• 产品与解决方案
  • 行业解决方案
  • 服务
  • 支持
  • 合作伙伴
  • 新华三人才研学中心
  • 关于我们

03-虚拟化技术配置指导

目录

01-IRF配置

本章节下载 01-IRF配置  (670.62 KB)

docurl=/cn/Service/Document_Software/Document_Center/IP_Security/YYAQWG_V7/H3C_vLB/Configure/Operation_Manual/H3C_vLB_CG(V7)(R1171)/03/202305/1841799_30005_0.htm

01-IRF配置


1 IRF

1.1  IRF简介

IRF(Intelligent Resilient Framework,智能弹性架构)技术通过将多台设备连接在一起,虚拟化成一台设备,集成多台设备的硬件资源和软件处理能力,实现多台设备的协同工作、统一管理和不间断维护。

为了便于描述,我们将通过IRF技术虚拟成的设备也称为IRF。所以,本文中的IRF有两层意思,一个是指IRF技术,一个是指IRF设备。

1.1.1  IRF典型组网

图1-1所示,两台设备组成IRF,对上、下层设备来说,它们就是一台设备——IRF。所有成员设备上的资源归该虚拟设备IRF拥有并由主设备统一管理。

图1-1 IRF组网应用示意图

 

 

1.1.2  IRF的优点

IRF主要具有以下优点:

·     统一管理:IRF形成之后,用户通过IRF中的任意端口都可以登录IRF系统,对所有成员设备进行统一管理。同时,对于网络中的其它设备和网管来说,整个IRF就是一个网络节点,简化了网络拓扑,降低了管理难度。

·     高可靠性:IRF中有多台成员设备,其中一台作为主设备,负责IRF的运行、管理和维护;其它成员设备作为从设备,从设备在作为备份的同时也可以处理业务。一旦主设备故障,系统会迅速自动选举新的主设备,以保证业务不中断,从而实现了设备的1:N备份。

·     星形拓扑:所有的成员设备接入二层网络,只要成员设备间二层互通,就可以利用现有的物理连接来转发成员设备间的流量和IRF协议报文,不需要专门的物理线路和接口来转发。

·     跨成员设备的链路聚合:IRF和上、下层设备之间的物理链路支持聚合功能,并且不同成员设备上的物理链路可以聚合成一个逻辑链路,多条物理链路之间可以互为备份也可以进行负载分担,当某个成员设备离开IRF,其它成员设备上的链路仍能收发报文,从而提高了聚合链路的可靠性。

·     强大的网络扩展能力:IRF的各成员设备都有CPU,能够独立处理协议报文、进行报文转发。增加成员设备,可以灵活扩展IRF的处理能力和端口数量。

1.1.3  IRF基本概念

1. 运行模式

设备支持两种运行模式:

·     独立运行模式:处于该模式下的设备只能单机运行,不能与别的设备形成IRF。

·     IRF模式:处于该模式下的设备可以与其它设备互连形成IRF。

2. 角色

IRF中每台设备都称为成员设备。成员设备按照功能不同,分为:

·     主用设备(Master,简称为主设备):负责管理和控制整个IRF。

·     从属设备(Standby,简称为从设备):处理业务、转发报文的同时作为主设备的备份设备运行。当主设备故障时,系统会自动从从设备中选举一个新的主设备接替原主设备工作。

主设备和从设备均由角色选举产生。一个IRF中同时只能存在一台主设备,其它成员设备都是从设备。关于设备角色选举过程的详细介绍请参见“1.1.5  角色选举”。

3. 成员编号

在运行过程中,IRF使用成员编号来标识成员设备,以便对其进行管理。例如,IRF使用设备的成员编号来表示设备的IRF端口的编号。所以,在IRF中必须保证所有设备成员编号的唯一性。

如果建立IRF时存在编号相同的成员设备,则不能建立IRF;如果新设备加入IRF,但是该设备与已有成员设备的编号冲突,则该设备不能加入IRF。在建立IRF前,请统一规划各成员设备的编号,并逐一进行手工配置,以保证各设备成员编号的唯一性。

4. 成员优先级

成员优先级是成员设备的一个属性,主要用于角色选举过程中确定成员设备的角色。优先级越高当选为主设备的可能性越大。

设备的缺省优先级均为1,如果想让某台设备当选为主设备,则在组建IRF前,可以通过命令行手工提高该设备的成员优先级。

5. IRF端口

专用于IRF成员设备之间进行连接的逻辑接口,每台成员设备上只有一个IRF端口,IRF端口的编号和设备的成员编号一致。

专用于IRF成员设备之间进行连接的逻辑接口,每台成员设备上只有一个IRF端口。在独立运行模式下,IRF端口没有编号;在IRF模式下,IRF端口的编号和设备的成员编号一致。

IRF端口需要和物理端口绑定之后才能生效。IRF端口的状态由与它绑定的IRF物理端口的状态决定。与IRF端口绑定的所有IRF物理端口状态均为down时,IRF端口的状态才会变成down。

6. IRF物理端口

与IRF端口绑定,用于IRF成员设备之间进行连接的物理接口。

IRF物理端口仅用于转发IRF相关协商报文以及需要跨成员设备转发的业务报文。

IRF物理端口可以指定通道模式,共有三种模式:

·     控制通道模式:处于该模式的接口只用于传输IRF成员设备间的控制报文,如IRF协议报文等。

·     数据通道模式:处于该模式的接口只用与传输业务报文。

·     混合模式:处于该模式的接口可用于传输控制报文和业务报文。

7. IRF拓扑域

IRF拓扑域是一个逻辑概念,用于区分不同的IRF。一个IRF对应一个IRF拓扑域。

同一个网络里可以部署多个IRF,IRF之间使用拓扑域编号(Topo-DomainID)来以示区别。拓扑域编号相同的设备才能加入同一个IRF。如图1-2所示,Device A和Device B组成IRF1,Device C和Device D组成IRF2。这种情况下,需要给两个IRF配置不同的拓扑域编号,以便两个IRF互不干扰。

