08-Radio Resources Management Configuration Guide

HomeSupportConfigure & DeployConfiguration GuidesH3C Wi-Fi 7 Access Points Cloud Mode Configuration Guides(R2610P06)-6W10008-Radio Resources Management Configuration Guide
01-Radio management configuration
Title Size Download
01-Radio management configuration 743.53 KB

Contents

Configuring radio management 1

About radio management 1

Radio mode· 1

Channel 1

Transmit power 2

Transmission rate· 2

MCS· 2

VHT-MCS· 5

HE-MCS· 11

EHT-MCS· 18

OFDMA· 21

MU-MIMO·· 21

Restrictions: Hardware compatibility with radio management 22

Restrictions: Radio mode compatibility· 23

Radio management tasks at a glance· 23

Enabling or disabling a radio interface· 23

Specifying a radio mode· 23

Configuring basic radio functions· 24

Specifying a working channel 24

Setting the antenna type· 25

Setting the maximum transmit power 25

Setting transmission rates· 25

Setting the beacon interval 26

Setting the DTIM interval 27

Setting the maximum number of clients that can associate with an AP· 28

Setting the maximum transmission distance· 28

Performing on-demand channel usage measurement 28

Configuring 802.11n functions· 29

Configuring the A-MPDU aggregation method· 29

Configuring the A-MSDU aggregation method· 29

Configuring short GI 30

Configuring LDPC· 30

Configuring STBC· 30

Setting MCS indexes· 31

Configuring the client dot11n-only feature· 31

Setting the 802.11n bandwidth mode· 32

Specifying a MIMO mode· 32

Configuring energy saving· 33

Configuring 802.11ac functions· 33

Setting NSSs· 33

Configuring the client dot11ac-only feature· 34

Setting the 802.11ac bandwidth mode· 34

Configuring TxBF· 35

Configuring 802.11ax functions· 36

Setting NSSs· 36

Configuring the client dot11ax-only feature· 37

Setting the 802.11ax bandwidth mode· 37

Configuring OFDMA· 38

Configuring uplink MU-MIMO·· 38

Configuring BSS coloring· 39

Configuring TWT negotiation· 40

Configure 802.11be functions· 41

Setting NSSs· 41

Setting the 802.11be bandwidth mode· 41

Configuring MRU· 42

Configuring preamble puncturing· 44

Disabling radar avoidance· 46

Display and maintenance commands for radio management 46

Radio management configuration examples· 46

Example: Configuring basic radio functions· 47

Example: Configuring 802.11n· 48

 


Configuring radio management

About radio management

Radio frequency (RF) is a rate of electrical oscillation in the range of 300 KHz to 300 GHz. WLAN uses the 2.4 GHz band and 5 GHz band radio frequencies as the transmission media. The 2.4 GHz band includes radio frequencies from 2.4 GHz to 2.4835 GHz. The 5 GHz band includes radio frequencies from 5.150 GHz to 5.350 GHz and from 5.725 GHz to 5.850 GHz. The 6 GHz band includes radio frequencies from 5.925 GHz to 7.125 GHz.

The term "radio frequency" or its abbreviation RF is also used as a synonym for "radio" in wireless communication.

Radio mode

IEEE defines the 802.11a, 802.11b, 802.11g, 802.11n, 802.11ac, 802.11ax, and 802.11be radio modes. 802.11be operates on the 2.4 GHz, 5 GHz, and 6 GHz bands, with the mode operating on the 2.4 GHz band called 802.11gbe, mode operating on the 5 GHz band called 802.11abe, and the mode operating on the 6 GHz band called 802.11be.

H3C defines an 802.11gax radio mode that enables 802.11ax radios to use the 2.4 GHz band and defines an 802.11eax radio mode that enables 802.11ax radios to use the 6 GHz band.

 

 

NOTE:

In this document, the term "802.11ax" refers to 802.11ax, 802.11gax, and 802.11eax, and the term "802.11be" refers to 802.11be, 802.11abe, and 802.11gbe, unless otherwise specified.

Table 1 provides a comparison of these radio modes.

Table 1 Comparison of 802.11 standards

IEEE standard

Frequency band

Maximum rate

802.11a

5 GHz

54 Mbps

802.11b

2.4 GHz

11 Mbps

802.11g

2.4 GHz

54 Mbps

802.11n

2.4 GHz or 5 GHz

600 Mbps

802.11ac

5 GHz

6900 Mbps

802.11ax

5 GHz

9600 Mbps

802.11gax

2.4 GHz

6900 Mbps

802.11eax

6 GHz

9600 Mbps

802.11be

6 GHz

46100 Mbps

802.11abe

5 GHz

46100 Mbps

802.11gbe

2.4 GHz

19200 Mbps

Channel

A channel is a range of frequencies with a specific bandwidth.

The 2.4 GHz band has 14 channels. The bandwidth for each channel is 20 MHz and each two channels are spaced 5 MHz apart. Among the 14 channels, four groups of non-overlapping channels exist and the most commonly used one contains channels 1, 6, and 11.

The 5 GHz band can provide higher rates and is more immune to interference. There are 24 non-overlapping channels designated to the 5 GHz band. The channels are spaced 20 MHz apart with a bandwidth of 20 MHz. The available channels vary by country.

The 6 GHz band offers a total bandwidth of 1200 MHz, which can be divided into 59 channels with a width of 20 MHz, 29 channels with a width of 40 MHz, 14 channels with a width of 80 MHz, 7 channels with a width of 160 MHz, or 3 channels with a width of 320 MHz. This is twice as wide as the combined bandwidth of the previous 2.4 GHz and 5 GHz bands. The increased bandwidth provides three times more available frequency spectrum for Wi-Fi applications, alleviating the current shortage of Wi-Fi spectrum resources.

Transmit power

Transmit power reflects the signal strength of a wireless device. A higher transmit power enables a radio to cover a larger area but it brings more interference to adjacent devices. The signal strength decreases as the transmission distance increases.

Transmission rate

Transmission rate refers to the speed at which wireless devices transmit traffic. It varies by radio mode and spreading, coding, and modulation schemes. The following are rates supported by different types of radios:

·     802.11a—6 Mbps, 9 Mbps, 12 Mbps, 18 Mbps, 24 Mbps, 36 Mbps, 48 Mbps, and 54 Mbps.

·     802.11b—1 Mbps, 2 Mbps, 5.5 Mbps, and 11 Mbps.

·     802.11g—1 Mbps, 2 Mbps, 5.5 Mbps, 6 Mbps, 9 Mbps, 11 Mbps, 12 Mbps, 18 Mbps, 24 Mbps, 36 Mbps, 48 Mbps, and 54 Mbps.

·     802.11n—Rates for 802.11n radios vary by channel bandwidth and number of spatial streams. For more information, see "MCS."

·     802.11ac—Rates for 802.11ac radios vary by channel bandwidth and number of spatial streams (NSS). For more information, see "VHT-MCS."

·     802.11ax—Rates for 802.11ax radios vary by channel bandwidth and number of spatial streams (NSS). For more information, see "HE-MCS."

·     802.11be—Rates for 802.11be radios vary by channel bandwidth and number of spatial streams (NSS). For more information, see "EHT-MCS."

MCS

Modulation and Coding Scheme (MCS) defined in IEEE 802.11n-2009 determines the modulation, coding, and number of spatial streams.

MCS types

802.11n MCSs are classified into the following types:

·     Mandatory MCSs—Mandatory MCSs for an AP. To associate with an 802.11n AP, a client must support the mandatory MCSs for the AP.

·     Supported MCSs—MCSs supported by an AP besides the mandatory MCSs. If a client supports both mandatory and supported MCSs, the client can use a supported rate to communicate with the AP.

·     Multicast MCS—MCS for the rate at which an AP transmits multicast frames.

MCS parameters

An MCS is identified by an MCS index, which is represented by an integer in the range of 0 to 76. An MCS index is the mapping from MCS to a data rate.

Table 2 through Table 9 show sample MCS parameters for 20 MHz and 40 MHz.

When the bandwidth mode is 20 MHz, MCS indexes 0 through 15 are mandatory for APs, and MCS indexes 0 through 7 are mandatory for clients.

Table 2 MCS parameters (20 MHz, NSS=1)

MCS index

Number of spatial streams

Modulation

Data rate (Mbps)

800ns GI

400ns GI

0

1

BPSK

6.5

7.2

1

1

QPSK

13.0

14.4

2

1

QPSK

19.5

21.7

3

1

16-QAM

26.0

28.9

4

1

16-QAM

39.0

43.3

5

1

64-QAM

52.0

57.8

6

1

64-QAM

58.5

65.0

7

1

64-QAM

65.0

72.2

Table 3 MCS parameters (20 MHz, NSS=2)

MCS index

Number of spatial streams

Modulation

Data rate (Mbps)

800ns GI

400ns GI

8

2

BPSK

13.0

14.4

9

2

QPSK

26.0

28.9

10

2

QPSK

39.0

43.3

11

2

16-QAM

52.0

57.8

12

2

16-QAM

78.0

86.7

13

2

64-QAM

104.0

115.6

14

2

64-QAM

117.0

130.0

15

2

64-QAM

130.0

144.4

Table 4 MCS parameters (20 MHz, NSS=3)

MCS index

Number of spatial streams

Modulation

Data rate (Mbps)

800ns GI

400ns GI

16

3

BPSK

19.5

21.7

17

3

QPSK

39.0

43.3

18

3

QPSK

58.5

65.0

19

3

16-QAM

78.0

86.7

20

3

16-QAM

117.0

130.0

21

3

64-QAM

156.0

173.3

22

3

64-QAM

175.5

195.0

23

3

64-QAM

195.0

216.7

Table 5 MCS parameters (20 MHz, NSS=4)

MCS index

Number of spatial streams

Modulation

Data rate (Mbps)

