来为报文分配相应的优先级。如果缺省优先级映射表无法满足用户需求,可以根据实际情况对映射表进行修改。
通常情况下,报文可能会携带有多种优先级,设备在进行优先级映射时,需要首先确定采用哪种优先级作为参考,再通过优先级映射表映射出调度优先级。优先级信任模式就是用来指定设备进行优先级映射时作为参考的优先级,本系列交换机支持以下几种优先级信任模式:
l 信任DSCP优先级:设备将根据报文携带的DSCP优先级查找映射表进行优先级映射。
l 信任802.1p优先级:设备将根据报文携带的802.1p优先级查找映射表进行优先级映射。
l 不信任报文优先级:设备将使用接收报文的端口的端口优先级作为报文的802.1p优先级,并通过映射表进行优先级映射。
另外,当端口信任802.1p优先级,而接收到的报文又没有携带802.1Q标签时,设备将使用接收端口的端口优先级作为报文的802.1p优先级,并依此进行优先级映射。
对于接收到的以太网报文,交换机根据优先级信任模式和报文的802.1q标签状态,将采用不同的方式为其标记调度优先级。如所示:
上面介绍的过程适用于没有配置重标记功能的情况,如果已经配置了重标记功能,设备将根据重标记后的报文携带优先级查找映射表,为报文分配调度优先级,或者直接采用重标记后的调度优先级进行调度。此时端口的信任模式和端口优先级的配置均不生效。
修改优先级映射关系的方式有三种:配置优先级映射表、配置优先级信任模式和配置端口优先级。
表3-1 优先级映射配置任务简介
配置任务 |
说明 |
详细配置 |
配置优先级映射表 |
可选 |
|
配置优先级信任模式 |
二者选其一 |
|
配置端口优先级 |
表3-2 配置优先级映射表
操作 |
命令 |
说明 |
进入系统视图 |
system-view |
- |
进入指定的优先级映射表视图 |
qos map-table { dot1p-dp | dot1p-lp | dscp-dot1p | dscp-dp | dscp-dscp } |
用户根据需要进入相应的优先级映射表视图 |
配置指定优先级映射表的映射关系 |
import import-value-list export export-value |
缺省情况下,优先级映射表的映射关系请参见附录 A 缺省优先级映射表 新配置的映射关系将覆盖原有映射关系 |
根据报文自身的优先级,查找优先级映射表,为报文分配优先级参数,可以通过配置优先级信任模式的方式来实现。
在配置接口上的优先级模式时,用户可以选择下列信任模式:
· dot1p:信任报文自带的802.1p优先级,以此优先级进行优先级映射。
· dscp:信任IP报文自带的DSCP优先级,以此优先级进行优先级映射。
· 不信任报文优先级:使用端口优先级作为报文的802.1p优先级进行优先级映射。
表3-3 配置优先级信任模式
操作 |
命令 |
说明 |
进入系统视图 |
system-view |
- |
进入接口视图 |
interface interface-type interface-number |
- |
配置端口信任报文的DSCP优先级 |
qos trust dscp |
三者选其一 缺省情况下,设备不信任报文携带的优先级 |
配置信任报文的802.1p优先级 |
qos trust dot1p |
|
配置不信任报文携带的优先级 |
undo qos trust |
按照接收端口的端口优先级,通过一一映射为报文分配相应的优先级。
表3-4 配置端口优先级
操作 |
命令 |
说明 |
进入系统视图 |
system-view |
- |
进入接口视图 |
interface interface-type interface-number |
- |
配置端口优先级 |
qos priority priority-value |
端口优先级的缺省值为0 |
在完成上述配置后,在任意视图下执行display命令可以显示配置后优先级映射的运行情况,通过查看显示信息验证配置的效果。
表3-5 优先级映射显示和维护
操作 |
命令 |
显示指定优先级映射表配置情况 |
display qos map-table [ dot1p-dp | dot1p-lp | dscp-dot1p | dscp-dp | dscp-dscp ] |
显示端口优先级信任模式信息 |
display qos trust interface [ interface-type interface-number ] |
Device A和Device B通过Device C实现互连。网络环境描述如下:
· Device A通过端口Ten-GigabitEthernet1/0/1接入Device C;
· Device B通过端口Ten-GigabitEthernet1/0/2接入Device C。
要求通过配置实现如下需求:如果Device C在接口Ten-GigabitEthernet1/0/3的出方向发生拥塞,则优先处理Device A发出的报文(优先让Device A访问Server)。
图3-2 优先级信任模式和端口优先级配置举例组网图
# 在Ten-GigabitEthernet1/0/1和Ten-GigabitEthernet1/0/2端口上分别配置端口优先级,Ten-GigabitEthernet1/0/1上配置的端口优先级值要高于Ten-GigabitEthernet1/0/2上配置的端口优先级值。
<DeviceC> system-view
[DeviceC] interface ten-gigabitethernet 1/0/1
[DeviceC-Ten-GigabitEthernet1/0/1] qos priority 3
[DeviceC-Ten-GigabitEthernet1/0/1] quit
[DeviceC] interface ten-gigabitethernet 1/0/2
[DeviceC-Ten-GigabitEthernet1/0/2] qos priority 1
[DeviceC-Ten-GigabitEthernet1/0/2] quit
公司企业网通过Device实现各部门之间的互连。网络环境描述如下:
l 市场部门通过端口Ten-GigabitEthernet1/0/1接入Device,标记市场部门发出的报文的802.1p优先级为3;
l 研发部门通过端口Ten-GigabitEthernet1/0/2接入Device,标记研发部门发出的报文的802.1p优先级为4;
l 管理部门通过端口Ten-GigabitEthernet1/0/3接入Device,标记管理部门发出的报文的802.1p优先级为5。
实现如下需求:
访问公共服务器的时候,研发部门 > 管理部门 > 市场部门。
l 通过优先级映射将研发部门发出的报文放入出队列6中,优先进行处理;
l 通过优先级映射将管理部门发出的报文放入出队列4中,次优先进行处理;
l 通过优先级映射将市场部门发出的报文放入出队列2中,最后进行处理。
通过HTTP方式访问Internet的时候,管理部门 > 市场部门 > 研发部门。
l 重标记管理部门发出的报文本地优先级为6,优先进行处理;
l 重标记市场部门发出的报文的本地优先级为4,次优先进行处理;
l 重标记研发部门发出的报文的本地优先级为2,最后进行处理。
图3-3 优先级映射表和重标记配置举例组网图
(1) 配置端口的端口优先级
# 配置端口Ten-GigabitEthernet1/0/1的端口优先级为3。
<Device> system-view
[Device] interface ten-gigabitethernet 1/0/1
[Device-Ten-GigabitEthernet1/0/1] qos priority 3
[Device-Ten-GigabitEthernet1/0/1] quit
# 配置端口Ten-GigabitEthernet1/0/2的端口优先级为4。
[Device] interface ten-gigabitethernet 1/0/2
[Device-Ten-GigabitEthernet1/0/2] qos priority 4
[Device-Ten-GigabitEthernet1/0/2] quit
# 配置端口Ten-GigabitEthernet1/0/3的端口优先级为5。
[Device] interface ten-gigabitethernet 1/0/3
[Device-Ten-GigabitEthernet1/0/3] qos priority 5
[Device-Ten-GigabitEthernet1/0/3] quit
(2) 配置优先级映射表
# 配置802.1p优先级到本地优先级映射表,将802.1p优先级3、4、5对应的本地优先级配置为2、6、4。保证访问服务器的优先级为研发部门(6)>管理部门(4)>市场部门(2)。
[Device] qos map-table dot1p-lp
[Device-maptbl-dot1p-lp] import 3 export 2
[Device-maptbl-dot1p-lp] import 4 export 6
[Device-maptbl-dot1p-lp] import 5 export 4
[Device-maptbl-dot1p-lp] quit
(3) 配置重标记
将管理、市场、研发部门发出的HTTP报文的802.1p优先级分别重标记为4、5、3,使其能根据前面配置的映射表分别映射到本地优先级6、4、2。
# 创建ACL 3000,用来匹配HTTP报文。
[Device] acl number 3000
[Device-acl-adv-3000] rule permit tcp destination-port eq 80
[Device-acl-adv-3000] quit
# 创建流分类,匹配ACL 3000。
[Device] traffic classifier http
[Device-classifier-http] if-match acl 3000