图1-2 多IRF拓扑域示意图

 

8. MAD

IRF链路故障会导致一个IRF分裂成多个新的IRF。这些IRF拥有相同的IP地址等三层配置,会引起地址冲突,导致故障在网络中扩大。MAD(Multi-Active Detection,多Active检测)机制用来进行IRF分裂检测、冲突处理和故障恢复,从而提高系统的可用性。

9. IRF检测域

IRF检测域也是一个逻辑概念,用于IRF冲突检测。当需要在IRF中配置MAD功能时,才需要配置IRF检测域。如图1-3所示,Device A和Device B组成IRF 1,Switch A和Switch B组成IRF 2。如果IRF 1和IRF 2之间有MAD检测链路,则两个IRF各自的成员设备间发送的MAD检测报文会被另外的IRF接收到,从而对两个IRF的MAD检测造成影响。这种情况下,需要给两个IRF配置不同的检测域编号,以保证两个IRF互不干扰。为了方便管理,IRF检测域和IRF拓扑域的编号可以配置为相同值。

图1-3 多IRF检测域示意图

 

10. IRF合并

图1-4所示,两个(或多个)IRF各自已经稳定运行,通过物理连接和必要的配置,形成一个IRF,这个过程称为IRF合并。

图1-4 IRF合并示意图

 

11. IRF分裂

图1-5所示,一个IRF形成后,由于IRF链路故障,导致IRF中两相邻成员设备不连通,一个IRF变成两个IRF,这个过程称为IRF分裂。

图1-5 IRF分裂示意图

 

1.1.4  IRF的连接拓扑

各个成员设备之间通过二层网络连接在一起,该连接作为IRF链路可以同时传输跨成员设备转发的业务报文和IRF协议报文。鉴于二层网络的转发性能未知,建议通过网络规划和多链路聚合、备份机制来减少跨成员设备转发的业务报文的数量,尽量保证同一会话的业务报文的出接口和入接口部署在同一成员设备上。

图1-6 IRF星型连接拓扑示意图

 

当IRF中只有两个成员设备时,可以采用星型连接,也可以将两个成员设备直连,如图1-7所示。

图1-7 两个成员设备的IRF直连示意图

 

1.1.5  角色选举

角色选举会在以下情况下进行:

·     IRF建立。

·     主设备离开或者故障。

·     IRF分裂。

·     独立运行的两个(或多个)IRF合并为一个IRF。

角色选举中按照如下优先级顺序选择主设备:

(1)     当前的主设备优先。IRF不会因为有新的成员设备加入而重新选举主设备,即使新的成员设备有更高优先级。该规则不适用于IRF形成时,此时所有加入的设备都认为自己是主设备。

(2)     成员优先级大的设备。

(3)     系统运行时间长的设备。在IRF中,运行时间的度量精度为10分钟,即如果设备的启动时间间隔小于等于10分钟,则认为它们运行时间相等。

(4)     CPU MAC地址小的设备。

IRF建立时,所有从设备必须重启加入IRF。

独立运行的IRF合并时,竞选失败方的所有成员设备必须重启加入获胜方。

1.1.6  IRF中的接口命名规则

当设备处于独立运行模式时,接口编号采用子槽位编号/接口序号的二维格式。其中:

·     子槽位编号:接口所在子槽位的编号。

·     接口序号与各型号设备支持的接口数量相关,请查看设备前面板上的丝印。

例如,要将设备上的第一个接口的描述信息配置为for LAN1时,可参照以下步骤:

<Sysname> system-view

[Sysname] interface gigabitethernet 1/1

[Sysname-GigabitEthernet1/1] description for LAN1

对于IRF中的成员设备,接口编号采用成员设备编号/子槽位编号/接口序号的三维格式。其中:

·     成员编号:用来标志不同成员设备上的接口。缺省值为1,修改成员编号并重启设备后,会使用新的成员编号。

·     子槽位编号和接口序号的含义和取值与独立运行模式时一样。

例如,要将成员设备1上的第一个接口的描述信息配置为for LAN1时,可参照以下步骤:

<Sysname> system-view

[Sysname] interface gigabitethernet 1/1/1

[Sysname-GigabitEthernet1/1/1] description for LAN1

1.1.7  IRF中的文件系统命名规则

当设备处于独立运行模式时,直接使用存储介质的名称就可以访问设备的文件系统。存储介质的命名请参见“基础配置指导”中的“文件系统管理”。

对于IRF中的成员设备,直接使用存储介质的名称可以访问主设备的文件系统;使用“slotMemberID#存储介质的名称”才可以访问从设备的文件系统,MemberID表示从设备的成员编号。

例如:

·     创建并显示IRF中主设备存储介质Flash根目录下的test文件夹:

<Master> mkdir test

Creating directory flash:/test... Done.

<Master> cd test

<Master> dir

Directory of flash:/test

The directory is empty.

 

524288 KB total (29832 KB free)

·     创建并显示IRF中从设备(成员编号为2)存储介质Flash根目录下的test文件夹:

<Master> mkdir slot2#flash:/test

Creating directory slot2#flash:/test... Done.

<Master> cd slot2#flash:/test

<Master> dir

Directory of slot2#flash:/test

The directory is empty.