800ns GI

400ns GI

24

4

BPSK

26.0

28.9

25

4

QPSK

52.0

57.8

26

4

QPSK

78.0

86.7

27

4

16-QAM

104.0

115.6

28

4

16-QAM

156.0

173.3

29

4

64-QAM

208.0

231.1

30

4

64-QAM

234.0

260.0

31

4

64-QAM

260.0

288.9

Table 6 MCS parameters (40 MHz, NSS=1)

MCS index

Number of spatial streams

Modulation

Data rate (Mbps)

800ns GI

400ns GI

0

1

BPSK

13.5

15.0

1

1

QPSK

27.0

30.0

2

1

QPSK

40.5

45.0

3

1

16-QAM

54.0

60.0

4

1

16-QAM

81.0

90.0

5

1

64-QAM

108.0

120.0

6

1

64-QAM

121.5

135.0

7

1

64-QAM

135.0

150.0

Table 7 MCS parameters (40 MHz, NSS=2)

MCS index

Number of spatial streams

Modulation

Data rate (Mbps)

800ns GI

400ns GI

8

2

BPSK

27.0

30.0

9

2

QPSK

54.0

60.0

10

2

QPSK

81.0

90.0

11

2

16-QAM

108.0

120.0

12

2

16-QAM

162.0

180.0

13

2

64-QAM

216.0

240.0

14

2

64-QAM

243.0

270.0

15

2

64-QAM

270.0

300.0

Table 8 MCS parameters (40 MHz, NSS=3)

MCS index

Number of spatial streams

Modulation

Data rate (Mbps)

800ns GI

400ns GI

16

3

BPSK

40.5

45.0

17

3

QPSK

81.0

90.0

18

3

QPSK

121.5

135.0

19

3

16-QAM

162.0

180.0

20

3

16-QAM

243.0

270.0

21

3

64-QAM

324.0

360.0

22

3

64-QAM

364.5

405.0

23

3

64-QAM

405.0

450.0

Table 9 MCS parameters (40 MHz, NSS=4)

MCS index

Number of spatial streams

Modulation

Data rate (Mbps)

800ns GI

400ns GI

24

4

BPSK

54.0

60.0

25

4

QPSK

108.0

120.0

26

4

QPSK

162.0

180.0

27

4

16-QAM

216.0

240.0

28

4

16-QAM

324.0

360.0

29

4

64-QAM

432.0

480.0

30

4

64-QAM

486.0

540.0

31

4

64-QAM

540.0

600.0

 

NOTE:

·     For all the MCS data rate tables, see IEEE 802.11n-2009.

·     Support for MCS indexes depends on the device model.

VHT-MCS

Very High Throughput Modulation and Coding Scheme (VHT-MCS) defined in IEEE 802.11ac determines the wireless data rates.

VHT-MCS types

802.11ac VHT-MCSs are classified into the following types:

·     Mandatory VHT-MCSs—Mandatory VHT-MCSs for an AP. To associate with an 802.11ac AP, a client must support the mandatory VHT-MCSs for the AP.

·     Supported VHT-MCSs—VHT-MCSs supported by an AP besides the mandatory VHT-MCSs. If a client supports both mandatory and supported VHT-MCSs, the client can use a supported rate to communicate with the AP.

·     Multicast VHT-MCS—VHT-MCS for the rate at which an AP transmits multicast frames.

VHT-MCS parameters

A VHT-MCS is identified by a VHT-MCS index, which is represented by an integer in the range of 0 to 9. A VHT-MCS index is the mapping from VHT-MCS to a data rate.

802.11ac supports the 20 MHz, 40 MHz, 80 MHz, and 160 MHz bandwidth modes, and supports a maximum of eight spatial streams.

Table 10 through Table 21 show VHT-MCS parameters that are supported by an AP.

Table 10 VHT-MCS parameters (20 MHz, NSS=1)

VHT-MCS index

Modulation

Data rate (Mbps)

800ns GI

400ns GI

0

BPSK

6.5

7.2

1

QPSK

13.0

14.4

2

QPSK

19.5

21.7

3

16-QAM

26.0

28.9

4

16-QAM

39.0

43.3

5

64-QAM

52.0

57.8

6

64-QAM

58.5

65.0

7

64-QAM

65.0

72.2

8

256-QAM

78.0

86.7

9

Not valid

Table 11 VHT-MCS parameters (20 MHz, NSS=2)

VHT-MCS index

Modulation

Data rate (Mbps)

800ns GI

400ns GI

0

BPSK

13.0

14.4

1

QPSK

26.0

28.9

2

QPSK

39.0

43.3

3

16-QAM

52.0

57.8

4

16-QAM

78.0

86.7

5

64-QAM

104.0

115.6

6

64-QAM

117.0

130.0

7

64-QAM

130.0

144.4

8

256-QAM

156.0

173.3

9

Not valid

Table 12 VHT-MCS parameters (20 MHz, NSS=3)

VHT-MCS index

Modulation

Data rate (Mbps)

800ns GI

400ns GI

0

BPSK

19.5

21.7

1

QPSK

39.0

43.3

2

QPSK

58.5

65.0

3

16-QAM

78.0

86.7

4

16-QAM

117.0

130.0

5

64-QAM

156.0

173.3

6

64-QAM

175.5

195.0

7

64-QAM

195.0

216.7

8

256-QAM

234.0

260.0

9

256-QAM

260.0

288.9

Table 13 VHT-MCS parameters (20 MHz, NSS=4)

VHT-MCS index

Modulation

Data rate (Mbps)

800ns GI

400ns GI

0

BPSK

26.0

28.9

1

QPSK

52.0

57.8

2

QPSK

78.0

86.7

3

16-QAM

104.0

115.6

4

16-QAM

156.0

173.3

5

64-QAM

208.0

231.1

6

64-QAM

234.0

260.0

7

64-QAM

260.0

288.9

8

256-QAM

312.0

346.7

9

Not valid

Table 14 VHT-MCS parameters (40 MHz, NSS=1)

VHT-MCS index

Modulation

Data rate (Mbps)

800ns GI

400ns GI

0

BPSK

13.5

15.0

1

QPSK

27.0

30.0

2

QPSK

40.5

45.0

3

16-QAM

54.0

60.0

4

16-QAM

81.0

90.0

5

64-QAM

108.0

120.0

6

64-QAM

121.5

135.0

7

64-QAM

135.0

150.0

8

256-QAM

162.0

180.0

9

256-QAM

180.0

200.0

Table 15 VHT-MCS parameters (40 MHz, NSS=2)

VHT-MCS index

Modulation

Data rate (Mbps)

800ns GI

400ns GI

0

BPSK

27.0

30.0

1

QPSK

54.0

60.0

2

QPSK

81.0

90.0

3

16-QAM

108.0

120.0

4

16-QAM

162.0

180.0

5

64-QAM

216.0

240.0

6

64-QAM

243.0

270.0

7

64-QAM

270.0

300.0

8

256-QAM

324.0

360.0

9

256-QAM

360.0

400.0

Table 16 VHT-MCS parameters (40 MHz, NSS=3)

VHT-MCS index

Modulation

Data rate (Mbps)

800ns GI

400ns GI

0

BPSK

40.5

45.0

1

QPSK

81.0

90.0

2

QPSK

121.5

135.0

3

16-QAM

162.0

180.0

4

16-QAM

243.0

270.0

5

64-QAM

324.0

360.0

6

64-QAM

364.5

405.0

7

64-QAM

405.0

450.0

8

256-QAM

486.0

540.0

9

256-QAM

540.0

600.0

Table 17 VHT-MCS parameters(40 MHz, NSS=4)

VHT-MCS index

Modulation

Data rate (Mbps)

800ns GI

400ns GI

0

BPSK

54.0

60.0

1

QPSK

108.0

120.0

2

QPSK

162.0

180.0

3

16-QAM

216.0

240.0

4

16-QAM

324.0

360.0

5

64-QAM

432.0

480.0

6

64-QAM

486.0

540.0

7

64-QAM

540.0

600.0

8

256-QAM

648.0

720.0

9

256-QAM

720.0

800.0

Table 18 VHT-MCS parameters (80 MHz, NSS=1)

VHT-MCS index

Modulation

Data rate (Mbps)

800ns GI

400ns GI

0

BPSK

29.3

32.5

1

QPSK

58.5

65.0

2

QPSK

87.8

97.5

3

16-QAM

117.0

130.0

4

16-QAM

175.5

195.0

5

64-QAM

234.0

260.0

6

64-QAM

263.0

292.5

7

64-QAM

292.5

325.0

8

256-QAM

351.0

390.0

9

256-QAM

390.0

433.3

Table 19 VHT-MCS parameters (80 MHz, NSS=2)

VHT-MCS index

Modulation

Data rate (Mbps)

800ns GI

400ns GI

0

BPSK

58.5

65.0

1

QPSK

117.0

130.0

2

QPSK

175.5

195.0

3

16-QAM

234.0

260.0

4

16-QAM

351.0

390.0

5

64-QAM

468.0

520.0

6

64-QAM

526.5

585.0

7

64-QAM

585.0

650.0

8

256-QAM

702.0

780.0

9

256-QAM

780.0

866.7

Table 20 VHT-MCS parameters (80 MHz, NSS=3)

VHT-MCS index

Modulation

Data rate (Mbps)

800ns GI

400ns GI

0

BPSK

87.8

97.5

1

QPSK

175.5

195.0

2

QPSK

263.3

292.5

3

16-QAM

351.0

390.0

4

16-QAM

526.5

585.0

5

64-QAM

702.0

780.0

6

Not valid

7

64-QAM

877.5

975.0

8

256-QAM

1053.0

1170.0

9

256-QAM

1170.0

1300.0

Table 21 VHT-MCS parameters (80 MHz, NSS=4)

VHT-MCS index

Modulation

Data rate (Mbps)

800ns GI

400ns GI

0

BPSK

117.0

130.0

1

QPSK

234.0

260.0

2

QPSK

351.0

390.0

3

16-QAM

468.0

520.0

4

16-QAM

702.0

780.0

5

64-QAM

936.0

1040.0

6

64-QAM

1053.0

1170.0

7

64-QAM

1170.0

1300.0

8

256-QAM

1404.0

1560.0

9

256-QAM

1560.0

1733.3

 

NOTE:

·     For all the VHT-MCS data rate tables, see IEEE 802.11ac-2013.