[Device-classifier-http] quit
# 配置管理部门的重标记策略并应用到Ten-GigabitEthernet1/0/3端口的入方向。
[Device] traffic behavior admin
[Device-behavior-admin] remark dot1p 4
[Device-behavior-admin] quit
[Device] qos policy admin
[Device-qospolicy-admin] classifier http behavior admin
[Device-qospolicy-admin] quit
[Device] interface ten-gigabitethernet 1/0/3
[Device-Ten-GigabitEthernet1/0/3] qos apply policy admin inbound
# 配置市场部门的重标记策略并应用到Ten-GigabitEthernet1/0/1端口的入方向。
[Device] traffic behavior market
[Device-behavior-market] remark dot1p 5
[Device-behavior-market] quit
[Device] qos policy market
[Device-qospolicy-market] classifier http behavior market
[Device-qospolicy-market] quit
[Device] interface ten-gigabitethernet 1/0/1
[Device-Ten-GigabitEthernet1/0/1] qos apply policy market inbound
# 配置研发部门的重标记策略并应用到Ten-GigabitEthernet1/0/2端口的入方向。
[Device] traffic behavior rd
[Device-behavior-rd] remark dot1p 3
[Device-behavior-rd] quit
[Device] qos policy rd
[Device-qospolicy-rd] classifier http behavior rd
[Device-qospolicy-rd] quit
[Device] interface ten-gigabitethernet 1/0/2
[Device-Ten-GigabitEthernet1/0/2] qos apply policy rd inbound
如果不限制用户发送的流量,那么大量用户不断突发的数据只会使网络更拥挤。为了使有限的网络资源能够更好地发挥效用,更好地为更多的用户服务,必须对用户的流量加以限制。比如限制每个时间间隔某个流只能得到承诺分配给它的那部分资源,防止由于过分突发所引发的网络拥塞。
流量监管可以实现流量的速率限制功能,而要实现此功能就必须对通过设备的流量进行度量。一般采用令牌桶(Token Bucket)对流量进行度量。
令牌桶可以看作是一个存放一定数量令牌的容器。系统按设定的速度向桶中放置令牌,当桶中令牌满时,多出的令牌溢出,桶中令牌不再增加。
在用令牌桶评估流量规格时,是以令牌桶中的令牌数量是否足够满足报文的转发为依据的。如果桶中存在足够的令牌可以用来转发报文,称流量遵守或符合这个规格,否则称为不符合或超标。
评估流量时令牌桶的参数包括:
· 平均速率:向桶中放置令牌的速率,即允许的流的平均速度。通常配置为CIR。
· 突发尺寸:令牌桶的容量,即每次突发所允许的最大的流量尺寸。通常配置为CBS,突发尺寸必须大于最大报文长度。
每到达一个报文就进行一次评估。每次评估,如果桶中有足够的令牌可供使用,则说明流量控制在允许的范围内,此时要从桶中取走满足报文的转发的令牌;否则说明已经耗费太多令牌,流量超标了。
为了评估更复杂的情况,实施更灵活的调控策略,可以配置两个令牌桶(分别称为C桶和E桶)。例如流量监管中有四个参数:
· CIR:表示向C桶中投放令牌的速率,即C桶允许传输或转发报文的平均速率;
· CBS:表示C桶的容量,即C桶瞬间能够通过的承诺突发流量;
· PIR:表示向E桶中投放令牌的速率,即E桶允许传输或转发报文的最大速率;
· EBS:表示E桶的容量,即E桶瞬间能够通过的超出突发流量。
CBS和EBS是由两个不同的令牌桶承载的。当仅使用CIR进行流量评估时,设备将按照下面的原则为报文标记颜色:
· 如果C桶有足够的令牌,报文被标记为green,即绿色报文;
· 如果C桶令牌不足,但E桶有足够的令牌,报文被标记为yellow,即黄色报文;
· 如果C桶和E桶都没有足够的令牌,报文被标记为red,即红色报文。
当同时使用CIR和PIR进行流量评估时,会引入新的令牌桶—P桶,P桶容量等于CBS与EBS之和。此时设备按照以下原则为报文标记颜色:
· 如果P桶和C桶都有足够的令牌,报文被标记为green,即绿色报文;
· 如果C桶令牌不足,但P桶有足够的令牌,报文被标记为yellow,即黄色报文;
· 如果P桶没有足够的令牌,报文被标记为red,即红色报文。
用户可以在配置流量监管功能时针对不同颜色的报文配置不同的流控策略。
流量监管支持入和出两个方向,为了方便描述,下文以出方向为例。
流量监管TP(Traffic Policing)就是对流量进行控制,通过监督进入网络的流量速率,对超出部分的流量进行“惩罚”,使进入的流量被限制在一个合理的范围之内,以保护网络资源和运营商的利益。例如可以限制HTTP报文不能占用超过50%的网络带宽。如果发现某个连接的流量超标,流量监管可以选择丢弃报文,或重新配置报文的优先级。
图4-1 TP示意图
流量监管广泛的用于监管进入Internet服务提供商ISP的网络流量。流量监管还包括对所监管流量的流分类服务,并依据不同的评估结果,实施预先设定好的监管动作。这些动作可以是:
· 转发:比如对评估结果为“符合”的报文继续转发。
· 丢弃:比如对评估结果为“不符合”的报文进行丢弃。
· 改变优先级并转发:比如对评估结果为“符合”的报文,将其优先级进行重标记后再进行转发。可进行重标记的优先级包括:802.1p优先级、DSCP优先级和本地优先级。
表4-1 配置流量监管
操作 |
命令 |
说明 |
|
进入系统视图 |
system-view |
- |
|
定义一个类,并进入类视图 |
traffic classifier classifier-name [ operator { and | or } ] |
缺省情况下,没有定义类 |
|
定义匹配数据包的规则 |
if-match match-criteria |
缺省情况下,没有定义匹配数据包的规则 具体规则请参见QoS命令参考中的命令if-match的介绍 |
|
退回系统视图 |
quit |
- |
|
定义一个流行为,并进入流行为视图 |
traffic behavior behavior-name |
缺省情况下,没有定义流行为 |
|
配置流量监管动作 |
car cir committed-information-rate [ cbs committed-burst-size [ ebs excess-burst-size ] ] [ pir peak-information-rate ] [ green action ] [ yellow action ] [ red action ] |
缺省情况下,没有配置流量监管动作 |
|
退回系统视图 |
quit |
- |
|
定义一个策略,并进入策略视图 |
qos policy policy-name |
缺省情况下,没有定义策略 |
|
在策略中为类指定采用的流行为 |
classifier classifier-name behavior behavior-name |
缺省情况下,没有为类指定流行为 |
|
退回系统视图 |
quit |
- |
|
应用QoS策略 |
基于接口 |
三者选其一 缺省情况下,没有应用QoS策略 |
|
基于VLAN |
|||
基于全局 |
|||
(可选)显示流量监管的相关配置信息 |
display traffic behavior user-defined [ behavior-name ] |
display命令可以在任意视图下执行 |
在完成上述配置后,在任意视图下执行display命令可以显示配置后流量监管的运行情况,通过查看显示信息验证配置的效果。
表4-2 流量监管显示和维护
操作 |
命令 |
显示QoS和ACL资源的使用情况 |
display qos-acl resource [ slot slot-number ] |
显示流量监管的相关配置信息 |
display traffic behavior user-defined [ behavior-name ] |
有关命令display qos-acl resource的详细介绍,请参见“ACL和QoS命令参考”中的“ACL”。
所谓拥塞,是指当前供给资源相对于正常转发处理需要资源的不足,从而导致服务质量下降的一种现象。
在复杂的Internet分组交换环境下,拥塞极为常见。以下图中的两种情况为例:
图5-1 流量拥塞示意图
拥塞有可能会引发一系列的负面影响:
· 拥塞增加了报文传输的延迟和抖动,可能会引起报文重传,从而导致更多的拥塞产生。
· 拥塞使网络的有效吞吐率降低,造成网络资源的利用率降低。
· 拥塞加剧会耗费大量的网络资源(特别是存储资源),不合理的资源分配甚至可能导致系统陷入资源死锁而崩溃。
在分组交换以及多用户业务并存的复杂环境下,拥塞又是不可避免的,因此必须采用适当的方法来解决拥塞。
拥塞管理的中心内容就是当拥塞发生时如何制定一个资源的调度策略,以决定报文转发的处理次序。拥塞管理的处理包括队列的创建、报文的分类、将报文送入不同的队列、队列调度等。
对于拥塞管理,一般采用队列技术,使用一个队列算法对流量进行分类,之后用某种优先级别算法将这些流量发送出去。