 

524288 KB total (128812 KB free)

1.1.8  IRF中的配置同步

IRF使用主设备上的配置运行,并通过批量同步和实时同步机制来保证其它成员设备和主设备的配置一致。

·     不管设备与其它设备一起形成IRF,还是加入已有IRF,如果该设备被选为从设备,则该设备会使用主设备的配置重新启动,这个过程称为批量同步。

·     在IRF运行过程中,从任意成员设备登录,实际上登录的都是主设备。所有配置都会交给主设备处理,主设备会立即同步给其它成员设备,这个过程称为实时同步。

备设备加入IRF之前的配置文件还在,但不再生效,除非设备恢复到单独一台设备运行。

1.1.9  MAD检测机制

设备支持的MAD检测方式有:LACP MAD检测和BFD MAD检测。两种MAD检测机制各有特点,用户可以根据现有组网情况进行选择。

表1-1 MAD检测机制的比较

MAD检测方式

优势

限制

LACP MAD

检测速度快,利用现有聚合组网即可实现,无需占用额外接口,聚合链路同时传输普通业务报文和LACP MAD检测报文(扩展LACP报文)

组网中需要使用H3C设备作为中间设备,每个成员设备都需要连接到中间设备

BFD MAD

检测速度较快,组网形式灵活,对其它设备没有要求

配置专用三层接口,这些接口不能再传输普通业务流量

·     如果不使用中间设备,则要求成员设备间是全链接,即每个成员设备都必须和其它所有成员设备相连。该链路专用于MAD检测,不能再传输普通业务流量。该方式适用于成员设备少,并且物理距离比较近的组网环境

·     如果使用中间设备,组网时每个成员设备都需要连接到中间设备,这些BFD链路专用于MAD检测

 

1. LACP MAD检测

LACP MAD检测通过扩展LACP协议报文实现,通常采用如图1-8所示的组网:

·     每个成员设备都需要连接到中间设备。

·     成员设备连接中间设备的链路加入动态聚合组。

·     中间设备需要支持扩展LACP报文。

图1-8 LACP MAD检测组网示意图

 

扩展LACP协议报文定义了一个新的TLV(Type/Length/Value,类型/长度/值)数据域——用于交互IRF的MADDomainID(检测域编号)和ActiveID(主设备的成员编号)。开启LACP MAD检测后,成员设备通过LACP协议报文和其它成员设备交互MADDomainID和ActiveID信息。

·     如果MADDomainID不同,表示报文来自不同IRF,不需要进行MAD处理。

·     如果MADDomainID相同,ActiveID也相同,表示没有发生多Active冲突。

·     如果MADDomainID相同,ActiveID不同,表示IRF分裂,检测到多Active冲突。

2. BFD MAD检测

BFD MAD检测通过BFD协议实现。我们可以使用以太网端口来实现BFD MAD检测。

使用以太网端口实现BFD MAD时,请注意如下组网要求:

·     使用中间设备时(如图1-9所示),每台成员设备都需要和中间设备建立BFD MAD检测链路。不使用中间设备时,每台成员设备必须和其它所有成员设备之间建立BFD MAD检测链路(如图1-10所示)。使用中间设备时(如图1-9所示),每台成员设备都需要和中间设备建立BFD MAD检测链路。

·     用于BFD MAD检测的以太网端口加入同一VLAN,在该VLAN接口视图下为每台成员设备配置MAD IP地址。

需要注意的是:

·     BFD MAD检测链路必须是专用的,不允许配置任何其它特性。

·     MAD IP地址应该为同一网段内的不同IP地址。

图1-9 使用中间设备实现BFD MAD检测组网示意图

 

图1-10 不使用中间设备实现BFD MAD检测组网示意图

 

BFD MAD实现原理如下:

·     当IRF正常运行时,只有主设备上配置的MAD IP地址生效,从设备上配置的MAD IP地址不生效,BFD会话处于down状态;(使用display bfd session命令查看BFD会话的状态。如果Session State显示为Up,则表示激活状态;如果显示为Down,则表示处于down状态)

·     当IRF分裂形成多个IRF时,不同IRF中主设备上配置的MAD IP地址均会生效,BFD会话被激活,此时会检测到多Active冲突。

1.2  IRF配置限制和指导

1.2.1  软件版本要求

IRF中所有成员设备的软件版本必须相同,如果有软件版本不同的设备要加入IRF,请确保IRF的启动文件同步加载功能处于开启状态。

1.2.2  IRF规模

一个IRF中允许加入的成员设备的数量存在上限。如果超过上限,则不允许新的成员设备加入。目前仅支持两台成员设备。

1.2.3  IRF拓扑域编号

IRF拓扑域编号是一个全局变量,IRF中的所有成员设备都共用这个IRF拓扑域编号。只有同一个拓扑域中的设备才能形成一个IRF。

1.2.4  配置文件的备份

在IRF中执行save命令将当前配置保存到下次启动配置文件:如果某个成员设备上没有这个文件,则会先创建该文件再保存配置;如果某个成员设备上有同名文件,则同名文件的内容会被当前配置覆盖。以便保证IRF中所有成员设备上都有这个下次启动配置文件,并且文件内容一致。

为避免重要配置文件被覆盖,在设备加入IRF前,请备份或者重命名该设备的重要配置文件。

1.2.5  IRF与其它软件特性的兼容性与限制

1. 系统工作模式

在组成IRF的所有设备上,系统工作模式的相关配置都必须相同,否则这些设备将无法组成IRF。系统工作模式可通过system-working-mode命令配置,关于系统工作模式的详细介绍请参见“基础配置指导”中的“设备管理”。

2. ACL

在组成IRF的所有设备上,ACL硬件模式的相关配置都必须相同,否则这些设备将无法组成IRF。有关ACL硬件模式的详细介绍,请参见“ACL和QoS配置指导”中的“ACL”。

1.2.6  IRF中License安装一致性要求

请确保IRF中各成员设备上安装的特性License一致,否则,可能会导致这些License对应的特性不能正常运行。

1.3  IRF配置任务简介

IRF配置任务如下:

(1)     搭建IRF

a.     配置成员编号

b.     (可选)配置成员优先级

c.     配置IRF拓扑域编号

要加入同一IRF的所有设备的拓扑域编号必须相同。

d.     配置IRF端口

e.     将当前配置保存到设备的下次启动配置文件

f.     连接IRF物理接口

g.     切换到IRF模式

h.     访问IRF

(2)     配置MAD

请至少选择其中一项MAD检测方案进行配置。选择时请注意“1.6.1  不同MAD检测方式兼容性限制”。

¡     配置LACP MAD检测

¡     配置BFD MAD检测

¡     配置保留接口

IRF迁移到Recovery状态后会关闭该IRF中除保留接口以外的所有业务接口。如果接口有特殊用途需要保持up状态(比如Telnet登录接口),可以将这些接口配置为保留接口。