·     Support for VHT-MCS indexes depends on the AP model.

·     802.11gac supports only the 20 MHz and 40 MHz bandwidth, with the corresponding VHT-MCS tables in Table 10 through Table 17.

HE-MCS

High Efficiency Modulation and Coding Scheme (HE-MCS) defined in IEEE 802.11ax determines the wireless data rates.

HE-MCS types

802.11ax HE-MCSs are classified into the following types:

·     Mandatory HE-MCSs—Mandatory HE-MCSs for an AP. To associate with an 802.11ax AP, a client must support the mandatory HE-MCSs for the AP.

·     Supported HE-MCSs—HE-MCSs supported by an AP besides the mandatory HE-MCSs. If a client supports both mandatory and supported HE-MCSs, the client can use a supported rate to communicate with the AP.

·     Multicast HE-MCS—HE-MCS for the rate at which an AP transmits multicast frames.

HE-MCS parameters

An HE-MCS is identified by an HE-MCS index, which is represented by an integer in the range of 0 to 11. An HE-MCS index is the mapping from HE-MCS to a data rate.

802.11ax supports the 20 MHz, 40 MHz, 80 MHz, and 160 MHz (80+80 MHz) bandwidth modes, and supports a maximum of eight spatial streams. 802.11gax supports the 20 MHz and 40 MHz bandwidth modes.

Table 22 through Table 33 show HE-MCS parameters that are supported by an AP.

Table 22 HE-MCS parameters (20 MHz, NSS=1)

HE-MCS index

Spatial streams

Modulation

Data rate (Mbps)

1600ns GI

800ns GI

0

1

BPSK

8

8.6

1

1

QPSK

16

17.2

2

1

QPSK

24

25.8

3

1

16-QAM

33

34.4

4

1

16-QAM

49

51.6

5

1

64-QAM

65

68.8

6

1

64-QAM

73

77.4

7

1

64-QAM

81

86

8

1

256-QAM

98

103.2

9

1

256-QAM

108

114.7

10

1

1024-QAM

122

129

11

1

1024-QAM

135

143.4

Table 23 HE-MCS parameters (20 MHz, NSS=2)

HE-MCS index

Spatial streams

Modulation

Data rate (Mbps)

1600ns GI

800ns GI

0

2

BPSK

16

17.2

1

2

QPSK

32

34.4

2

2

QPSK

48

51.6

3

2

16-QAM

66

68.8

4

2

16-QAM

98

103.2

5

2

64-QAM

130

137.6

6

2

64-QAM

146

154.8

7

2

64-QAM

162

172

8

2

256-QAM

196

206.4

9

2

256-QAM

216

229.4

10

2

1024-QAM

244

258

11

2

1024-QAM

270

286.8

Table 24 HE-MCS parameters (20 MHz, NSS=3)

HE-MCS index

Spatial streams

Modulation

Data rate (Mbps)

1600ns GI

800ns GI

0

3

BPSK

24

25.8

1

3

QPSK

48

51.6

2

3

QPSK

72

77.4

3

3

16-QAM

99

103.2

4

3

16-QAM

147

154.8

5

3

64-QAM

195

206.4

6

3

64-QAM

219

232.2

7

3

64-QAM

243

258

8

3

256-QAM

294

309.6

9

3

256-QAM

324

344.1

10

3

1024-QAM

366

387

11

3

1024-QAM

405

430.2

Table 25 HE-MCS parameters (20 MHz, NSS=4)

HE-MCS index

Spatial streams

Modulation

Data rate (Mbps)

1600ns GI

800ns GI

0

4

BPSK

32

34.4

1

4

QPSK

64

68.8

2

4

QPSK

96

103.2

3

4

16-QAM

132

137.6

4

4

16-QAM

196

206.4

5

4

64-QAM

260

275.2

6

4

64-QAM

292

309.6

7

4

64-QAM

324

344

8

4

256-QAM

392

412.8

9

4

256-QAM

432

458.8

10

4

1024-QAM

488

516

11

4

1024-QAM

540

573.6

Table 26 HE-MCS parameters (40 MHz, NSS=1)

HE-MCS index

Spatial streams

Modulation

Data rate (Mbps)

1600ns GI

800ns GI

0

1

BPSK

16

17.2

1

1

QPSK

33

34.4

2

1

QPSK

49

51.6

3

1

16-QAM

65

68.8

4

1

16-QAM

98

103.2

5

1

64-QAM

130

137.6

6

1

64-QAM

146

154.9

7

1

64-QAM

163

172.1

8

1

256-QAM

195

206.5

9

1

256-QAM

217

229.4

10

1

1024-QAM

244

258.1

11

1

1024-QAM

271

286.8

Table 27 HE-MCS parameters (40 MHz, NSS=2)

HE-MCS index

Spatial streams

Modulation

Data rate (Mbps)

1600ns GI

800ns GI

0

2

BPSK

32

34.4

1

2

QPSK

66

68.8

2

2

QPSK

98

103.2

3

2

16-QAM

130

137.6

4

2

16-QAM

196

206.4

5

2

64-QAM

260

275.2

6

2

64-QAM

292

309.8

7

2

64-QAM

326

344.2

8

2

256-QAM

390

413

9

2

256-QAM

434

458.8

10

2

1024-QAM

488

516.2

11

2

1024-QAM

542

573.6

Table 28 HE-MCS parameters (40 MHz, NSS=3)

HE-MCS index

Spatial streams

Modulation

Data rate (Mbps)

1600ns GI

800ns GI

0

3

BPSK

48

51.6

1

3

QPSK

99

103.2

2

3

QPSK

147

154.8

3

3

16-QAM

195

206.4

4

3

16-QAM

294

309.6

5

3

64-QAM

390

412.8

6

3

64-QAM

438

464.7

7

3

64-QAM

489

516.3

8

3

256-QAM

585

619.5

9

3

256-QAM

651

688.2

10

3

1024-QAM

732

774.3

11

3

1024-QAM

813

860.4

Table 29 HE-MCS parameters(40 MHz, NSS=4)

HE-MCS index

Spatial streams

Modulation

Data rate (Mbps)

1600ns GI

800ns GI

0

4

BPSK

64

68.8

1

4

QPSK

132

137.6

2

4

QPSK

196

206.4

3

4

16-QAM

260

275.2

4

4

16-QAM

392

412.8

5

4

64-QAM

520

550.4

6

4

64-QAM

584

619.6

7

4

64-QAM

652

688.4

8

4

256-QAM

780

826

9

4

256-QAM

868

917.6

10

4

1024-QAM

976

1032.4

11

4

1024-QAM

1084

1147.2

Table 30 HE-MCS parameters (80 MHz, NSS=1)

HE-MCS index

Spatial streams

Modulation

Data rate (Mbps)

1600ns GI

800ns GI

0

1

BPSK

34

36

1

1

QPSK

68

72.1

2

1

QPSK

102

108.1

3

1

16-QAM

136

144.1

4

1

16-QAM

204

216.2

5

1

64-QAM

272

288.2

6

1

64-QAM

306

324.4

7

1

64-QAM

340

360.3

8

1

256-QAM

408

432.4

9

1

256-QAM

453

480.4

10

1

1024-QAM

510

540.4

11

1

1024-QAM

567

600.5

Table 31 HE-MCS parameters (80 MHz, NSS=2)

HE-MCS index

Spatial streams

Modulation

Data rate (Mb/s)

1600ns GI

800ns GI

0

2

BPSK

68

72

1

2

QPSK

136

144.2

2

2

QPSK

204

216.2

3

2

16-QAM

272

288.2

4

2

16-QAM

408

432.4

5

2

64-QAM

544

576.4

6

2

64-QAM

612

648.8

7

2

64-QAM

680

720.6

8

2

256-QAM

816

864.8

9

2

256-QAM

906

960.8

10

2

1024-QAM

1020

1080.8

11

2

1024-QAM

1134

1201

Table 32 HE-MCS parameters (80 MHz, NSS=3)

HE-MCS index

Spatial streams

Modulation

Data rate (Mbps)

1600ns GI

800ns GI

0

3

BPSK

102

108

1

3

QPSK

204

216.3

2

3

QPSK

306

324.3

3

3

16-QAM

408

432.3

4

3

16-QAM

612

648.6

5

3

64-QAM

816

864.6

6

3

64-QAM

918

973.2

7

3

64-QAM

1020

1080.9

8

3

256-QAM

1224

1297.2

9

3

256-QAM

1359

1441.2

10

3

1024-QAM

1530

1621.2

11

3

1024-QAM

1701

1801.5

Table 33 HE-MCS parameters (80 MHz, NSS=4)

HE-MCS index

Spatial streams

Modulation

Data rate (Mbps)

1600ns GI

800ns GI

0

4

BPSK

136

144

1

4

QPSK

272

288.4

2

4

QPSK

408

432.4

3

4

16-QAM

544

576.4

4

4

16-QAM

816

864.8

5

4

64-QAM

1088

1152.8

6

4

64-QAM

1224

1297.6

7

4

64-QAM

1360

1441.2

8

4

256-QAM

1632

1729.6

9

4

256-QAM

1812

1921.6

10

4

1024-QAM

2040

2161.6

11

4

1024-QAM

2268

2402

Table 34 HE-MCS parameters (160 MHz/80 MHz+80 MHz, NSS=1)

HE-MCS index

Spatial streams

Modulation

Data rate (Mbps)