队列调度对不同优先级的报文进行分级处理,优先级高的会得到优先发送。这里介绍五种常用的队列:严格优先级SP(Strict-Priority)队列、加权轮询WRR(Weighted Round Robin)队列、加权公平队列WFQ(Weighted Fair Queuing)、SP+WRR和SP+WFQ队列。
图5-2 SP队列示意图
SP队列是针对关键业务类型应用设计的。关键业务有一个重要的特点,即在拥塞发生时要求优先获得服务以减小响应的延迟。以图5-2为例,优先队列将端口的8个输出队列分成8类,依次为7、6、5、4、3、2、1、0队列,它们的优先级依次降低。
在队列调度时,SP严格按照优先级从高到低的次序优先发送较高优先级队列中的分组,当较高优先级队列为空时,再发送较低优先级队列中的分组。这样,将关键业务的分组放入较高优先级的队列,将非关键业务的分组放入较低优先级的队列,可以保证关键业务的分组被优先传送,非关键业务的分组在处理关键业务数据的空闲间隙被传送。
SP的缺点是:拥塞发生时,如果较高优先级队列中长时间有分组存在,那么低优先级队列中的报文将一直得不到服务。
图5-3 WRR队列示意图
WRR队列在队列之间进行轮流调度,保证每个队列都得到一定的服务时间。以端口有8个输出队列为例,WRR可为每个队列配置一个加权值(依次为w7、w6、w5、w4、w3、w2、w1、w0),加权值表示获取资源的比重。
本系列交换机可以根据每次轮询调度的字节数或者报文个数来体现某个队列的调度权重,即使用字节数或报文个数作为调度单位。
以使用字节数为调度单位的WRR队列为例,如一个10Gbps的端口,配置它的WRR队列的加权值为5、5、3、3、1、1、1、1(依次对应w7、w6、w5、w4、w3、w2、w1、w0),这样可以保证最低优先级队列至少获得500Mbps的带宽,解决了采用SP调度时低优先级队列中的报文可能长时间得不到服务的问题。
WRR队列还有一个优点是,虽然多个队列的调度是轮询进行的,但对每个队列不是固定地分配服务时间片——如果某个队列为空,那么马上换到下一个队列调度,这样带宽资源可以得到充分的利用。
图5-4 WFQ队列
WFQ和WRR队列调度算法类似,两者差异如下:WFQ支持带宽保证,可以保证端口流量拥塞时能够获得的最小队列带宽。
用户可以根据需要配置端口上的部分队列使用SP队列调度,部分队列使用WRR队列调度,通过将端口上的队列分别加入SP调度组和WRR调度组(即group 1),实现SP+WRR的调度功能。在队列调度时,系统会优先保证SP调度组内的队列调度,当SP调度组内的队列中没有报文发送时,才会调度WRR调度组内的队列。SP调度组内各个队列执行严格优先级调度方式,WRR调度组内各个队列执行加权轮询调度方式。
SP+WFQ队列与SP+WRR队列的配置方式基本相同,即将部分队列加入SP调度组,另外的队列加入WFQ调度组。在进行队列调度时,首先按SP方式对SP组中的队列进行调度,然后调度WFQ组的队列中满足WFQ最小保证带宽的流量,最后再按WFQ组中各队列的调度权重进行轮询调度。
表5-1 拥塞管理配置任务简介
配置任务 |
说明 |
详细配置 |
|
拥塞管理配置 |
配置SP队列 |
选择其中一种进行配置 |
|
配置WRR队列 |
|||
配置WFQ队列 |
|||
配置SP+WRR队列 |
|||
配置SP+WFQ队列 |
表5-2 SP队列配置过程
操作 |
命令 |
说明 |
进入系统视图 |
system-view |
- |
进入接口视图 |
interface interface-type interface-number |
- |
配置SP队列 |
qos sp |
缺省情况下,端口使用WRR队列进行调度 |
(1) 组网需求
配置Ten-GigabitEthernet1/0/1采用SP队列。
(2) 配置步骤
# 进入系统视图
<Sysname> system-view
# 配置Ten-GigabitEthernet1/0/1的SP队列。
[Sysname] interface ten-gigabitethernet 1/0/1
[Sysname-Ten-GigabitEthernet1/0/1] qos sp
表5-3 配置过程
操作 |
命令 |
说明 |
进入系统视图 |
system-view |
- |
进入接口视图 |
interface interface-type interface-number |
- |
使能WRR队列 |
qos wrr { byte-count | weight } |
缺省情况下,端口使用WRR队列进行调度 |
配置基本WRR队列的参数 |
qos wrr queue-id group 1 { byte-count | weight } schedule-value |
缺省情况下,各队列的权重分别为1、2、3、4、5、9、13、15 |
在配置WRR队列的调度权重值时,选择的调度权重(字节数或报文个数)需要与使能WRR时使用的调度权重保持一致,否则将无法正常配置。
(1) 组网需求
l 配置端口Ten-GigabitEthernet1/0/1的队列为WRR队列,使用报文个数为调度权重。
l 配置所有队列均属于为WRR分组,权重分别为1、2、4、6、8、10、12、14。
(2) 配置步骤
# 进入系统视图。
<Sysname> system-view
# 配置端口Ten-GigabitEthernet 1/0/1使用WRR队列调度算法。
[Sysname] interface Ten-GigabitEthernet 1/0/1
[Sysname-Ten-GigabitEthernet1/0/1] qos wrr weight
[Sysname-Ten-GigabitEthernet1/0/1] qos wrr 0 group 1 weight 1
[Sysname-Ten-GigabitEthernet1/0/1] qos wrr 1 group 1 weight 2
[Sysname-Ten-GigabitEthernet1/0/1] qos wrr 2 group 1 weight 4
[Sysname-Ten-GigabitEthernet1/0/1] qos wrr 3 group 1 weight 6
[Sysname-Ten-GigabitEthernet1/0/1] qos wrr 4 group 1 weight 8
[Sysname-Ten-GigabitEthernet1/0/1] qos wrr 5 group 1 weight 10
[Sysname-Ten-GigabitEthernet1/0/1] qos wrr 6 group 1 weight 12
[Sysname-Ten-GigabitEthernet1/0/1] qos wrr 7 group 1 weight 14
表5-4 配置过程
操作 |
命令 |
说明 |
进入系统视图 |
system-view |
- |
进入接口视图 |
interface interface-type interface-number |
- |
使能WFQ队列 |
qos wfq { byte-count | weight } |
缺省情况下,端口使用WRR队列进行调度 |
配置基本WFQ队列的参数 |
qos wfq queue-id group 1 { byte-count | weight } schedule-value |
缺省情况下,各队列的调度权重值均为1 |
(可选)配置WFQ队列的最小保证带宽值 |
qos bandwidth queue queue-id min bandwidth-value |
缺省情况下,各队列的最小保证带宽值均为64Kbps |
在配置WFQ队列的调度权重值时,选择的调度权重(字节数或报文个数)需要与使能WFQ时使用的调度权重保持一致,否则将无法正常配置。
(1) 组网需求
· 配置端口Ten-GigabitEthernet1/0/1上的队列为WFQ队列,使用字节数作为调度单位。
· 队列1、3、4、5、6的调度权重值分别为2、5、10、10、10。
· 为各队列配置最小保证带宽为100Mbps。
(2) 配置步骤
# 进入系统视图。
<Sysname> system-view
# 配置Ten-GigabitEthernet1/0/1的WFQ队列。
[Sysname] interface ten-gigabitethernet 1/0/1
[Sysname-Ten-GigabitEthernet1/0/1] qos wfq byte-count
[Sysname-Ten-GigabitEthernet1/0/1] qos wfq 1 group 1 byte-count 2
[Sysname-Ten-GigabitEthernet1/0/1] qos wfq 3 group 1 byte-count 5
[Sysname-Ten-GigabitEthernet1/0/1] qos wfq 4 group 1 byte-count 10
[Sysname-Ten-GigabitEthernet1/0/1] qos wfq 5 group 1 byte-count 10
[Sysname-Ten-GigabitEthernet1/0/1] qos wfq 6 group 1 byte-count 10
[Sysname-Ten-GigabitEthernet1/0/1] qos bandwidth queue 0 min 100000
[Sysname-Ten-GigabitEthernet1/0/1] qos bandwidth queue 1 min 100000
[Sysname-Ten-GigabitEthernet1/0/1] qos bandwidth queue 2 min 100000
[Sysname-Ten-GigabitEthernet1/0/1] qos bandwidth queue 3 min 100000
[Sysname-Ten-GigabitEthernet1/0/1] qos bandwidth queue 4 min 100000