¡     MAD故障恢复

(3)     (可选)调整和优化IRF

¡     配置成员编号

¡     配置成员优先级

¡     配置IRF拓扑域编号

¡     配置IRF端口

¡     开启IRF合并自动重启功能

¡     配置成员设备的描述信息

¡     配置IRF的桥MAC

¡     开启IRF系统启动文件的自动加载功能

¡     隔离成员设备

¡     将隔离的成员设备重新加入IRF

1.4  IRF配置准备

在搭建IRF前,请进行网络规划,确定以下项目:

·     硬件兼容性和限制(选择哪些型号的设备,是否要求同型号)

·     IRF规模(包含几台成员设备)

·     使用哪台设备作为主设备

·     各成员设备编号和优先级分配方案

·     IRF拓扑和物理连接方案

·     确定IRF物理端口

1.5  搭建IRF

1.5.1  配置成员编号

1. 配置限制和指导

为保证IRF成功建立,请确保该编号在IRF中唯一。在加入IRF时,如果设备与已有成员设备的编号冲突,设备不能加入IRF。

2. 配置步骤

(1)     进入系统视图。

system-view

(2)     在独立运行模式下配置设备的成员编号。

irf member member-id

缺省情况下,成员编号为1。

1.5.2  配置成员优先级

(1)     进入系统视图。

system-view

(2)     在独立运行模式下配置设备的成员优先级。

irf priority priority

缺省情况下,设备的成员优先级为1。

1.5.3  配置IRF拓扑域编号

1. 配置限制和指导

需要手工重启设备才能使修改后的IRF拓扑域编号生效。

2. 配置步骤

(1)     进入系统视图。

system-view

(2)     配置IRF的拓扑域编号。

irf topo-domain topo-domain-id

缺省情况下,IRF的拓扑域编号为0。

1.5.4  配置IRF端口

1. 配置限制和指导

在独立运行模式下将IRF端口和IRF物理端口绑定,并不会影响IRF物理端口的当前业务。当设备切换到IRF模式后,IRF物理端口的配置将恢复到缺省状态,即原有的业务配置会被删除。

2. 配置步骤

(1)     进入系统视图。

system-view

(2)     在独立运行模式下,进入IRF端口视图。

irf-port

(3)     将IRF端口和IRF物理端口绑定。

port group interface interface-type interface-number [ type { control | data } ]

缺省情况下,IRF端口未绑定IRF物理端口。

多次执行port group interface命令,可以将IRF端口与多个IRF物理端口绑定,以实现IRF链路的备份和负载分担,从而提高IRF链路的带宽和可靠性。

1.5.5  将当前配置保存到设备的下次启动配置文件

在任意视图下执行如下命令,将当前配置保存到存储介质的根目录下,并将该文件设置为下次启动配置文件。

save [ safely ] [ backup | main ] [ force ]

有关该命令的详细介绍,请参见“基础配置命令参考”中的“配置文件管理”。

1.5.6  连接IRF物理接口

请按照拓扑规划和“1.1.4  IRF的连接拓扑”完成IRF物理端口连接。

1.5.7  切换到IRF模式

1. 功能简介

设备缺省处于独立运行模式。要使设备加入IRF或使设备的IRF配置生效,必须将设备运行模式切换到IRF模式。

2. 配置限制和指导

修改运行模式后,设备会自动重启使新的模式生效。

模式切换会导致配置不可用。为了使当前配置在模式切换后能够尽可能多的继续生效,在用户执行模式切换操作时,系统会提示用户是否需要自动转换下次启动配置文件。如果用户选择了<Y>,则设备会自动将下次启动配置文件中槽位和接口的相关配置进行转换并保存。例如,进行slot slot-number的转换、接口编号的转换等。

因为管理和维护IRF需要耗费一定的系统资源。如果当前组网中设备不需要和别的设备组成IRF时,请执行undo chassis convert mode,将IRF模式切换到独立运行模式。

3. 配置准备

在切换到IRF模式前,请先配置成员编号,并确保该编号在IRF中唯一。如果没有配置成员编号,系统会自动使用1作为成员编号。

4. 配置步骤

(1)     进入系统视图。

system-view

(2)     将设备的运行模式切换到IRF模式。

chassis convert mode irf

缺省情况下,设备处于独立运行模式。

1.5.8  访问IRF

IRF的访问方式如下:

·     本地登录:通过任意成员设备的AUX或者Console口登录。

·     远程登录:给任意成员设备的任意三层接口配置IP地址,并且路由可达,就可以通过Telnet、WEB、SNMP等方式进行远程登录。

不管使用哪种方式登录IRF,实际上登录的都是主设备。主设备是IRF系统的配置和控制中心,在主设备上配置后,主设备会将相关配置同步给从设备,以便保证主设备和从设备配置的一致性。

1.6  配置MAD

1.6.1  配置限制和指导

1. 不同MAD检测方式兼容性限制

冲突处理原则不同的MAD机制不允许同时配置:

·     LACP MAD和ARP MAD、ND MAD冲突处理的原则不同。

·     BFD MAD和ARP MAD、ND MAD冲突处理的原则不同。

2. IRF检测域编号配置指导

在LACP MAD、ARP MAD和ND MAD检测组网中,如果中间设备本身也是一个IRF系统,则必须通过配置确保其IRF检测域编号与被检测的IRF系统不同,否则可能造成检测异常,甚至导致业务中断。在BFD MAD检测组网中,IRF检测域编号为可选配置。

IRF检测域编号是一个全局变量,IRF中的所有成员设备都共用这个IRF检测域编号。在IRF设备上使用irf domainmad enablemad arp enablemad nd enable命令均可修改全局IRF检测域编号,最新的配置生效。请按照网络规划来修改IRF检测域编号,不要随意修改。

在IRF设备上使用MDC功能时,缺省MDC上通过irf domain命令,或者在任意MDC上通过mad enable命令可修改全局IRF检测域编号,最新的配置生效。请按照网络规划来修改IRF检测域编号,不要随意修改。