1600ns GI

800ns GI

0

1

BPSK

68

72.1

1

1

QPSK

136

144.1

2

1

QPSK

204

216.2

3

1

16-QAM

272

288.2

4

1

16-QAM

408

432.4

5

1

64-QAM

544

576.5

6

1

64-QAM

612

648.5

7

1

64-QAM

681

720.6

8

1

256-QAM

817

864.7

9

1

256-QAM

907

960.7

10

1

1024-QAM

1021

1080.9

11

1

1024-QAM

1134

1201

Table 35 HE-MCS parameters (160 MHz/80 MHz+80 MHz, NSS=2)

HE-MCS index

Spatial streams

Modulation

Data rate (Mbps)

1600ns GI

800ns GI

0

2

BPSK

136

144.1

1

2

QPSK

272

288.2

2

2

QPSK

408

432.4

3

2

16-QAM

544

576.5

4

2

16-QAM

817

864.7

5

2

64-QAM

1089

1152.9

6

2

64-QAM

1225

1297.1

7

2

64-QAM

1361

1441.2

8

2

256-QAM

1633

1729.4

9

2

256-QAM

1815

1921.5

10

2

1024-QAM

2042

2161.8

11

2

1024-QAM

2269

2401.9

Table 36 HE-MCS parameters (160 MHz/80 MHz+80 MHz, NSS=3)

HE-MCS index

Spatial streams

Modulation

Data rate (Mbps)

1600ns GI

800ns GI

0

3

BPSK

204

216.2

1

3

QPSK

408

432.4

2

3

QPSK

613

648.5

3

3

16-QAM

817

864.7

4

3

16-QAM

1225

1297.1

5

3

64-QAM

1633

1729.4

6

3

64-QAM

1838

1945.6

7

3

64-QAM

2042

2161.8

8

3

256-QAM

2450

2594.1

9

3

256-QAM

2722

2882.4

10

3

1024-QAM

3062

3242.6

11

3

1024-QAM

3403

3602.9

Table 37 HE-MCS parameters (160 MHz/80 MHz+80 MHz, NSS=4)

HE-MCS index

Spatial streams

Modulation

Data rate (Mbps)

1600ns GI

800ns GI

0

4

BPSK

272

288.2

1

4

QPSK

544

576.5

2

4

QPSK

817

864.7

3

4

16-QAM

1089

1152.9

4

4

16-QAM

1633

1729.4

5

4

64-QAM

2178

2305.9

6

4

64-QAM

2450

2594.1

7

4

64-QAM

2722

2882.4

8

4

256-QAM

3267

3458.8

9

4

256-QAM

3630

3843.1

10

4

1024-QAM

4083

4323.5

11

4

1024-QAM

4537

4803.9

 

NOTE:

·     For all the HE-MCS data rate tables, see IEEE 802.11ax.

·     Support for HE-MCS indexes depends on the AP model.

EHT-MCS

EHT-MCS types

Similar to MCS, EHT-MCS is also divided into the following types: mandatory EHT-MCS set, supported EHT-MCS set, and multicast EHT-MCS set, each with the same meaning as MCS.

EHT-MCS parameters

An EHT-MCS is identified by an EHT-MCS index, which is represented by an integer in the range of 0 to 11. An EHT-MCS index is the mapping from EHT-MCS to a data rate.

802.11be supports the 20 MHz, 40 MHz, 80 MHz, 160 MHz, and 320 MHz bandwidth modes, and supports a maximum of 16 spatial streams.

Table 38 through Table 42 show HE-MCS parameters that are supported by an AP when only one spatial stream is available.

Currently, APs support up to four spatial streams, with rates equal to the EHT-MCS rate for a single spatial stream multiplied by the number of spatial streams.

Table 38 EHT-MCS parameters (20 MHz, NSS=1)

EHT-MCS index

Modulation

Data rate (Mb/s)

3200ns GI

1600ns GI

800ns GI

0

BPSK

7.3

8

8.6

1

QPSK

14.6

16

17.2

2

QPSK

21.9

24

25.8

3

16-QAM

29.3

33

34.4

4

16-QAM

43.9

49

51.6

5

64-QAM

58.5

65

68.8

6

64-QAM

65.8

73

77.4

7

64-QAM

73.1

81

86

8

256-QAM

87.8

98

103.2

9

256-QAM

97.5

108

114.7

10

1024-QAM

109.7

122

129

11

1024-QAM

121.9

135

143.4

12

4096-QAM

131.6

156.3

154.9

13

4096-QAM

146.3

162.5

172.1

 

Table 39 EHT-MCS parameters (40 MHz, NSS=1)

EHT-MCS index

Modulation

Data rate (Mb/s)

3200ns GI

1600ns GI

800ns GI

0

BPSK

14.6

16.3

17.2

1

QPSK

29.3

32.5

34.4

2

QPSK

43.9

48.8

51.6

3

16-QAM

58.5

65

68.8

4

16-QAM

87.8

97.5

103.2

5

64-QAM

117

130

137.6

6

64-QAM

131.6

146.3

154.9

7

64-QAM

146.3

162.5

172.1

8

256-QAM

175.5

195

206.5

9

256-QAM

195

216.7

229.4

10

1024-QAM

219.4

243.8

258.1

11

1024-QAM

243.8

270.8

286.8

12

4096-QAM

263.3

292.5

309.7

13

4096-QAM

292.5

325

344.1

 

Table 40 EHT-MCS parameters (80 MHz, NSS=1)

EHT-MCS index

Modulation

Data rate (Mb/s)

3200ns GI

1600ns GI

800ns GI

0

BPSK

30.6

34

36

1

QPSK

61.3

68

72.1

2

QPSK

91.9

102

108.1

3

16-QAM

122.5

136

144.1

4

16-QAM

183.8

204

216.2

5

64-QAM

245

272

288.2

6

64-QAM

275.6

306

324.4

7

64-QAM

306.3

340

360.3

8

256-QAM

367.5

408

432.4

9

256-QAM

408.3

453

480.4

10

1024-QAM

459.4

510

540.4

11

1024-QAM

510.4

567

600.5

12

4096-QAM

551.3

612.5

648.5

13

4096-QAM

612.5

680.6

720.6

 

Table 41 EHT-MCS parameters (160 MHz, NSS=1)

EHT-MCS index

Modulation

Data rate (Mb/s)

3200ns GI

1600ns GI

800ns GI

0

BPSK

61.3

68

72.1

1

QPSK

122.5

136

144.1

2

QPSK

183.5

204

216.2

3

16-QAM

245

272

288.2

4

16-QAM

367.5

408

432.4

5

64-QAM

490

544

576.5

6

64-QAM

551.3

612

648.5

7

64-QAM

612.5

681

720.6

8

256-QAM

735

817

864.7

9

256-QAM

816.6

907

960.7

10

1024-QAM

918.8

1021

1080.9

11

1024-QAM

1020.8

1134

1201

12

4096-QAM

1102.5

1225

1297.1

13

4096-QAM

1225

1361.1

1441.2

 

Table 42 EHT-MCS parameters (320 MHz, NSS=1)

EHT-MCS index

Modulation

Data rate (Mb/s)

3200ns GI

1600ns GI

800ns GI

0

BPSK

122.5

136.1

144.1

1

QPSK

245

272.2

288.2

2

QPSK

367.5

408.3

432.4

3

16-QAM

490

544.4

576.5

4

16-QAM

735

816.7

864.7

5

64-QAM

980

1088.9

1152.9

6

64-QAM

1102.5

1225

1297.1

7

64-QAM

1225

1361.1

1441.2

8

256-QAM

1470

1633.3

1729.4

9

256-QAM

1633.3

1837.5

1921.5

10

1024-QAM

1837.5

2041.6

2161.8

11

1024-QAM

2041.6

2268.5

2401.9

12

4096-QAM

2205

2450

2594.1

13

4096-QAM

2450

2722.2

2882.4

 

OFDMA

802.11a, 802.11g, 802.11n, and 802.11ac use Orthogonal Frequency Division Multiplexing (OFDM) in data transmission to enable a single user to transmit data on all subcarriers at a given period of time. Based on OFDM, Orthogonal Frequency Division Multiple Access (OFDMA) splits a channel into sub-channels, known as resource units (RUs), with specific subcarriers (tones), and assigns different RUs to different users for simultaneous transmission. This increases the data rate and reduces transmission latency.

802.11ax uses OFDMA and reserves some null subcarriers to reduce inter-subcarrier interference on RUs.

Figure 1 OFDM and OFDMA working modes

MU-MIMO

Multi-user multiple-input multiple-output (MU-MIMO) splits bandwidth into individual streams to enable simultaneous receiving and transmission of data for multiple users. 802.11ac supports only downlink MU-MIMO with a maximum of 4 streams, and 802.11ax supports both uplink and downlink MU-MIMO with a maximum of 8 streams. This greatly improves data transmission efficiency.

·     In downlink MU-MIMO, APs use beamforming to direct packets to wireless clients at different locations for the clients to receive data from an AP at the same time.

Figure 2 Downlink MU-MIMO

·     In uplink MU-MIMO, the system uses the orthogonality of different client locations to achieve spatial separation and beamforming exchanges are avoided.

Figure 3 Uplink MU-MIMO

Restrictions: Hardware compatibility with radio management

Support for the 6 GHz band depends on the AP model and local regulations.

Some tri-band APs support all three radios operating in the 5 GHz band (with radio 1 in 5.15 GHz to 5.35 GHz, radio 2 in 5.47 GHz to 5.85 GHz, and radio 3 in 5.15 GHz to 5.35 GHz or 5.47 GHz to 5.85 GHz). In this case, radio 3 is used only for scanning and is not recommended for service configuration.