[Sysname-Ten-GigabitEthernet1/0/1] qos bandwidth queue 5 min 100000
[Sysname-Ten-GigabitEthernet1/0/1] qos bandwidth queue 6 min 100000
[Sysname-Ten-GigabitEthernet1/0/1] qos bandwidth queue 7 min 100000
表1-1 配置SP+WRR队列
操作 |
命令 |
说明 |
进入系统视图 |
system-view |
- |
进入接口视图 |
interface interface-type interface-number |
- |
使能WRR队列 |
qos wrr { byte-count | weight } |
缺省情况下,所有端口均使用WRR队列 |
将部分队列加入SP调度组 |
qos wrr queue-id group sp |
缺省情况下,当端口使用WRR队列时,所有队列均处于WRR调度组中 |
将部分队列加入WRR调度组 |
qos wrr queue-id group 1 { weight | byte-count } schedule-value |
缺省情况下,队列0~7的权重分别为1、2、3、4、5、9、13、15 |
在配置WRR队列的调度权重值时,选择的调度权重(字节数或报文个数)需要与使能WRR时使用的调度权重保持一致,否则将无法正常配置。
(1) 组网需求
l 配置端口Ten-GigabitEthernet1/0/1使用SP+WRR队列调度算法
l 配置端口Ten-GigabitEthernet 1/0/1上的0、1、2、3队列属于SP调度组
l 配置端口Ten-GigabitEthernet 1/0/1上的4、5、6、7队列属于WRR调度组,使用字节数作为调度单位,权重分别为2、4、6、8,
(2) 配置步骤
# 进入系统视图。
<Sysname> system-view
# 配置端口Ten-GigabitEthernet 1/0/1使用SP+WRR队列调度算法。
[Sysname] interface ten-gigabitEthernet 1/0/1
[Sysname-Ten-GigabitEthernet1/0/1] qos wrr byte-count
[Sysname-Ten-GigabitEthernet1/0/1] qos wrr 0 group sp
[Sysname-Ten-GigabitEthernet1/0/1] qos wrr 1 group sp
[Sysname-Ten-GigabitEthernet1/0/1] qos wrr 2 group sp
[Sysname-Ten-GigabitEthernet1/0/1] qos wrr 3 group sp
[Sysname-Ten-GigabitEthernet1/0/1] qos wrr 4 group 1 byte-count 2
[Sysname-Ten-GigabitEthernet1/0/1] qos wrr 5 group 1 byte-count 4
[Sysname-Ten-GigabitEthernet1/0/1] qos wrr 6 group 1 byte-count 6
[Sysname-Ten-GigabitEthernet1/0/1] qos wrr 7 group 1 byte-count 8
表1-2 配置SP+WFQ队列
操作 |
命令 |
说明 |
进入系统视图 |
system-view |
- |
进入接口视图 |
interface interface-type interface-number |
- |
使能WFQ队列 |
qos wfq { byte-count | weight } |
缺省情况下,端口使用WRR队列进行调度 |
将部分队列加入SP调度组 |
qos wfq queue-id group sp |
缺省情况下,当端口使用WFQ队列时,所有队列均处于WFQ调度组中 |
将部分队列加入WFQ调度组 |
qos wfq queue-id group 1 { weight | byte-count } schedule-value |
缺省情况下,各队列的调度权重值均为1 |
(可选)配置WFQ队列的最小保证带宽值 |
qos bandwidth queue queue-id min bandwidth-value |
缺省情况下,各队列的最小保证带宽值均为64Kbps |
在配置WFQ队列的调度权重值时,选择的调度权重(字节数或报文个数)需要与使能WFQ时使用的调度权重保持一致,否则将无法正常配置。
(1) 组网需求
l 配置端口Ten-GigabitEthernet1/0/1使用SP+WFQ队列调度算法,其中WFQ的调度权重为报文个数
l 配置端口Ten-GigabitEthernet1/0/1上的0、1、2、3队列属于SP调度组
l 配置端口Ten-GigabitEthernet1/0/1上的4、5、6、7队列属于WFQ调度组,使用字节数作为调度单位,权重分别为2、4、6、8,这四个队列的最小保证带宽值均为128Mbps
(2) 配置步骤
# 进入系统视图。
<Sysname> system-view
# 配置端口Ten-GigabitEthernet1/0/1使用SP+WFQ队列调度算法。
[Sysname] interface ten-gigabitEthernet 1/0/1
[Sysname-Ten-GigabitEthernet1/0/1] qos wfq weight
[Sysname-Ten-GigabitEthernet1/0/1] qos wfq 0 group sp
[Sysname-Ten-GigabitEthernet1/0/1] qos wfq 1 group sp
[Sysname-Ten-GigabitEthernet1/0/1] qos wfq 2 group sp
[Sysname-Ten-GigabitEthernet1/0/1] qos wfq 3 group sp
[Sysname-Ten-GigabitEthernet1/0/1] qos wfq 4 group 1 weight 2
[Sysname-Ten-GigabitEthernet1/0/1] qos bandwidth queue 4 min 128000
[Sysname-Ten-GigabitEthernet1/0/1] qos wfq 5 group 1 weight 4
[Sysname-Ten-GigabitEthernet1/0/1] qos bandwidth queue 5 min 128000
[Sysname-Ten-GigabitEthernet1/0/1] qos wfq 6 group 1 weight 6
[Sysname-Ten-GigabitEthernet1/0/1] qos bandwidth queue 6 min 128000
[Sysname-Ten-GigabitEthernet1/0/1] qos wfq 7 group 1 weight 8
[Sysname-Ten-GigabitEthernet1/0/1] qos bandwidth queue 7 min 128000
在完成上述配置后,在任意视图下执行display命令可以显示配置后各队列的运行情况,通过查看显示信息验证配置的效果。
表5-5 拥塞管理显示和维护
操作 |
命令 |
显示SP队列 |
display qos sp interface [ interface-type interface-number ] |
显示WRR队列的配置 |
display qos wrr interface [ interface-type interface-number ] |
显示WFQ队列的配置 |
display qos wfq interface [ interface-type interface-number ] |
过度的拥塞会对网络资源造成极大危害,必须采取某种措施加以解除。拥塞避免(Congestion Avoidance)是一种流量控制机制,它通过监视网络资源(如队列或内存缓冲区)的使用情况,在拥塞产生或有加剧的趋势时主动丢弃报文,通过调整网络的流量来避免网络过载。
设备在丢弃报文时,需要与源端的流量控制动作(比如TCP流量控制)相配合,调整网络的流量到一个合理的负载状态。丢包策略和源端的流量控制相结合,可以使网络的吞吐量和利用效率最大化,并且使报文丢弃和延迟最小化。
传统的丢包策略采用尾部丢弃(Tail-Drop)的方法。当队列的长度达到最大值后,所有新到来的报文都将被丢弃。
这种丢弃策略会引发TCP全局同步现象:当队列同时丢弃多个TCP连接的报文时,将造成多个TCP连接同时进入拥塞避免和慢启动状态以降低并调整流量,而后又会在某个时间同时出现流量高峰。如此反复,使网络流量忽大忽小,网络不停震荡。
为避免TCP全局同步现象,可使用RED(Random Early Detection,随机早期检测)或WRED(Weighted Random Early Detection,加权随机早期检测)。
RED和WRED通过随机丢弃报文避免了TCP的全局同步现象,使得当某个TCP连接的报文被丢弃、开始减速发送的时候,其他的TCP连接仍然有较高的发送速度。这样,无论什么时候,总有TCP连接在进行较快的发送,提高了线路带宽的利用率。
在RED类算法中,为每个队列都设定上限和下限,对队列中的报文进行如下处理:
· 当队列的长度小于下限时,不丢弃报文;
· 当队列的长度在上限和下限之间时,开始按用户配置的丢弃概率随机丢弃到来的报文。
· 当队列的长度超过上限时,丢弃所有到来的报文;
直接采用队列的长度和上限、下限比较并进行丢弃,将会对突发性的数据流造成不公正的待遇,不利于数据流的传输。WRED采用平均队列和设置的队列上限、下限比较来确定丢弃的概率。