3. 被MAD关闭的接口恢复指导

如果接口因为多Active冲突被关闭,则只能等IRF恢复到正常工作状态后,接口才能自动被激活,不能通过undo shutdown命令来激活。

1.6.2  配置LACP MAD检测

1. 配置步骤

(1)     进入系统视图。

system-view

(2)     配置IRF检测域编号。

irf domain domain-id

缺省情况下,IRF的检测域编号为0。

(3)     创建并进入聚合接口视图。请选择其中一项进行配置。

¡     进入二层聚合接口视图。

interface bridge-aggregation interface-number

¡     进入三层聚合接口视图。

interface route-aggregation interface-number

中间设备上也需要进行此项配置。

(4)     配置聚合组工作在动态聚合模式下。

link-aggregation mode dynamic

缺省情况下,聚合组工作在静态聚合模式下。

中间设备上也需要进行此项配置。

(5)     开启LACP MAD检测功能。

mad enable

缺省情况下,LACP MAD检测功能处于关闭状态。

(6)     退回系统视图。

quit

(7)     进入以太网接口视图。

interface interface-type interface-number

(8)     将以太网接口加入聚合组。

port link-aggregation group group-id

中间设备上也需要进行此项配置。

1.6.3  配置BFD MAD检测

1. 配置限制和指导

在配置BFD MAD之前请选择一个合适的BFD MAD链路连接方案,建议在配置完BFD MAD之后再连接BFD MAD链路。

使用三层聚合接口进行BFD MAD检测时,请注意表1-2所列配置注意事项。

表1-2 使用三层聚合接口进行BFD MAD检测

注意事项类别

使用限制和注意事项

三层聚合接口配置

如果网络中存在多个IRF,在配置BFD MAD时,各IRF必须使用不同的三层聚合接口做BFD MAD检测专用的三层接口

BFD MAD检测VLAN

如果使用中间设备,请将设备上用于BFD MAD检测的物理接口添加到同一个VLAN中。确保这些接口没有加入聚合组

BFD MAD检测VLAN的特性限制

开启BFD检测功能的接口只能配置mad bfd enablemad ip address命令。如果用户配置了其它业务,可能会影响该业务以及BFD检测功能的运行

MAD IP地址

·     在用于BFD MAD检测的接口下必须使用mad ip address命令配置MAD IP地址,而不要配置其它IP地址(包括使用ip address命令配置的普通IP地址、VRRP虚拟IP地址等),以免影响MAD检测功能

·     为不同成员设备配置同一网段内的不同MAD IP地址

 

2. 使用三层聚合接口进行BFD MAD检测配置步骤

(1)     进入系统视图。

system-view

(2)     (可选)配置IRF检测域编号。

irf domain domain-id

缺省情况下,IRF的检测域编号为0。

(3)     创建一个新三层聚合接口专用于BFD MAD检测。

interface route-aggregation interface-number

(4)     退回系统视图。

quit

(5)     进入以太网接口视图。

interface interface-type interface-number

(6)     将端口加入BFD MAD检测专用聚合组。

port link-aggregation group number

(7)     退回系统视图。

quit

(8)     进入三层聚合接口视图。

interface route-aggregation interface-number

(9)     开启BFD MAD检测功能。

mad bfd enable

缺省情况下,BFD MAD检测功能处于关闭状态。

(10)     给指定成员设备配置MAD IP地址。

mad ip address ip-address { mask | mask-length } member member-id

缺省情况下,未配置成员设备的MAD IP地址。

1.6.4  配置保留接口

1. 功能简介

IRF系统在进行多Active处理的时候,缺省情况下,会关闭Recovery状态IRF上除了系统保留接口外的所有业务接口。缺省情况下,系统会保留IRF物理端口。如果接口有特殊用途需要保持up状态(比如Telnet登录接口等),则用户可以通过命令行将这些接口配置为保留接口。

2. 配置限制和指导

请勿将用于MAD检测的聚合接口及其成员接口配置为保留接口。

3. 配置步骤

(1)     进入系统视图。

system-view

(2)     配置保留接口,当设备进入Recovery状态时,该接口不会被关闭。

mad exclude interface interface-type interface-number

缺省情况下,设备进入Recovery状态时会自动关闭本设备上除了系统保留接口以外的所有业务接口。

1.6.5  MAD故障恢复

1. 功能简介

当MAD故障恢复时,处于Recovery状态的设备重启后重新加入IRF,被MAD关闭的接口会自动恢复到正常状态。

如果在MAD故障恢复前,正常工作状态的IRF出现故障,可以通过配置本功能先启用Recovery状态的IRF。配置本功能后,Recovery状态的IRF中被MAD关闭的接口会恢复到正常状态,保证业务尽量少受影响。

2. 配置步骤

(1)     进入系统视图。

system-view

(2)     将IRF从Recovery状态恢复到正常工作状态。

mad restore

1.7  调整和优化IRF

1.7.1  配置成员编号

1. 配置限制和指导

在IRF中以成员编号标识设备,IRF端口和成员优先级的配置也和成员编号紧密相关。所以,修改设备成员编号可能导致配置发生变化或者失效,请慎重使用。

配置成员编号时,请确保该编号在IRF中唯一。如果存在相同的成员编号,则不能建立IRF。如果新设备加入IRF,但是该设备与已有成员设备的编号冲突,则该设备不能加入IRF。

·     修改成员编号后,但是没有重启本设备,则原编号继续生效,各物理资源仍然使用原编号来标识。

·     修改成员编号后,如果保存当前配置,重启本设备,则新的成员编号生效,需要用新编号来标识物理资源;配置文件中,只有IRF端口的编号以及IRF端口下的配置、成员优先级会继续生效,其它与成员编号相关的配置(比如普通物理接口的配置等)不再生效,需要重新配置。