Restrictions: Radio mode compatibility

According to the IEEE-defined 802.11 wireless network communication standard, the main radio modes from oldest to newest are 802.11b, 802.11g, 802.11n, 802.11ac, 802.11ax, and 802.11be. Unless otherwise specified, newly released radio modes are compatible with the functions of previous radio modes.

Radio management tasks at a glance

To configure radio management, perform the following tasks:

·     Enabling or disabling a radio interface

·     Specifying a radio mode

·     Configuring basic radio functions

·     (Optional.) Configuring 802.11n functions

·     (Optional.) Configuring 802.11ac functions

·     (Optional.) Configuring 802.11ax functions

·     (Optional.) Configure 802.11be functions

·     (Optional.) Disabling radar avoidance

Enabling or disabling a radio interface

1.     Enter system view.

system-view

2.     Enter radio interface view.

interface wlan-radio interface-number

3.     Enable or disable the radio interface.

¡     Enable the radio interface:
undo shutdown

¡     Disable the radio interface:
shutdown

By default, a radio interface is enabled.

Specifying a radio mode

About this task

Available radio functions vary by radio mode:

·     For 802.11a, 802.11b, and 802.11g radios, you can configure basic radio functions.

·     For 802.11an and 802.11gn radios, you can configure basic radio functions and 802.11n functions.

·     For 802.11ac radios, you can configure basic radio functions, 802.11n functions, and 802.11ac functions.

·     For 802.11ax, 802.11gax, and 802.11eax radios, you can configure basic radio functions, 802.11n functions, 802.11ac functions, and 802.11ax functions.

·     For 802.11be, 802.11abe, and 802.11gbe radios, you can configure basic radio functions, 802.11n functions, 802.11ac functions, 802.11ax functions, and 802.11be functions.

Restrictions and guidelines

Support for channels and transmit powers depends on the radio mode. When you change the mode of a radio, the system automatically adjusts the channel and power parameters for the radio.

Some devices support switching the operating frequency band of radios from 5GHz to 6GHz. If the bound wireless service does not support 6GHz radios, the system unbinds the wireless service automatically. A wireless service supports 6GHz when either of the following features are configured:

·     Enhanced open-system authentication (enhanced-open enable).

·     WPA3-SAE in mandatory mode (wpa3 personal mandatory) and H2E method for PWE deriving (akm sae pwe h2e).

·     WPA3-Enterprise in 192-bit mode (wpa3 enterprise).

·     WPA3-Enterprise in mandatory mode (wpa3 enterprise-only-mode).

Procedure

1.     Enter system view.

system-view

2.     Enter radio interface view.

interface wlan-radio interface-number

3.     Specify a radio mode.

type { dot11a | dot11abe | dot11ac | dot11an | dot11ax | dot11b | dot11be | dot11eax | dot11g | dot11gax | dot11gbe | dot11gn }

For information about the default setting, see Radio Resources Management Command Reference.

 

Configuring basic radio functions

Specifying a working channel

About this task

Perform this task to reduce interference from both wireless and non-wireless devices. You can manually specify a channel or configure the system to automatically select a channel for a radio.

When radar signals are detected on the working channel of a radio, one of the following events occurs:

·     If the channel is automatically assigned, the radio changes its channel.

·     If the channel is manually specified, the radio changes its channel, and switches back to the specified channel after 30 minutes and then starts the quiet timer. If no radar signals are detected within the quiet time, the radio starts to use the channel. If radar signals are detected within the quiet time, the radio changes it channel again.

Procedure

1.     Enter system view.

system-view

2.     Enter radio interface view.

interface wlan-radio interface-number

3.     Specify a working channel.

channel { channel-number | auto }

By default, the AP automatically selects a working channel for a radio interface.

Setting the antenna type

About this task

You can perform this task to specify the antenna type of an H3C antenna or a third-party antenna.

·     When an H3C antenna is used, make sure the antenna type is consistent with the actual type of the antenna used on the AP.

·     When a third-party antenna is used, make sure the antenna gain is the actual gain of the third-party antenna.

Restrictions and guidelines

Support for antenna types depends on the AP model.

Procedure

1.     Enter system view.

system-view

2.     Enter radio interface view.

interface wlan-radio interface-number

3.     Set the antenna type.

antenna type { antenna-type | custom gain custom-gain }

By default, the antenna type is internal.

Setting the maximum transmit power

Restrictions and guidelines

The transmit power range supported by a radio varies by region code, channel, AP model, radio mode, antenna type, and bandwidth mode. If you change these attributes for a radio after you set the maximum transmit power, the configured maximum transmit power might be out of the supported transmit power range. If this happens, the system automatically adjusts the maximum transmit power to a valid value.

Procedure

1.     Enter system view.

system-view

2.     Enter radio interface view.

interface wlan-radio interface-number

3.     Set the maximum transmit power.

max-power radio-power

By default, a radio interface uses the supported maximum transmit power.

Setting transmission rates

About this task

Transmission rates are classified into the following types:

·     Prohibited rates—Rates that cannot be used by an AP.

·     Mandatory rates—Rates that the clients must support to associate with an AP.

·     Supported rates—Rates that an AP supports. After a client associates with an AP, the client can select a higher rate from the supported rates to communicate with the AP. The AP automatically decreases or increases the transmission rate as interference signals, retransmission packets, or dropped packets increase or decrease.

·     Multicast rate—Rate at which an AP transmits multicasts and broadcasts. The multicast rate must be selected from the mandatory rates.

Procedure

1.     Enter system view.

system-view

2.     Enter radio interface view.

interface wlan-radio interface-number

3.     Set the transmission rates for the radio.

rate { multicast { auto | rate-value } | { disabled | mandatory | supported } rate-value }

The default settings are as follows:

¡     802.11be/802.11eax radios:

-     Prohibited rates—None.

-     Mandatory rates—6, 12, 24, 18, and 36.

-     Multicast rate—Selected from the mandatory rates.

-     Supported rates—9, 18, 36, 48, and 54.

¡     802.11a/802.11an/802.11ac/802.11ax/802.11abe radios:

-     Prohibited rates—None.

-     Mandatory rates—6, 12, and 24.

-     Multicast rate—Selected from the mandatory rates.

-     Supported rates—9, 18, 36, 48, and 54.

¡     802.11b radios:

-     Prohibited rates—None.

-     Mandatory rates—1 and 2.

-     Multicast rate—Selected from the mandatory rates.

-     Supported rates—5.5, and 11.

¡     802.11g/802.11gn/802.11gax/802.11gbe radios:

-     Prohibited rates—None.

-     Mandatory rates—1, 2, 5.5, and 11.

-     Multicast rate—Selected from the mandatory rates.

-     Supported rates—6, 9, 12, 18, 24, 36, 48, and 54.

Setting the beacon interval

About this task

Perform this task to enable an AP to broadcast beacon frames at the specified interval. A short beacon interval enables clients to easily detect the AP but consumes more system resources.

Procedure

1.     Enter system view.

system-view

2.     Enter radio interface view.

interface wlan-radio interface-number

3.     Set the beacon interval.

beacon-interval interval

By default, the beacon interval is 100 TU.

Setting the DTIM interval

About this task

An AP periodically broadcasts a beacon compliant with the Delivery Traffic Indication Map (DTIM). After the AP broadcasts the beacon, it sends buffered broadcast and multicast frames based on the value of the DTIM interval. For example, if you set the DTIM interval to 5, the AP sends buffered broadcast and multicast frames every five beacon frames.

Hardware and feature compatibility

Hardware series

Model

Feature compatibility

WA7200 series

WA7220

WA7220-HI

WA7220H

WA7226-C

WA7230

WA7230-LI

No

WA7300 series

WA7320i

WA7322H-HI

WA7330X

WA7338-HI

Yes

WA7500 series

WA7538

WA7539

Yes

WA7600 series

WA7638

No

 

Procedure

1.     Enter system view.

system-view

2.     Enter radio interface view.

interface wlan-radio interface-number

3.     Set the DTIM interval.

dtim counter

By default, the DTIM interval is 1.

Setting the maximum number of clients that can associate with an AP

About this task

When the maximum number of clients is reached on an AP, the AP stops accepting new clients and the SSID will be automatically hidden. This prevents the AP from being overloaded.

Procedure

1.     Enter system view.

system-view

2.     Enter radio interface view.

interface wlan-radio interface-number

3.     Set the maximum number of clients that can associate with the AP.

client max-count max-number

By default, no limit is set for the number of clients that can associate with an AP.

Setting the maximum transmission distance

About this task

The strength of wireless signals gradually degrades as the transmission distance increases. The maximum transmission distance of wireless signals depends on the surrounding environment and on whether an external antenna is used.

·     Without an external antenna—About 300 meters (984.25 ft).

·     With an external antenna—30 km (18.64 miles) to 50 km (31.07 miles).

·     In an area with obstacles—35 m (114.83 ft) to 50 m (164.04 ft).

Procedure

1.     Enter system view.

system-view

2.     Enter radio interface view.

interface wlan-radio interface-number

3.     Set the maximum transmission distance.

distance distance

By default, the maximum transmission distance is 1 km (0.62 miles).

Performing on-demand channel usage measurement

About this task

This feature enables an AP to scan supported channels and display the channel usage after scanning. It takes about one second to scan a channel.

Procedure

1.     Enter system view.

system-view

2.     Enter radio interface view.

interface wlan-radio interface-number

3.     Perform on-demand channel usage measurement.

channel-usage measure

Configuring 802.11n functions

Configuring the A-MPDU aggregation method

About this task

A MAC Protocol Data Unit (MPDU) is a data frame in 802.11 format. MPDU aggregation aggregates multiple MPDUs into one aggregate MPDU (A-MPDU) to reduce additional information, ACK frames, and Physical Layer Convergence Procedure (PLCP) header overhead. This improves network throughput and channel efficiency.

All MPDUs in an A-MPDU must have the same QoS priority, source address, and destination address.