队列平均长度既反映了队列的变化趋势,又对队列长度的突发变化不敏感,避免了对突发性数据流的不公正待遇。计算队列平均长度的公式为:平均队列长度=(以前的平均队列长度×(1-1/2n))+(当前队列长度×(1/2n))。其中n可以通过命令queue weighting-constant进行配置。
S5830V2系列交换机不支持拥塞通知功能。
WRED采用的丢弃报文的动作虽然缓解了拥塞对网络的影响,但将报文从发送端转发到被丢弃位置之间所消耗的网络资源已经被浪费了。因此,在拥塞发生时,如果能将网络的拥塞状况告知发送端,使其主动降低发送速率或减小报文窗口大小,便可以更高效的利用网络资源。
RFC2481定义了一种端到端的拥塞通知机制,称为显式拥塞通知(Explicit Congestion Notification),又称为ECN功能。该功能利用IP报文头中的DS域来标记报文传输路径上的拥塞状态。支持该功能的终端设备可以通过报文内容判断出传输路径上发生了拥塞,从而调整报文的发送方式,避免拥塞加剧。ECN功能对IP报文头中DS域的最后两个比特位(称为ECN域)进行了如下定义:
· 比特位6用于标识发送端设备是否支持ECN功能,称为ECT位(ECN-Capable Transport)
· 比特位7用于标识报文在传输路径上是否经历过拥塞,称为CE位(Congestion Experienced)
· 关于DS域的介绍,请参见IP优先级和DSCP优先级。
· 在实际应用中,设备将ECT位为1、CE位为0的报文,以及ECT位为0,CE位为1的报文都识别为由支持ECN功能的终端发出的报文。
在设备上开启ECN功能后,拥塞管理功能将按如下方式对报文进行处理:
· 如果队列长度小于下限,不丢弃报文,也不对ECN域进行识别和标记。
· 如果队列长度在上限和下限之间,当设备根据丢弃概率计算出需要丢弃某个报文时,将检查该报文的ECN域。如果ECN域显示该报文由支持ECN的终端发出,设备会将报文的ECT位和CE位都标记为1,然后转发该报文;如果ECN域显示报文传输路径中已经经历过拥塞(即ECT和CE位都为1),则设备直接转发该报文,不对ECN域进行重新标记;如果ECT位和CE位都为0,设备会将该报文丢弃。
· 如果队列长度超过上限,无论报文是否由支持ECN的终端发出,都将会被设备丢弃。
本系列交换机的ECN功能基于队列开启,即可以配置设备对某个队列的报文进行ECN域的识别和标记。
本系列交换机支持基于队列的WRED表,即可以为每个队列配置独立的丢弃参数,拥塞时根据报文所在队列进行随机丢弃。
在进行WRED配置时,需要事先确定如下参数:
· 队列上限和下限:当队列平均长度小于下限时,不丢弃报文。当队列平均长度在上限和下限之间时,设备随按用户配置的丢弃概率随机丢弃报文。当队列平均长度超过上限时,丢弃所有到来的报文。
· 丢弃优先级:在进行报文丢弃时参考的参数,0对应绿色报文、1对应黄色报文、2对应红色报文。
· 计算平均队列长度的指数:指数越大,计算平均队列长度时对队列的实时变化越不敏感。
· 丢弃概率:以百分数的形式表示丢弃报文的概率,取值越大,报文被丢弃的机率越大。
表6-1 WRED表的配置和应用过程
操作 |
命令 |
说明 |
进入系统视图 |
system-view |
- |
配置WRED表 |
qos wred queue table table-name |
- |
(可选)配置计算平均队列长度的指数 |
queue queue-value weighting-constant exponent |
缺省情况下,基于队列的WRED表的平均队列长度的指数为9 |
(可选)配置WRED表的其它参数 |
queue queue-value [ drop-level drop-level ] low-limit low-limit high-limit high-limit [ discard-probability discard-prob ] |
缺省情况下,low-limit的取值为100,high-limit的取值为1000,discard-prob的取值为10 |
(可选)配置队列的拥塞通知功能 |
queue queue-value ecn |
缺省情况下,没有配置任何队列的拥塞通知功能 S5830V2系列交换机不支持拥塞通知功能 |
进入接口视图 |
interface interface-type interface-number |
- |
在接口应用WRED表 |
qos wred apply [ table-name ] |
- |
同一个表可以同时在多个接口应用。WRED表被应用到接口后,用户可以对WRED表的取值进行修改,但是不能删除该WRED表。
在完成上述配置后,在任意视图下执行display命令可以显示配置后WRED的运行情况,通过查看显示信息验证配置的效果。
表6-2 WRED显示和维护
操作 |
命令 |
显示接口的WRED配置情况 |
display qos wred interface [ interface-type interface-number ] |
显示WRED表配置情况 |
display qos wred table [ name table-name ] [ slot slot-number ] |
在接口Ten-GigabitEthernet1/0/2应用WRED策略,当发生报文拥塞时,采用如下丢弃方式:
· 为保证高优先级报文尽量通过,区分不同的队列,队列号越大,丢弃概率越低。为队列0、队列3、队列7三个级别配置不同的丢弃参数。
· 区分不同颜色报文的的丢弃概率,对于队列0,绿色、黄色、红色报文的丢弃概率分别为25%、50%、75%;对于队列3,绿色、黄色、红色报文的丢弃概率分别为5%、10%、25%;对于队列7,绿色、黄色、红色报文的丢弃概率分别为1%、5%、10%。
· 对队列7的报文开启拥塞通知功能。
# 配置基于队列的WRED表,并为不同队列不同丢弃优先级配置丢弃参数。
<Sysname> system-view
[Sysname] qos wred queue table queue-table1
[Sysname-wred-table-queue-table1] queue 0 drop-level 0 low-limit 128 high-limit 512 discard-probability 25
[Sysname-wred-table-queue-table1] queue 0 drop-level 1 low-limit 128 high-limit 512 discard-probability 50
[Sysname-wred-table-queue-table1] queue 0 drop-level 2 low-limit 128 high-limit 512 discard-probability 75
[Sysname-wred-table-queue-table1] queue 3 drop-level 0 low-limit 256 high-limit 640 discard-probability 5
[Sysname-wred-table-queue-table1] queue 3 drop-level 1 low-limit 256 high-limit 640 discard-probability 10
[Sysname-wred-table-queue-table1] queue 3 drop-level 2 low-limit 256 high-limit 640 discard-probability 25
[Sysname-wred-table-queue-table1] queue 7 drop-level 0 low-limit 512 high-limit 1024 discard-probability 1
[Sysname-wred-table-queue-table1] queue 7 drop-level 1 low-limit 512 high-limit 1024 discard-probability 5
[Sysname-wred-table-queue-table1] queue 7 drop-level 2 low-limit 512 high-limit 1024 discard-probability 10
[Sysname-wred-table-queue-table1] queue 7 ecn
[Sysname-wred-table-queue-table1] quit
# 在接口Ten-GigabitEthernet1/0/2上应用基于队列的WRED表。
[Sysname] interface ten-gigabitethernet 1/0/2
[Sysname-Ten-GigabitEthernet1/0/2] qos wred apply queue-table1
[Sysname-Ten-GigabitEthernet1/0/2] quit
流量过滤是指对符合流分类的流进行过滤的动作。
例如,可以根据网络的实际情况禁止从某个源IP地址发送的报文通过。
表7-1 配置流量过滤
操作 |
命令 |
说明 |
|
进入系统视图 |
system-view |
- |
|
定义一个类,并进入类视图 |
traffic classifier classifier-name [ operator { and | or } ] |
缺省情况下,没有定义类 |
|
定义匹配数据包的规则 |
if-match match-criteria |
缺省情况下,没有定义匹配数据包的规则 具体规则请参见QoS命令参考中的命令if-match的介绍 |
|
退回系统视图 |
quit |
- |
|
定义一个流行为,并进入流行为视图 |
traffic behavior behavior-name |
缺省情况下,没有定义流行为 |
|
配置流量过滤动作 |
filter { deny | permit } |
缺省情况下,没有配置流量统计动作 |
|
退回系统视图 |
quit |
- |
|
定义一个策略,并进入策略视图 |
qos policy policy-name |