2. 配置步骤

(1)     进入系统视图。

system-view

(2)     配置成员编号。

irf member member-id renumber new-member-id

缺省情况下,使用独立运行模式下配置的成员编号。

(3)     退回系统视图。

quit

(4)     保存当前配置。

save

使用reboot命令重启该设备。

1.7.2  配置成员优先级

1. 功能简介

提高成员设备的优先级可以使该设备在下次角色选举时优先成为主设备。

修改成员设备的优先级不会立即触发角色选举。

2. 配置步骤

(1)     进入系统视图。

system-view

(2)     配置IRF中指定成员设备的优先级。

irf member member-id priority priority

缺省情况下,使用独立运行模式下配置的成员优先级。

1.7.3  配置IRF拓扑域编号

1. 配置限制和指导

需要手工重启设备才能使修改后的IRF拓扑域编号生效。

2. 配置步骤

(1)     进入系统视图。

system-view

(2)     配置IRF的拓扑域编号。

irf topo-domain topo-domain-id

缺省情况下,使用独立运行模式下配置的IRF拓扑域编号。

(3)     退回系统视图。

quit

(4)     保存当前配置。

save

使用reboot命令重启该设备。

1.7.4  配置IRF端口

1. 功能简介

组建IRF后,使用本功能可以修改IRF端口的绑定关系。

2. 配置限制和指导

修改绑定关系时,请确保至少有一个控制通道一直处于up状态,否则,会导致IRF分裂。

3. 配置步骤

(1)     进入系统视图。

system-view

(2)     进入IRF物理端口视图或IRF物理端口批量配置视图。

¡     进入IRF物理端口视图

interface interface-type interface-number

¡     进入IRF物理端口批量配置视图。请选择其中一项进行配置。

interface range interface-list

interface range name name [ interface interface-list ]

关于interface rangeinterface range name命令的详细介绍请参见“接口管理命令参考”中的“接口批量配置”。

(3)     关闭接口。

shutdown

本命令的缺省情况与设备的型号有关,请以设备的实际情况为准。

(4)     退回系统视图。

quit

(5)     进入IRF端口视图。

irf-port member-id

每个成员设备均只有一个IRF端口,端口的编号为设备的成员编号。

(6)     将IRF端口和IRF物理端口绑定。

port group interface interface-type interface-number [ type { control | data } ]

缺省情况下,IRF端口未绑定IRF物理端口。

多次执行该命令,可以将IRF端口与多个IRF物理端口绑定,以实现IRF链路的备份或负载分担,从而提高IRF链路的带宽和可靠性。

(7)     退回到系统视图。

quit

(8)     进入IRF物理端口视图或IRF物理端口批量配置视图。

¡     进入IRF物理端口视图

interface interface-type interface-number

¡     进入IRF物理端口批量配置视图。请选择其中一项进行配置。

interface range interface-list

interface range name name [ interface interface-list ]

关于interface rangeinterface range name命令的详细介绍请参见“接口管理命令参考”中的“接口批量配置”。

(9)     激活接口。

undo shutdown

(10)     退回系统视图。

quit

(11)     保存当前配置。

save

激活IRF端口会引起IRF合并,进而设备需要重启。为了避免重启后配置丢失,请在激活IRF端口前先将当前配置保存到下次启动配置文件。

1.7.5  开启IRF合并自动重启功能

1. 功能简介

IRF合并时,两台IRF会遵照角色选举的规则进行竞选,竞选失败方IRF的所有成员设备需要重启才能加入获胜方IRF。如果开启IRF合并自动重启功能,则合并过程中的重启由系统自动完成,否则需要用户根据系统提示手工完成重启。

2. 配置步骤

(1)     进入系统视图。

system-view

(2)     开启IRF合并自动重启功能。

irf auto-merge enable

缺省情况下,IRF合并自动重启功能处于开启状态,即两台IRF合并时,竞选失败方会自动重启。

1.7.6  配置成员设备的描述信息

1. 功能简介

当网络中存在多个IRF或者同一IRF中存在多台成员设备且物理位置比较分散(比如在不同楼层甚至不同建筑)时,为了确认成员设备的物理位置,在组建IRF时可以将物理位置设置为成员设备的描述信息,以便后期维护。

2. 配置步骤

(1)     进入系统视图。

system-view

(2)     配置IRF中指定成员设备的描述信息。

irf member member-id description text

缺省情况下,成员设备没有描述信息。

1.7.7  配置IRF的桥MAC

1. 功能简介

桥MAC是设备作为网桥与外界通信时使用的MAC地址。一些二层协议(例如LACP)会使用桥MAC标识不同设备,所以网络上的桥设备必须具有唯一的桥MAC。如果网络中存在桥MAC相同的设备,则会引起桥MAC冲突,从而导致通信故障。IRF作为一台虚拟设备与外界通信,也具有唯一的桥MAC,称为IRF桥MAC。

通常情况下,IRF使用主设备的桥MAC作为IRF桥MAC,我们将这台主设备称为IRF桥MAC拥有者。如果IRF桥MAC拥有者离开,IRF继续使用该桥MAC的时间可以通过irf mac-address persistent命令配置。当IRF的桥MAC保留时间到期后,系统会使用IRF中当前主设备的桥MAC做IRF的桥MAC。

IRF合并时,桥MAC的处理方式如下:

·     IRF合并时,如果有成员设备的桥MAC相同,则它们不能合并为一个IRF。IRF的桥MAC不受此限制,只要成员设备自身桥MAC唯一即可。

·     两台IRF合并后,IRF的桥MAC为竞选获胜的一方的桥MAC。

2. 配置限制和指导

注意

桥MAC变化可能导致流量短时间中断,请谨慎配置。

 

当使用ARP MAD和MSTP组网或者ND MAD和MSTP组网时,需要将IRF配置为桥MAC地址立即改变,即配置undo irf mac-address persistent命令。

如果在IRF中启用了TRILL协议,请使用irf mac-address persistent always命令将IRF桥MAC地址保留时间配置为永久保留,否则可能会导致流量中断。

当IRF设备上存在跨成员设备的聚合链路时,请不要使用undo irf mac-address persistent命令配置IRF的桥MAC立即变化,否则可能会导致流量中断。