Procedure

1.     Enter system view.

system-view

2.     Enter radio interface view.

interface wlan-radio interface-number

3.     Configure the A-MPDU aggregation method.

a-mpdu { disable | enable }

By default, the A-MPDU aggregation method is enabled.

Configuring the A-MSDU aggregation method

About this task

MSDU aggregation aggregates multiple MSDUs into one aggregate MSDU (A-MSDU) to reduce PLCP preamble, PLCP header, and MAC header overheads. This improves network throughput and frame forwarding efficiency.

All MSDUs in an A-MSDU must have the same QoS priority, source address, and destination address. When a device receives an A-MSDU, it restores the A-MSDU to multiple MSDUs for processing.

Procedure

1.     Enter system view.

system-view

2.     Enter radio interface view.

interface wlan-radio interface-number

3.     Configure the A-MSDU aggregation method.

a-msdu { disable | enable }

By default, the A-MSDU aggregation method is enabled.

Configuring short GI

About this task

802.11 OFDM fragments frames to data blocks for transmission. It uses GI to ensure that the data block transmissions do not interfere with each other and are immune to transmission delays.

The GI used by 802.11a/g and 802.11ax is 800 ns. 802.11n supports a short GI of 400 ns, which provides a 10% increase in data rate.

Both the 20 MHz and 40 MHz bandwidth modes support short GI.

Procedure

1.     Enter system view.

system-view

2.     Enter radio interface view.

interface wlan-radio interface-number

3.     Configure short GI.

short-gi { disable | enable }

By default, short GI is enabled.

Configuring LDPC

About this task

802.11n introduces the Low-Density Parity Check (LDPC) mechanism to increase the signal-to-noise ratio and enhance transmission quality. LDPC takes effect only when both ends support LDPC.

Procedure

1.     Enter system view.

system-view

2.     Enter radio interface view.

interface wlan-radio interface-number

3.     Configure LDPC.

ldpc { disable | enable }

By default, LDPC is enabled.

Configuring STBC

About this task

The Space-Time Block Coding (STBC) mechanism enhances the reliability of data transmission and does not require clients to have high transmission rates.

Procedure

1.     Enter system view.

system-view

2.     Enter radio interface view.

interface wlan-radio interface-number

3.     Configure STBC.

stbc { disable | enable }

By default, STBC is enabled.

Setting MCS indexes

About this task

802.11n clients use the rate corresponding to the MCS index to send unicast frames. 802.11a/b/g clients use the 802.11a/b/g rate to send unicast frames.

If you do not set a multicast MCS index, 802.11n clients and the AP use the 802.11a/b/g multicast rate to send multicast frames. If you set a multicast MCS index, one of following events occurs:

·     The AP and clients use the rate corresponding to the multicast MCS index to send multicast frames if only 802.11n and 802.11ac clients exist.

·     The AP and clients use the 802.11a/b/g multicast rate to send multicast frames if any 802.11a/b/g clients exist.

When you set the maximum mandatory or supported MCS index, you are specifying a range. For example, if you set the maximum mandatory MCS index to 5, rates corresponding to MCS indexes 0 through 5 are configured as 802.11n mandatory rates.

Restrictions and guidelines

The multicast MCS index cannot be greater than the maximum mandatory MCS index.

The maximum supported MCS index cannot be smaller than the maximum mandatory MCS index.

The multicast MCS index cannot be greater than the maximum supported MCS index.

Procedure

1.     Enter system view.

system-view

2.     Enter radio interface view.

interface wlan-radio interface-number

3.     Set the maximum mandatory MCS index.

dot11n mandatory maximum-mcs index

By default, no maximum mandatory MCS index is set.

4.     Set the maximum supported MCS index.

dot11n support maximum-mcs index

By default, the maximum supported MCS index is 76.

5.     Set the multicast MCS index.

dot11n multicast-mcs index

By default, no multicast MCS index is set.

Configuring the client dot11n-only feature

About this task

To prevent low-speed 802.11a/b/g clients from decreasing wireless data transmission performance, you can enable the client dot11n-only feature for an AP to accept only 802.11n clients and clients of higher standards.

Procedure

1.     Enter system view.

system-view

2.     Enter radio interface view.

interface wlan-radio interface-number

3.     Configure the client dot11n-only feature.

client dot11n-only { disable | enable }

By default, the client dot11n-only feature is disabled.

Setting the 802.11n bandwidth mode

About this task

802.11n uses the channel structure of 802.11a/b/g, but it increases the number of data subchannels in each 20 MHz channel to 52. This improves data transmission rate.

802.11n binds two adjacent 20 MHz channels to form a 40 MHz channel (one primary channel and one secondary channel). This provides a simple way to double the data rate.

If the current channel of a radio does not support the specified bandwidth mode, the radio clears the channel configuration and selects another channel.

If the bandwidth mode is set to 40 MHz, the radio uses the 40 MHz bandwidth if two adjacent channels that can be bound together exist. If there are no adjacent channels that can be bound together, the radio uses the 20 MHz bandwidth.

Procedure

1.     Enter system view.

system-view

2.     Enter radio interface view.

interface wlan-radio interface-number

3.     Set the 802.11n bandwidth mode.

channel band-width { 20 | 40 [ auto-switch ] }

By default, the bandwidth mode is 40 MHz for 802.11an radios and 20 MHz for 802.11gn radios.

Only 802.11gn radios support the auto-switch keyword.

Specifying a MIMO mode

 

NOTE:

The number of spatial streams supported by a radio varies by AP model.

About this task

Multiple-input and multiple-output (MIMO) enables a radio to send and receive wireless signals through multiple spatial streams. This improves system capacity and spectrum usage without requiring higher bandwidth.

A radio can operate in one of the following MIMO modes:

·     1x1—Sends and receives wireless signals through one spatial stream.

·     2x2—Sends and receives wireless signals through two spatial streams.

·     3x3—Sends and receives wireless signals through three spatial streams.

·     4x4—Sends and receives wireless signals through four spatial streams.

·     5x5—Sends and receives wireless signals through five spatial streams.

·     6x6—Sends and receives wireless signals through six spatial streams.

·     7x7—Sends and receives wireless signals through seven spatial streams.

·     8x8—Sends and receives wireless signals through eight spatial streams.

Procedure

1.     Enter system view.

system-view

2.     Enter radio interface view.

interface wlan-radio interface-number

3.     Specify a MIMO mode.

mimo { 1x1 | 2x2 | 3x3 | 4x4 | 5x5 | 6x6 | 7x7 | 8x8 }

The default MIMO mode for a radio varies by AP model.

Configuring energy saving

About this task

After you enable the energy-saving feature, the MIMO mode of a radio automatically changes to 1x1 if no clients associate with the radio and the radio is not enabled with WIPS.

Procedure

1.     Enter system view.

system-view

2.     Enter radio interface view.

interface wlan-radio interface-number

3.     Configure energy saving.

green-energy-management { disable | enable }

By default, energy saving is disabled.

Configuring 802.11ac functions

Setting NSSs

About this task

If the AP supports an NSS, it supports all VHT-MCS indexes for the NSS. 802.11ac clients use the rate corresponding to the VHT-MCS index for the NSS to send unicast frames. Non-802.11ac clients use the 802.11a/b/g/n rate to send unicast frames.

If you do not set a multicast NSS, 802.11ac clients and the AP use the 802.11a/b/g/n multicast rate to send multicast frames. If you set a multicast NSS and specify a VHT-MCS index, the following situations occur:

·     The AP and clients use the rate corresponding to the VHT-MCS index to send multicast frames if all clients are 802.11ac clients.

·     The AP and clients use the 802.11a/b/g/n multicast rate to send multicast frames if any non-802.11ac clients exist.

The maximum mandatory NSS or supported NSS determines a range of 802.11 rates. For example, if the maximum mandatory NSS is 5, rates corresponding to VHT-MCS indexes for NSSs 1 through 5 will be 802.11ac mandatory rates.

Restrictions and guidelines

The maximum supported NSS cannot be smaller than the maximum mandatory NSS and the multicast NSS cannot be greater than the maximum mandatory NSS.

Procedure

1.     Enter system view.

system-view

2.     Enter radio interface view.

interface wlan-radio interface-number

3.     Set the maximum mandatory NSS.

dot11ac mandatory maximum-nss nss-number

By default, no maximum mandatory NSS is set.

4.     Set the maximum supported NSS.

dot11ac support maximum-nss nss-number

By default, the maximum supported NSS is 8.

5.     Set the multicast NSS and specify a VHT-MCS index.

dot11ac multicast-nss nss-number vht-mcs index

By default, no multicast NSS is set.

Configuring the client dot11ac-only feature

About this task

To prevent low-speed 802.11a/b/g/n clients from decreasing wireless data transmission performance, you can enable the client dot11ac-only feature for an AP to accept only 802.11ac clients and clients of higher standards.

Procedure

1.     Enter system view.

system-view

2.     Enter radio interface view.

interface wlan-radio interface-number

3.     Configure the client dot11ac-only feature.

client dot11ac-only { disable | enable }

By default, the client dot11ac-only feature is disabled.

Setting the 802.11ac bandwidth mode

About this task

802.11ac uses the channel structure of 802.11n and increases the maximum bandwidth from 40 MHz to 160 MHz. 802.11ac can bind two adjacent 20/40/80 MHz channels to form a 40/80/160 MHz channel.

The radio uses the specified 40/80/160 MHz bandwidth if adjacent channels can be bound to form a 40/80/160 channel. If adjacent channels cannot form a 40/80/160 channel, the radio uses the next available bandwidth less than the specified one.

If the working channel is specified and the actual working bandwidth is 160 MHz, the device automatically selects a secondary channel. The working channel forwards all packets and the secondary channel forwards only data packets.

If the current channel of a radio does not support the specified bandwidth mode, the radio clears the channel configuration and selects another channel.