缺省情况下,没有定义策略 |
|
在策略中为类指定采用的流行为 |
classifier classifier-name behavior behavior-name |
缺省情况下,没有为类指定流行为 |
|
退回系统视图 |
quit |
- |
|
应用QoS策略 |
基于接口 |
三者选其一 缺省情况下,没有应用QoS策略 |
|
基于VLAN |
|||
基于全局 |
|||
(可选)显示流量过滤的相关配置信息 |
display traffic behavior user-defined [ behavior-name ] |
display命令可以在任意视图下执行 |
如果配置了filter deny命令,则在该流行为视图下配置的其他流行为(除流量统计外)都不会生效。
Host通过接口Ten-GigabitEthernet1/0/1接入设备Device A。
配置流量过滤功能,对接口Ten-GigabitEthernet1/0/1接收的源端口号等于21的TCP报文进行丢弃。
图7-1 配置流量过滤组网图
# 定义高级ACL 3000,匹配源端口号等于21的数据流。
<DeviceA> system-view
[DeviceA] acl number 3000
[DeviceA-acl-adv-3000] rule 0 permit tcp source-port eq 21
[DeviceA-acl-adv-3000] quit
# 定义类classifier_1,匹配高级ACL 3000。
[DeviceA] traffic classifier classifier_1
[DeviceA-classifier-classifier_1] if-match acl 3000
[DeviceA-classifier-classifier_1] quit
# 定义流行为behavior_1,动作为流量过滤(deny),对数据包进行丢弃。
[DeviceA] traffic behavior behavior_1
[DeviceA-behavior-behavior_1] filter deny
[DeviceA-behavior-behavior_1] quit
# 定义策略filter_policy,为类classifier_1指定流行为behavior_1。
[DeviceA] qos policy filter_policy
[DeviceA-qospolicy-filter_policy] classifier classifier_1 behavior behavior_1
[DeviceA-qospolicy-filter_policy] quit
# 将策略filter_policy应用到端口Ten-GigabitEthernet1/0/1的入方向上。
[DeviceA] interface ten-gigabitethernet 1/0/1
[DeviceA-Ten-GigabitEthernet1/0/1] qos apply policy filter_policy inbound
重标记可以和优先级映射功能配合使用,具体请参见优先级映射章节。
重标记是将报文的优先级或者标志位进行设置,重新定义报文的优先级等。例如,对于IP报文来说,可以利用重标记对IP报文中的IP优先级或DSCP值进行重新设置,控制IP报文的转发。
重标记动作的配置,可以通过与类关联,将原来报文的优先级或标志位重新进行标记。
表8-1 配置重标记
操作 |
命令 |
说明 |
||
进入系统视图 |
system-view |
- |
||
定义一个类,并进入类视图 |
traffic classifier classifier-name [ operator { and | or } ] |
缺省情况下,没有定义类 |
||
定义匹配数据包的规则 |
if-match match-criteria |
缺省情况下,没有定义匹配数据包的规则 具体规则请参见QoS命令参考中的命令if-match的介绍 |
||
退回系统视图 |
quit |
- |
||
定义一个流行为,并进入流行为视图 |
traffic behavior behavior-name |
缺省情况下,没有定义流行为 |
||
重新标记报文的动作 |
重新标记报文的802.1p优先级或配置内外层标签优先级复制功能 |
remark dot1p { 8021p | customer-dot1p-trust } |
选择一项或多项进行配置 缺省情况下,没有配置重新标记报文的动作 在本系列交换机上,能够支持的QoS本地ID值为1~3999 |
|
重新标记报文的丢弃优先级 |
remark drop-precedence drop-precedence-value |
|||
重新标记报文的DSCP值 |
remark dscp dscp-value |
|||
重新标记报文的IP优先级 |
remark ip-precedence ip-precedence-value |
|||
重新标记报文的本地优先级 |
remark local-precedence local-precedence |
|||
重新标记报文的QoS本地ID值 |
remark qos-local-id local-id-value |
|||
退回系统视图 |
quit |
- |
||
定义一个策略,并进入策略视图 |
qos policy policy-name |
缺省情况下,没有定义策略 |
||
在策略中为类指定采用的流行为 |
classifier classifier-name behavior behavior-name |
缺省情况下,没有为类指定流行为 |
||
退回系统视图 |
quit |
- |
||
应用QoS策略 |
基于接口 |
三者选其一 缺省情况下,没有应用QoS策略 |
||
基于VLAN |
||||
基于全局 |
||||
(可选)显示重标记的相关配置信息 |
display traffic behavior user-defined [ behavior-name ] |
display命令可以在任意视图下执行 |
||
命令remark local-precedence和remark drop-precedence仅应用在入方向。
公司企业网通过Device实现互连。网络环境描述如下:
· Host A和Host B通过端口Ten-GigabitEthernet1/0/1接入Device;
· 数据库服务器、邮件服务器和文件服务器通过端口Ten-GigabitEthernet1/0/2接入Device。
通过配置重标记功能,Device上实现如下需求:
· 优先处理Host A和Host B访问数据库服务器的报文;
· 其次处理Host A和Host B访问邮件服务器的报文;
· 最后处理Host A和Host B访问文件服务器的报文。
图8-1 配置重标记组网图
# 定义高级ACL 3000,对目的IP地址为192.168.0.1的报文进行分类。
<Device> system-view
[Device] acl number 3000
[Device-acl-adv-3000] rule permit ip destination 192.168.0.1 0
[Device-acl-adv-3000] quit
# 定义高级ACL 3001,对目的IP地址为192.168.0.2的报文进行分类。
[Device] acl number 3001
[Device-acl-adv-3001] rule permit ip destination 192.168.0.2 0
[Device-acl-adv-3001] quit
# 定义高级ACL 3002,对目的IP地址为192.168.0.3的报文进行分类。
[Device] acl number 3002
[Device-acl-adv-3002] rule permit ip destination 192.168.0.3 0
[Device-acl-adv-3002] quit
# 定义类classifier_dbserver,匹配高级ACL 3000。
[Device] traffic classifier classifier_dbserver
[Device-classifier-classifier_dbserver] if-match acl 3000
[Device-classifier-classifier_dbserver] quit
# 定义类classifier_mserver,匹配高级ACL 3001。
[Device] traffic classifier classifier_mserver
[Device-classifier-classifier_mserver] if-match acl 3001
[Device-classifier-classifier_mserver] quit
# 定义类classifier_fserver,匹配高级ACL 3002。
[Device] traffic classifier classifier_fserver
[Device-classifier-classifier_fserver] if-match acl 3002
[Device-classifier-classifier_fserver] quit
# 定义流行为behavior_dbserver,动作为重标记报文的本地优先级为4。
[Device] traffic behavior behavior_dbserver
[Device-behavior-behavior_dbserver] remark local-precedence 4
[Device-behavior-behavior_dbserver] quit
# 定义流行为behavior_mserver,动作为重标记报文的本地优先级为3。
[Device] traffic behavior behavior_mserver