3. 配置IRF的桥MAC地址的保留时间

(1)     进入系统视图。

system-view

(2)     配置IRF的桥MAC保留时间。

¡     配置IRF的桥MAC会永久保留。

irf mac-address persistent always

¡     配置IRF的桥MAC的保留时间n分钟。n的取值与设备型号有关,请以设备的实际情况为准。

irf mac-address persistent timer

本配置适用于IRF桥MAC拥有者短时间内离开又回到IRF的情况,例如设备重启或者链路临时故障,可以减少不必要的桥MAC切换导致的流量中断。

¡     配置IRF的桥MAC不保留,会立即变化。

undo irf mac-address persistent

irf mac-address persistent命令的缺省情况与设备的型号有关,请以设备的实际情况为准。

1.7.8  开启IRF系统启动文件的自动加载功能

1. 功能简介

如果新设备加入IRF,并且新设备的软件版本和主设备的软件版本不一致,则新加入的设备不能正常启动。此时:

·     如果没有开启启动文件的自动加载功能,则需要用户手工升级新设备后,再将新设备加入IRF。或者在主设备上开启启动文件的自动加载功能,断电重启新设备,让新设备重新加入IRF。

·     如果已经开启了启动文件的自动加载功能,则新设备加入IRF时,会与主设备的软件版本号进行比较,如果不一致,则自动从主设备下载启动文件,然后使用新的系统启动文件重启,重新加入IRF。如果新下载的启动文件与设备上原有启动文件重名,则原有启动文件会被覆盖。

2. 配置限制和指导

加载启动软件包需要一定时间,在加载期间,请不要手工重启处于加载状态的从设备,否则,会导致该从设备加载启动软件包失败而不能启动。用户可打开日志信息显示开关,并根据日志信息的内容来判断加载过程是否开始以及是否结束。

为了能够自动加载成功,请确保从设备存储介质上有足够的空闲空间用于存放新的启动文件。如果从设备存储介质上空闲空间不足,系统会自动删除从设备的当前启动文件来完成加载。如果删除从设备的当前启动文件后空间仍然不足,从设备将无法进行自动加载。此时,需要管理员重启从设备并进入从设备的BootWare菜单,删除一些不重要的文件后,再让从设备重新加入IRF。

3. 配置步骤

(1)     进入系统视图。

system-view

(2)     开启IRF系统启动文件的自动加载功能。

irf auto-update enable

缺省情况下,IRF系统启动文件的自动加载功能处于开启状态。

1.7.9  隔离成员设备

1. 功能简介

关闭设备的IRF功能后,可以在不断开IRF链路的情况下,将指定成员设备从IRF中隔离出来。该成员设备会在5s后自动从所在的IRF中独立出来。此时,该成员设备仍然运行在IRF模式下,运行原IRF的配置,只是不收发IRF控制报文。

2. 配置限制和指导

设备从原IRF隔离出来后,请检查被隔离设备的配置是否与原IRF的配置冲突,比如桥MAC地址、IP地址等配置冲突。如果冲突,请用户根据需要进行重新配置,以免导致网络故障。

3. 配置步骤

(1)     进入系统视图。

system-view

(2)     关闭指定设备的IRF功能。

undo irf member member-id stack enable

缺省情况下,设备的IRF功能处于开启状态。

1.7.10  将隔离的成员设备重新加入IRF

(1)     登录被隔离的成员设备。

(2)     进入系统视图。

system-view

(3)     开启被隔离设备的IRF功能。

irf member member-id stack enable

(4)     退回用户视图。

quit

(5)     保存当前配置。

save

(6)     重启被隔离设备。

reboot

设备重启后,会重新加入IRF。

1.8  IRF显示和维护

在完成上述配置后,在任意视图下执行display命令可以显示配置后IRF的运行情况,通过查看显示信息验证配置的效果。

表1-3 IRF显示和维护

操作

命令

显示IRF中所有成员设备的相关信息

display irf

显示IRF中所有成员设备的配置信息

display irf configuration

显示指定成员设备收到的IRF Hello报文的信息

display irf forwarding [ slot slot-number ]

显示IRF链路信息

display irf link

显示MAD配置信息

display mad [ verbose ]

 

1.9  IRF典型配置举例

1.9.1  组建IRF配置举例

1. 组网需求

数据中心中的VM通过Device A和Device B接入网络,为简化网络拓扑,减低管理Device A和Device B的成本,需要将Device A和Device B组成一个IRF,并采用ARP MAD检测机制来处理IRF分裂问题。

2. 组网图

图1-11 组建IRF配置组网图

3. 配置步骤

(1)     配置Switch

提示

如果中间设备是一个IRF系统,则必须通过配置确保其IRF检测域编号与被检测的IRF系统不同。

 

Switch作为中间设备来转发、处理免费ARP报文,协助Device A和Device B进行多Active检测。从节约成本的角度考虑,使用一台支持ARP功能的交换机即可。

# 创建VLAN 100,并将端口GigabitEthernet1/0/1和GigabitEthernet1/0/2加入VLAN 100中,用于转发ARP MAD报文和IRF到Switch的业务报文。

<Switch> system-view

[Switch] vlan 100

[Switch-vlan100] port gigabitethernet 1/0/1 gigabitethernet 1/0/2

[Switch-vlan100] quit

(2)     配置Device A

# 配置拓扑域编号为3,配置IRF端口1,并将它与物理端口GigabitEthernet1/0绑定,GigabitEthernet1/0对应链路可同时作为控制通道和数据通道。

<DeviceA> system-view

[DeviceA] irf topo-domain 3

The configuration will take effect at the next startup.

[DeviceA] interface gigabitethernet 1/0

[DeviceA-GigabitEthernet1/0] shutdown

[DeviceA-GigabitEthernet1/0] quit

[DeviceA] irf-port

[DeviceA-irf-port] port group interface gigabitethernet 1/0

[DeviceA-irf-port] quit

[DeviceA] interface gigabitethernet 1/0

[DeviceA-GigabitEthernet1/0] undo shutdown

[DeviceA-GigabitEthernet1/0] quit

# 配置设备的成员优先级为2。

[DeviceA] irf priority 2

# 将设备的运行模式切换到IRF模式,并在命令行执行过程中选择将当前配置保存到缺省文件。

[DeviceA] chassis convert mode irf

The device will switch to IRF mode and reboot.