Figure 4 802.11ac bandwidth modes

Procedure

1.     Enter system view.

system-view

2.     Enter radio interface view.

interface wlan-radio interface-number

3.     Set the 802.11ac bandwidth mode:

channel band-width { 20 | 40 | 80 | 160 }

Execute this command in the view of a 5 GHz radio interface.

By default, the bandwidth mode is 80 MHz for 802.11ac radios.

Configuring TxBF

About this task

Transmit beamforming (TxBF) enables an AP to adjust transmitting parameters based on the channel information to focus RF signals on intended clients. This feature improves the RF signal quality. TxBF includes single-user TxBF and multi-user TxBF.

·     Single-user TxBF—Single-user TxBF enables an AP to improve the signal to one intended client. Single-user TxBF is applicable to WLANs that have widely spread clients, poor network quality, and serious signal attenuation.

·     Multi-user TxBF—Multi-user TxBF is part of 802.11ac Wave2. Multi-user TxBF enables an AP to focus different RF signals on their intended clients to reduce interference and transmission delay. This improves traffic throughput and bandwidth usage. Multi-user TxBF is applicable to WLANs that have a large number of clients and require high bandwidth usage and low transmission delay.

Procedure

1.     Enter system view.

system-view

2.     Enter radio interface view.

interface wlan-radio interface-number

3.     Configure single-user TxBF.

su-txbf { disable | enable }

By default, single-user TxBF is disabled.

4.     Configure multi-user TxBF.

mu-txbf { disable | enable }

By default, multi-user TxBF is disabled.

Multi-user TxBF takes effect only when single-user TxBF is enabled.

Configuring 802.11ax functions

 

Setting NSSs

About this task

If an AP supports an NSS, it supports all HE-MCS indexes for the NSS. 802.11ax clients that use the rate corresponding to the HE-MCS index for the NSS to send unicast frames. Non-802.11ax clients use the 802.11a/b/g/n/ac rate to send unicast frames.

If you do not set a multicast NSS, 802.11ax clients and the AP use the 802.11a/b/g/n/ac multicast rate to send multicast frames. If you set a multicast NSS and specify an HE-MCS index, the following situations occur:

·     The AP and clients use the rate corresponding to the HE-MCS index to send multicast frames if all clients are 802.11ax clients.

·     The AP and clients use the 802.11a/b/g/n/ac multicast rate to send multicast frames if any non-802.11ax clients exist.

The maximum mandatory NSS or supported NSS determines a range of 802.11 rates. For example, if the maximum mandatory NSS is 5, rates corresponding to HE-MCS indexes for NSSs 1 through 5 will be 802.11ax mandatory rates.

Restrictions and guidelines

The maximum supported NSS cannot be smaller than the maximum mandatory NSS and the multicast NSS cannot be greater than the maximum mandatory NSS.

Procedure

1.     Enter system view.

system-view

2.     Enter radio interface view.

interface wlan-radio interface-number

3.     Set the maximum mandatory NSS.

dot11ax mandatory maximum-nss nss-number

By default, no maximum mandatory NSS is set.

4.     Set the maximum supported NSS.

dot11ax support maximum-nss nss-number

By default, the maximum supported NSS is 8.

5.     Set the multicast NSS and specify an HE-MCS index.

dot11ax multicast-nss nss-number he-mcs index

By default, no multicast NSS is set.

Configuring the client dot11ax-only feature

About this task

To prevent low-speed 802.11a/b/g/n/ac clients from decreasing wireless data transmission performance, you can enable the client dot11ax-only feature for an AP to accept only 802.11ax clients and clients of higher standards.

Procedure

1.     Enter system view.

system-view

2.     Enter radio interface view.

interface wlan-radio interface-number

3.     Configure the client dot11ax-only feature.

client dot11ax-only { disable | enable }

By default, the client dot11ax-only feature is disabled.

Setting the 802.11ax bandwidth mode

About this task

802.11ax uses the channel structure of 802.11n and increases the maximum bandwidth from 40 MHz to 160 MHz. 802.11ax can bind two adjacent 20/40/80 MHz channels to form a 40/80/160 MHz channel.

The radio uses the specified 40/80/160 MHz bandwidth if adjacent channels can be bound to form a 40/80/160 channel. If adjacent channels cannot form a 40/80/160 channel, the radio uses the next available bandwidth lower than the specified one.

If a working channel is specified for the 160 MHz bandwidth mode, the device automatically selects a secondary channel. The working channel forwards all packets and the secondary channel forwards only data packets.

If the current channel of a radio does not support the specified bandwidth mode, the radio clears the channel configuration and selects another channel.

Figure 5 802.11ax bandwidth modes

Restrictions and guidelines

802.11gax supports only the 20 MHz and 40 MHz bandwidth modes.

Procedure

1.     Enter system view.

system-view

2.     Enter radio interface view.

interface wlan-radio interface-number

3.     Set the 802.11ax bandwidth mode:

channel band-width { 20 | 40 | 80 | 160 }

Execute this command in the view of a 5 GHz radio interface.

By default, the bandwidth mode is 80 MHz for 802.11ax radios.

4.     Set the 802.11gax bandwidth mode:

channel band-width { 20 | 40 [ auto-switch ] }

Execute this command in the view of a 2.4 GHz radio interface.

By default, the bandwidth mode is 20 MHz for 802.11gax radios.

Configuring OFDMA

About this task

OFDMA can provide the following benefits if enabled in a high density environment where small data packets are transmitted:

·     Concurrent transmission to multiple users.

·     Improved radio usage.

·     Shortened transmission latency.

·     Reduced conflict backoff.

Procedure

1.     Enter system view.

system-view

2.     Enter radio interface view.

interface wlan-radio interface-number

3.     Configure downlink OFDMA.

dl-ofdma { disable | enable }

By default, downlink OFDMA is disabled.

4.     Configure uplink OFDMA.

ul-ofdma { disable | enable }

By default, uplink OFDMA is disabled.

Configuring uplink MU-MIMO

About this task

Uplink MU-MIMO enables an AP to receive data packets from multiple clients concurrently. With this feature enabled, an AP sends an HE_Trig message to all associated clients to inform the transmission time, frequency, sampling clock, and power requirements. Upon receiving the message, clients send data packets to the AP as required at the same time.

This feature is applicable to scenarios that have a large number of clients and high AP bandwidth usage and transmission latency requirements.

Restrictions and guidelines

Only radios enabled with the client mode support this feature.

Procedure

1.     Enter system view.

system-view

2.     Enter radio interface view.

interface wlan-radio interface-number

3.     Configure uplink MU-MIMO.

ul-mu-mimo { disable | enable }

By default, uplink MU-MIMO is disabled.

Configuring BSS coloring

About this task

BSS coloring enables the system to assign a color to each BSS and include the color ID in data packets for clients to identify if a packet comes from the associated AP. To avoid conflicts, clients that detect an 802.11ax data packet with the same color as its associated BSS will postpone transmission.

Hardware and feature compatibility

Hardware series

Model

Feature compatibility

WA7200 series

WA7220

WA7220-HI

WA7220H

WA7226-C

WA7230

WA7230-LI

No

WA7300 series

WA7320i

WA7322H-HI

WA7330X

WA7338-HI

Yes

WA7500 series

WA7538

WA7539

Yes

WA7600 series

WA7638

No

 

Procedure

1.     Enter system view.

system-view

2.     Enter radio interface view.

interface wlan-radio interface-number

3.     Configure BSS coloring.

bss-color { disable | enable }

By default, BSS coloring is disabled.

Configuring TWT negotiation

About this task

Target Wake Time (TWT) negotiation enables clients and APs to exchange data packets only in service periods and schedules client hibernation to reduce client power consumption and wireless resource competition.

With TWT negotiation enabled, clients send negotiation requests that carry the service period, TWT interval, and first wake time (calculated by clients) to APs. Upon receiving such a request, an AP sends a response. Then, the clients wake up as scheduled and wait for trigger frames from that AP. Upon receiving a trigger frame, clients enter a service period and start to exchange data packets with that AP. When a service period expires, clients enter hibernation mode even if data packet exchange is not finished.

Hardware and feature compatibility

Hardware series

Model

Feature compatibility

WA7200 series

WA7220

WA7220-HI

WA7220H

WA7226-C

WA7230

WA7230-LI

No

WA7300 series

WA7320i

WA7322H-HI

WA7330X

WA7338-HI

Yes

WA7500 series

WA7538

WA7539

Yes

WA7600 series

WA7638

No

 

Restrictions and guidelines

A radio can provide the TWT service to a maximum of eight clients. After responding to the TWT negotiation requests of eight clients, the radio rejects the requests from the other clients.

This feature takes effect only on 802.11ax radios. Changing the radio mode to a non-802.11ax mode removes the configuration.

Procedure

1.     Enter system view.

system-view

2.     Enter radio interface view.

interface wlan-radio interface-number

3.     Configure TWT negotiation.

twt negotiate { disable | enable }

The default setting varies by AP model.

Configure 802.11be functions

Setting NSSs

About this task

When an 802.11be client comes online, the system uses the MCS represented by the EHT-MCS index corresponding to the NSS to transmit the unicast data of the client.

When the multicast NSS is not configured, the system uses the multicast rate or the multicast MCS to transmit multicast data between the 802.11be client and the AP.

When the multicast NSS is configured and all clients are 802.11be clients, the AP and clients use the MCS represented by the EHT-MCS index to transmit multicast data.

Restrictions and guidelines

The multicast NSS must be less than or equal to the maximum mandatory NSS, and the maximum mandatory NSS must be less than or equal to the maximum supported NSS.

Procedure

1.     Enter system view.

system-view

2.     Enter radio interface view.

interface wlan-radio interface-number

3.     Set the maximum mandatory NSS for 802.11be.

dot11be mandatory maximum-nss nss-number

By default, the maximum mandatory NSS is not set.