[Device-behavior-behavior_mserver] remark local-precedence 3
[Device-behavior-behavior_mserver] quit
# 定义流行为behavior_fserver,动作为重标记报文的本地优先级为2。
[Device] traffic behavior behavior_fserver
[Device-behavior-behavior_fserver] remark local-precedence 2
[Device-behavior-behavior_fserver] quit
# 定义策略policy_server,为类指定流行为。
[Device] qos policy policy_server
[Device-qospolicy-policy_server] classifier classifier_dbserver behavior behavior_dbserver
[Device-qospolicy-policy_server] classifier classifier_mserver behavior behavior_mserver
[Device-qospolicy-policy_server] classifier classifier_fserver behavior behavior_fserver
[Device-qospolicy-policy_server] quit
# 将策略policy_server应用到端口Ten-GigabitEthernet1/0/1上。
[Device] interface ten-gigabitethernet 1/0/1
[Device-Ten-GigabitEthernet1/0/1] qos apply policy policy_server inbound
[Device-Ten-GigabitEthernet1/0/1] quit
重标记qos-local-id功能主要用于将匹配多种分类条件的报文进行重分类,再对这个重分类进行流行为的情况。
某公司内网的结构如所示,现要求对各部门访问外网的流量进行限速。其中对管理部和研发部分别限速102400Kbps,市场部(包含两个子部门)的总流量限速为204800Kbps。
图8-2 重标记qos-local-id配置组网图
· 对管理部和研发部的流量进行限速比较简单,可以通过两个流分类分别匹配两个部门的网段,然后与相应的限速动作进行配对。
· 而对于市场部的限速则需要通过QoS本地标识符来实现,首先将市场部两个子部门的流量使用QoS本地标识符来标记,然后再将匹配该标识符的流分类与限速动作进行配对,才能将两个子部门的流量共同限定在一个速率之内。
l 对管理部和研发部上行流量的限制
# 创建基本IPv4 ACL 2001,匹配管理部发送的流量。
<SwitchA> system-view
[SwitchA] acl number 2001
[SwitchA-acl-basic-2001] rule permit source 192.168.1.0 0.0.0.255
[SwitchA-acl-basic-2001] quit
# 创建基本IPv4 ACL 2002,匹配研发部发送的流量。
[SwitchA] acl number 2002
[SwitchA-acl-basic-2002] rule permit source 192.168.2.0 0.0.0.255
[SwitchA-acl-basic-2002] quit
# 创建流分类admin,匹配管理部发送的流量(即匹配ACL 2001)。
[SwitchA] traffic classifier admin
[SwitchA-classifier-admin] if-match acl 2001
[SwitchA-classifier-admin] quit
# 创建流分类rd,匹配研发部发送的流量(即匹配ACL 2002)。
[SwitchA] traffic classifier rd
[SwitchA-classifier-rd] if-match acl 2002
[SwitchA-classifier-rd] quit
# 创建流行为car_admin_rd,动作为流量监管,限速值为102400Kbps。
[SwitchA] traffic behavior car_admin_rd
[SwitchA-behavior-car_admin_rd] car cir 102400
[SwitchA-behavior-car_admin_rd] quit
# 创建QoS策略car,将流分类admin和rd分别与流行为car_admin_rd进行配对。
[SwitchA] qos policy car
[SwitchA-qospolicy-car] classifier admin behavior car_admin_rd
[SwitchA-qospolicy-car] classifier rd behavior car_admin_rd
[SwitchA-qospolicy-car] quit
l 对市场部上行流量的限制
# 创建基本IPv4 ACL 2003,匹配市场一部发送的流量。
[SwitchA] acl number 2003
[SwitchA-acl-basic-2003] rule permit source 192.168.3.0 0.0.0.255
[SwitchA-acl-basic-2003] quit
# 创建基本IPv4 ACL 2004,匹配市场二部发送的流量。
[SwitchA] acl number 2004
[SwitchA-acl-basic-2004] rule permit source 192.168.4.0 0.0.0.255
[SwitchA-acl-basic-2004] quit
# 创建流分类marketing,匹配条件为市场一部或市场二部的流量。
[SwitchA] traffic classifier marketing operator or
[SwitchA-classifier-marketing] if-match acl 2003
[SwitchA-classifier-marketing] if-match acl 2004
[SwitchA-classifier-marketing] quit
# 创建流行为remark_local_id,动作为重标记QoS本地标识符为100。
[SwitchA] traffic behavior remark_local_id
[SwitchA-behavior-remark_local_id] remark qos-local-id 100
[SwitchA-behavior-remark_local_id] quit
# 创建流分类marketing_car,匹配条件为市场一部或市场二部的流量。
[SwitchA] traffic classifier marketing_car
[SwitchA-classifier-marketing_car] if-match qos-local-id 100
[SwitchA-classifier-marketing_car] quit
# 创建流行为marketing_car,动作为流量监管,限速值为204800Kbps。
[SwitchA] traffic behavior marketing_car
[SwitchA-behavior-marketing_car] car cir 204800
[SwitchA-behavior-marketing_car] quit
# 在QoS策略car中,将流分类marketing和流行为remark_local_id进行配对,即使用QoS本地标识符100来标记市场部的流量。
[SwitchA] qos policy car
[SwitchA-qospolicy-car] classifier marketing behavior remark_local_id
# 然后将流分类marketing_car和流行为marketing_car进行配对,即对QoS本地标识符为100的流量进行限速。
[SwitchA-qospolicy-car] classifier marketing_car behavior marketing_car
[SwitchA-qospolicy-car] quit
# 将QoS策略car应用在端口Ten-GigabitEthernet1/0/1的入方向上,完成流量监管配置。
[SwitchA] interface ten-gigabitethernet 1/0/1
[SwitchA-Ten-GigabitEthernet1/0/1] qos apply policy car inbound
流量统计就是通过与类关联,对符合匹配规则的流进行统计,统计报文数或字节数。例如,可以统计从某个源IP地址发送的报文,然后管理员对统计信息进行分析,根据分析情况采取相应的措施。
表9-1 配置流量统计
操作 |
命令 |
说明 |
|
进入系统视图 |
system-view |
- |
|
定义一个类,并进入类视图 |
traffic classifier classifier-name [ operator { and | or } ] |
缺省情况下,没有定义类 |
|
定义匹配数据包的规则 |
if-match match-criteria |
缺省情况下,没有定义匹配数据包的规则 具体规则请参见QoS命令参考中的命令if-match的介绍 |
|
退回系统视图 |
quit |
- |
|
定义一个流行为,并进入流行为视图 |
traffic behavior behavior-name |
缺省情况下,没有定义流行为 |
|
为流行为配置流量统计动作 |
accounting { byte | packet } |
缺省情况下,没有配置流量统计动作 |
|
退回系统视图 |
quit |
- |
|