You are recommended to save the current running configuration and specify the configuration file for the next startup. Continue? [Y/N]:y

Do you want to convert the content of the next startup configuration file flash:/startup.cfg to make it available in IRF mode? [Y/N]:y

Now rebooting, please wait...

(3)     配置Device B

# 将Device B的成员编号配置为2,并配置拓扑域编号为3。

<DeviceB> system-view

[DeviceB] irf member 2

[DeviceB] irf topo-domain 3

The configuration will take effect at the next startup.

# 配置IRF端口1,并将它与物理端口GigabitEthernet1/0绑定,GigabitEthernet1/0对应链路可同时作为控制通道和数据通道。

<DeviceB> system-view

[DeviceB] interface gigabitethernet 1/0

[DeviceB-GigabitEthernet1/0] shutdown

[DeviceB-GigabitEthernet1/0] quit

[DeviceB] irf-port

[DeviceB-irf-port] port group interface gigabitethernet 1/0

[DeviceB-irf-port] quit

[DeviceB] interface gigabitethernet 1/0

[DeviceB-GigabitEthernet1/0] undo shutdown

[DeviceB-GigabitEthernet1/0] quit

# 参照图1-11进行物理连线。

# 将设备的运行模式切换到IRF模式,并在命令行执行过程中选择将当前配置保存到缺省文件。

[DeviceB] chassis convert mode irf

The device will switch to IRF mode and reboot.

You are recommended to save the current running configuration and specify the configuration file for the next startup. Continue? [Y/N]:y

Do you want to convert the content of the next startup configuration file flash:/startup.cfg to make it available in IRF mode? [Y/N]:y

Now rebooting, please wait...

Device B重启后成员编号会变为2,并和Device A合并为一个IRF。Device A和Device B间将会进行主设备竞选,竞选失败的一方将重启,重启完成后,IRF形成。

(4)     配置IRF

# 将系统的名称设置为IRF以示区别。

<DeviceA> system-view

[DeviceA] system-name IRF

# 设置IRF检测域编号为3。

[IRF] irf domain 3

4. 验证配置

(1)     IRF建立好后可在IRF上使用命令display irf查看IRF信息。DeviceA的优先级高于DeviceB,所以DeviceA为主设备。

[IRF] display irf

Member ID    Role    Priority  CPU MAC         Description

   *1        Master  2         50da-0051-2608  ---

   +2        Standby 1         50da-0051-2670  ---

--------------------------------------------------

The asterisk (*) indicates the master.

The plus sign (+) indicates the device through which you are logged in.

The right angle bracket (>) indicates the device's stack capability is disabled.

Bridge MAC of the IRF: 50da-0051-2608

Auto upgrade         : Enabled

MAC persistence      : 6 min

Topo-domain ID       : 0

Auto merge           : Enabled

(2)     IRF建立好后可在IRF上使用命令display irf link查看IRF链路状态信息,IRF端口都为Up状态。

[IRF] display irf link

Member ID   Member Interfaces                   Status

1           GE1/1/0(ctrl&data)                  Up

2           GE2/1/0(ctrl&data)                  Up

1.9.2  成员设备的迁移配置举例

1. 组网需求

Device A、Device B和Device C组成IRF 1,因为网络规划变动,需要将Device C从IRF 1中迁移到IRF 2。

2. 组网图

图1-12 将成员设备从IRF中移出配置组网图

3. 配置步骤

(1)     配置IRF 1

# 登录IRF 1,显示IRF 1的信息。

<Sysname> display irf

Member ID    Role    Priority  CPU MAC         Description

 *+1         Master  2         000c-298f-04bb  ---

   2         Standby 1         000c-2925-4ae1  ---

   3         Standby 1         000c-2925-4ae2  ---

---------------------------------------------------

The asterisk (*) indicates the master.

The plus sign (+) indicates the device through which you are logged in.

The right angle bracket (>) indicates the device's stack capability is disabled.

 

 Bridge MAC of the IRF: 7425-8ae3-f48f

 Auto upgrade             : Enabled

 MAC persistence          : 6 min

 Topo-domain ID           : 0

 Auto merge               : Enabled

# 将Device C从IRF 1中移出。

<Sysname> system-view

[Sysname] undo irf member 3 stack enable

Member 3  will leave from the IRF and cannot form an IRF with any other devices. Continue? [Y/N]: Y

Operation succeeded. Please check the configuration on member 3 with the IRF for configuration collisions.

(2)     配置Device C

# 登录Device C,将Device C的拓扑域编号改为2(同IRF 2的拓扑域编号)。

<Sysname> system-view

[Sysname] irf topo-domain 2

The configuration will take effect at the next startup.

# 开启成员设备3的IRF功能,以便该设备能加入IRF 2。

<Sysname> system-view

[Sysname] irf member 3 stack enable

Please save the configuration, and then reboot the device for the configuration to take effect.

# 重启Device C,让Device C加入IRF 2。

[Sysname] quit

<Sysname> reboot

Start to check configuration with next startup configuration file, please wait..

.......DONE!

Current configuration may be lost after the reboot, save current configuration?

[Y/N]:y

Please input the file name(*.cfg)[flash:/startup.cfg]

(To leave the existing filename unchanged, press the enter key):

flash:/startup.cfg exists, overwrite? [Y/N]:y

Validating file. Please wait...

Saved the current configuration to mainboard device successfully.

This command will reboot the device. Continue? [Y/N]:y

Device C重启后,会自动加入IRF 2。

4. 验证配置

登录IRF 2,执行display irf命令,可以看到成员设备中有Device C。

不同款型规格的资料略有差异, 详细信息请向具体销售和400咨询。H3C保留在没有任何通知或提示的情况下对资料内容进行修改的权利!

新华三官网
联系我们