4.     Set the maximum supported NSS for 802.11be.

dot11be support maximum-nss nss-number

By default, the maximum supported NSS is 8.

5.     Set the multicast NSS and specify an EHT-MCS index for 802.11be.

dot11be multicast-nss nss-number eht-mcs index

By default, the multicast NSS is not set and the EHT-MCS index is not specified either.

Setting the 802.11be bandwidth mode

About this task

Compared with 802.11ax, 802.11be increases the channel bandwidth from a maximum of 160 MHz to a maximum of 320 MHz. 802.11be adopts the channel bandwidth allocation method from 802.11n, where larger bandwidth channels are obtained by merging adjacent channels. In 802.11be, two adjacent 20 MHz channels can be merged to form a 40 MHz channel, and 80 MHz and 160 MHz channels can also be merged in the same way.

Figure 6 802.11be bandwidth modes

Procedure

1.     Enter system view.

system-view

2.     Enter radio interface view.

interface wlan-radio interface-number

3.     Set the 802.11be bandwidth mode.

channel band-width { 20 | 40 | 80 | 160 | 320 }

Execute this command only for 6 GHz radios.

By default, the default bandwidth mode is 80 MHz.

4.     Set the 802.11abe bandwidth mode.

channel band-width { 20 | 40 | 80 | 160 }

Execute this command only for 5 GHz radios.

By default, the default bandwidth mode is 80 MHz.

5.     Set the 802.11gbe bandwidth mode.

channel band-width { 20 | 40 [ auto-switch ] }

Execute this command only for 2.4 GHz radios.

By default, the default bandwidth mode is 20 MHz.

Configuring MRU

About this task

Multiple Resource Unit (MRU) is a technology that increases the spectral resource usage rate, mainly used in multi-user scenarios.

In Wi-Fi6 (802.11ax), each user can only use one RU. In Wi-Fi7 (802.11be), the concept of MRU is introduced to allow a single user to use multiple RUs. As shown in Figure 7, under the same bandwidth, MRU allows a single client to occupy multiple RUs simultaneously when data is being transmitted to two users at the same time. This improves spectral resource usage and reduces latency. In Wi-Fi 6, a single client can only use the single RU resource allocated to it, resulting in a waste of spectral resources.

Figure 7 MRU

 

Hardware and feature compatibility

Hardware series

Model

Feature compatibility

WA7200 series

WA7220

WA7220-HI

WA7220H

WA7226-C

WA7230

WA7230-LI

No

WA7300 series

WA7320i

WA7322H-HI

WA7330X

WA7338-HI

Yes

WA7500 series

WA7538

WA7539

Yes

WA7600 series

WA7638

No

 

Restrictions and guidelines

Changing the radio mode to a lower one cancels the configuration.

Procedure

1.     Enter system view.

system-view

2.     Enter radio interface view.

interface wlan-radio interface-number

3.     Configure MRU.

mru { disable | enable }

By default, MRU is disabled.

Configuring preamble puncturing

About this task

The preamble puncturing technology enables data transmission using discontinuous channels to improve channel utilization efficiency. It is mainly used in scenarios with channel interference.

Without preamble puncturing, as shown in Figure 8, if the bandwidth mode is 80 MHz and interference is encountered on channel 56, the system uses the 20 MHz bandwidth mode instead for transmission. With preamble puncturing enabled, as shown in Figure 9, the interfered portion (channel 56) is punctured and shielded, and the remaining channels 52, 60, and 64 are bundled together for information transmission. Although the AP is still working in the 80 MHz bandwidth mode, the interfered channel is put in Null state (idle state) in actual transmission.

Preamble static puncturing refers to the software designating the puncturing positions based on the bandwidth mode and the position of the primary channel.

Figure 8 Without preamble puncturing

 

Figure 9 With preamble puncturing

 

Hardware and feature compatibility

Hardware series

Model

Feature compatibility

WA7200 series

WA7220

WA7220-HI

WA7220H

WA7226-C

WA7230

WA7230-LI

No

WA7300 series

WA7320i

WA7322H-HI

WA7330X

WA7338-HI

Yes

WA7500 series

WA7538

WA7539

Yes

WA7600 series

WA7638

No

 

Restrictions and guidelines

Preamble puncturing takes effect only when the bandwidth mode is 80 MHz or higher.

Changing the radio mode to a lower one cancels the configuration.

Procedure

1.     Enter system view.

system-view

2.     Enter radio interface view.

interface wlan-radio interface-number

3.     Configure preamble puncturing.

pre-puncture static { disable | enable }

By default, preamble puncturing is disabled.

Disabling radar avoidance

About this task

Radar avoidance enables a radio to change its working channel or keep silent when radar signals are detected on the working channel, avoiding interference on radars. After 30 minutes, the radio switches back to the previous working channel or restarts transmission. If radar signals can still be detected, the radio changes its working channel or keeps silent again.

With radar avoidance disabled, radios continue to transmit or receive traffic on the working channels even if radar signals are detected on the channels.

Restrictions and guidelines

Disable radar avoidance only when you perform device debugging.

Procedure

1.     Enter system view.

system-view

2.     Enter radio interface view.

interface wlan-radio interface-number

3.     Disable radar avoidance.

radar-detect disable

By default, radar avoidance is enabled.

Display and maintenance commands for radio management

Execute display commands in any view.

 

Task

Command

Display client information.

display wlan client [ interface interface-type interface-number | mac-address mac-address | service-template service-template-name ] [ verbose ]

Display radio information.

display wlan ap radio radio-id

Radio management configuration examples

The parameters configured in this example are for reference only. To achieve the best performance, configure the parameters based on your actual network requirements.

Example: Configuring basic radio functions

Network configuration

As shown in Figure 10, set the radio mode, working channel, and maximum transmit power to 802.11b, channel 36, and 19 dBm, respectively.

Figure 10 Network diagram

Procedure

# Enter radio interface view.

<AP> system-view

[AP] interface wlan-radio 1/0/1

# Set the radio mode to dot11b.

[AP-WLAN-Radio1/0/1] type dot11b

# Configure the radio to work on channel 36.

[AP-WLAN-Radio1/0/1] channel 36

# Set the maximum transmit power to 19 dBm.

[AP-WLAN-Radio1/0/1] max-power 19

Verifying the configuration

# Verify that the online clients are 802.11b clients.

[AP-WLAN-Radio1/0/1] display wlan client verbose

Total number of clients: 1

 

MAC address                        : 000f-e265-6400

IPv4 address                       : 10.1.1.114

IPv6 address                       : 2001::1234:5678:0102:0304

Username                           : N/A

AID                                : 1

AP ID                              : 1

AP name                            : ap1

Radio ID                           : 1

SSID                               : office

BSSID                              : 0026-3e08-1150

VLAN ID                            : 1

Power save mode                    : Active

Wireless mode                      : 802.11b

Supported rates                    : 1, 2 Mbps

QoS mode                           : WMM

Listen interval                    : 10

RSSI                               : 62

Rx/Tx rate                         : 130/11

Authentication method              : Open system

Security mode                      : PRE-RSNA

AKM mode                           : N/A

Cipher suite                       : N/A

User authentication mode           : Bypass

Authorization ACL ID               : 3001(Not effective)

Authorization user profile         : N/A

Authorization CAR                  : N/A

Roam status                        : N/A

Key derivation                     : SHA1

PMF status                         : Enabled

Forward policy                     : N/A

Online time                        : 0hr 1min 13sec

FT status                          : Inactive

Example: Configuring 802.11n

Network configuration

As shown in Figure 11, specify the radio as an 802.11an radio, and enable the A-MSDU and A-MPDU aggregation methods on the radio.

Figure 11 Network diagram

Procedure

# Enter radio interface view.

<AP> system-view

[AP] interface wlan-radio 1/0/1

# Set the radio mode to dot11an.

[AP-WLAN-Radio1/0/1] type dot11an

# Enable the A-MSDU and A-MPDU aggregation methods.

[AP-WLAN-Radio1/0/1] a-mpdu enable

[AP-WLAN-Radio1/0/1] a-msdu enable

# Enable the radio.

[AP-WLAN-Radio1/0/1] undo shutdown

Verifying the configuration

# Display client information.

[AP-WLAN-Radio1/0/1] display wlan client verbose

Total number of clients: 1

MAC address                        : 000f-e265-6400

IPv4 address                       : 10.1.1.114

IPv6 address                       : 2001::1234:5678:0102:0304

Username                           : N/A

AID                                : 1

AP ID                              : 1

AP name                            : ap1

Radio ID                           : 1

SSID                               : office

BSSID                              : 0026-3e08-1150

VLAN ID                            : 1

Power save mode                    : Active

Wireless mode                      : 802.11an

Supported rates                    : 1, 2 Mbps

QoS mode                           : WMM

Listen interval                    : 10

RSSI                               : 62

Rx/Tx rate                         : 130/11

Authentication method              : Open system

Security mode                      : PRE-RSNA

AKM mode                           : N/A

Cipher suite                       : N/A

User authentication mode           : Bypass

Authorization ACL ID               : 3001(Not effective)

Authorization user profile         : N/A

Authorization CAR                  : N/A

Roam status                        : N/A

Key derivation                     : SHA1

PMF status                         : Enabled

Forward policy                     : N/A

Online time                        : 0hr 1min 13sec

FT status                          : Inactive

  • Cloud & AI
  • InterConnect
  • Intelligent Computing
  • Intelligent Storage
  • Security
  • SMB Products
  • Intelligent Terminal Products
  • Product Support Services
  • Technical Service Solutions
All Services
  • Resource Center
  • Policy
  • Online Help
  • Technical Blogs
All Support
  • Become A Partner
  • Partner Policy & Program
  • Global Learning
  • Partner Sales Resources
  • Partner Business Management
  • Service Business
All Partners
  • Profile
  • News & Events
  • Online Exhibition Center
  • Contact Us
All About Us
新华三官网