定义一个策略,并进入策略视图 |
qos policy policy-name |
缺省情况下,没有定义策略 |
|
在策略中为类指定采用的流行为 |
classifier classifier-name behavior behavior-name |
缺省情况下,没有为类指定流行为 |
|
退回系统视图 |
quit |
- |
|
应用QoS策略 |
基于接口 |
三者选其一 缺省情况下,没有应用QoS策略 |
|
基于VLAN |
|||
基于全局 |
|||
(可选)显示流量统计的相关配置信息和统计信息 |
display qos policy global [ slot slot-number ] [ inbound | outbound ] display qos policy interface [ interface-type interface-number ] [ inbound | outbound ] display qos vlan-policy { name policy-name | vlan [ vlan-id ] } [ slot slot-number ] [ inbound | outbound ] |
display命令可以在任意视图下执行 |
用户网络描述如下:Host通过接口Ten-GigabitEthernet1/0/1接入设备Device。
配置流量统计功能,对接口Ten-GigabitEthernet1/0/1接收的源IP地址为1.1.1.1/24的报文进行统计,统计单位为字节数。
图9-1 配置流量统计组网图
# 定义基本ACL 2000,对源IP地址为1.1.1.1的报文进行分类。
<DeviceA> system-view
[DeviceA] acl number 2000
[DeviceA-acl-basic-2000] rule permit source 1.1.1.1 0
[DeviceA-acl-basic-2000] quit
# 定义类classifier_1,匹配基本ACL 2000。
[DeviceA] traffic classifier classifier_1
[DeviceA-classifier-classifier_1] if-match acl 2000
[DeviceA-classifier-classifier_1] quit
# 定义流行为behavior_1,动作为流量统计,统计单位为字节数。
[DeviceA] traffic behavior behavior_1
[DeviceA-behavior-behavior_1] accounting byte
[DeviceA-behavior-behavior_1] quit
# 定义策略policy,为类classifier_1指定流行为behavior_1。
[DeviceA] qos policy policy
[DeviceA-qospolicy-policy] classifier classifier_1 behavior behavior_1
[DeviceA-qospolicy-policy] quit
# 将策略policy应用到端口Ten-GigabitEthernet1/0/1的入方向上。
[DeviceA] interface ten-gigabitethernet 1/0/1
[DeviceA-Ten-GigabitEthernet1/0/1] qos apply policy policy inbound
[DeviceA-Ten-GigabitEthernet1/0/1] quit
# 查看配置后流量统计的情况。
[DeviceA] display qos policy interface ten-gigabitethernet 1/0/1
Interface: Ten-GigabitEthernet1/0/1
Direction: Inbound
Policy: policy
Classifier: classifier_1
Operator: AND
Rule(s) : If-match acl 2000
Behavior: behavior_1
Accounting Enable:
28529 (Bytes)
在下列情况下,Burst功能可以提供更好的报文缓存功能和流量转发性能:
· 广播或者组播报文流量密集,瞬间突发大流量的网络环境中;
· 报文从高速链路进入设备,由低速链路转发出去;或者报文从相同速率的多个接口同时进入设备,由一个相同速率的接口转发出去。
用户可以通过使能Burst功能,降低设备在上述特定环境中的报文丢包率,提高对报文的处理能力。需要注意的是,使能Burst功能后,设备的QoS性能可能会受到影响,建议用户根据自己的具体网络环境进行配置。
表10-1 配置Burst功能
操作 |
命令 |
说明 |
进入系统视图 |
system-view |
- |
使能Burst功能 |
burst-mode enable |
必选 缺省情况下,Burst功能处于关闭状态 |
用户网络描述如下:
· Server通过10Gbps以太网接口接入Switch,Server会不定时发送大流量的广播或者组播报文给Host。
· Host通过1000Mbps以太网卡接入Switch。
通过Switch对Server发出的大流量报文进行处理,保证报文可以到达Host。
图10-1 配置Burst功能组网图
# 进入系统视图。
<Switch> system-view
# 配置Burst功能。
[Switch] burst-mode enable
dscp-dscp映射表的缺省映射关系为:映射输出值等于输入值。
表11-1 dot1p-lp、dot1p-dp缺省映射关系
映射输入索引 |
dot1p-lp映射 |
dot1p-dp映射 |
dot1p |
lp |
dp |
0 |
2 |
0 |
1 |
0 |
0 |
2 |
1 |
0 |
3 |
3 |
0 |
4 |
4 |
0 |
5 |
5 |
0 |
6 |
6 |
0 |
7 |
7 |
0 |
表11-2 dscp-dp、dscp-dot1p缺省映射关系
映射输入索引 |
dscp-dp映射 |
dscp-dot1p映射 |
dscp |
dp |
dot1p |
0~7 |
0 |
0 |
8~15 |
0 |
1 |
16~23 |
0 |
2 |
24~31 |
0 |
3 |
32~39 |
0 |
4 |
40~47 |
0 |
5 |
48~55 |
0 |
6 |
56~63 |
0 |
7 |
图11-1 ToS和DS域
如图11-1所示,IP报文头的ToS字段有8个bit,其中前3个bit表示的就是IP优先级,取值范围为0~7。RFC 2474中,重新定义了IP报文头部的ToS域,称之为DS(Differentiated Services,差分服务)域,其中DSCP优先级用该域的前6位(0~5位)表示,取值范围为0~63,后2位(6、7位)是保留位。
表11-3 IP优先级说明
IP优先级(十进制) |
IP优先级(二进制) |
关键字 |
0 |
000 |
routine |
1 |
001 |
priority |
2 |
010 |
immediate |
3 |
011 |
flash |
4 |
100 |
flash-override |
5 |
101 |
critical |
6 |
110 |
internet |
7 |
111 |
network |
表11-4 DSCP优先级说明
DSCP优先级(十进制) |
DSCP优先级(二进制) |
关键字 |
46 |
101110 |
ef |
10 |
001010 |
af11 |
12 |
001100 |
af12 |
14 |
001110 |
af13 |
18 |
010010 |
af21 |
20 |
010100 |
af22 |
22 |
010110 |
af23 |
26 |
011010 |
af31 |
28 |
011100 |
af32 |
30 |
011110 |
af33 |
34 |
100010 |
af41 |
36 |
100100 |
af42 |
38 |
100110 |
af43 |
8 |
001000 |
cs1 |
16 |
010000 |
cs2 |
24 |
011000 |
cs3 |
32 |
100000 |
cs4 |
40 |
101000 |
cs5 |
48 |
110000 |
cs6 |
56 |
111000 |
cs7 |
0 |
000000 |
be(default) |
802.1p优先级位于二层报文头部,适用于不需要分析三层报头,而需要在二层环境下保证QoS的场合。
图11-2 带有802.1Q标签头的以太网帧
如图11-2所示,4个字节的802.1Q标签头包含了2个字节的TPID(Tag Protocol Identifier,标签协议标识,取值为0x8100)和2个字节的TCI(Tag Control Information,标签控制信息),图11-3显示了802.1Q标签头的详细内容,Priority字段就是802.1p优先级。之所以称此优先级为802.1p优先级,是因为有关这些优先级的应用是在802.1p规范中被详细定义的。
图11-3 802.1Q标签头
表11-5 802.1p优先级说明
802.1p优先级(十进制) |
802.1p优先级(二进制) |
关键字 |
0 |
000 |
best-effort |
1 |
001 |
background |
2 |
010 |
spare |
3 |
011 |
excellent-effort |
4 |
100 |
controlled-load |
5 |
101 |
video |
6 |
110 |
voice |
7 |
111 |
network-management |
不同款型规格的资料略有差异, 详细信息请向具体销售和400咨询。H3C保留在没有任何通知或提示的情况下对资料内容进行修改的权利!