05-以太网链路聚合配置
本章节下载 (218.62 KB)
目 录
以太网链路聚合简称链路聚合,它通过将多条以太网物理链路捆绑在一起成为一条逻辑链路,从而实现增加链路带宽的目的。同时,这些捆绑在一起的链路通过相互间的动态备份,可以有效地提高链路的可靠性。
如图1-1所示,Device A与Device B之间通过三条以太网物理链路相连,将这三条链路捆绑在一起,就成为了一条逻辑链路Link aggregation 1,这条逻辑链路的带宽等于原先三条以太网物理链路的带宽总和,从而达到了增加链路带宽的目的;同时,这三条以太网物理链路相互备份,有效地提高了链路的可靠性。
将多个以太网接口捆绑在一起所形成的组合称为聚合组,而这些被捆绑在一起的以太网接口就称为该聚合组的成员端口。每个聚合组唯一对应着一个逻辑接口,我们称之为聚合接口。聚合组/聚合接口分为以下两种类型:
l 二层聚合组/二层聚合接口:二层聚合组的成员端口全部为二层以太网接口,其对应的聚合接口称为二层聚合接口(Bridge-aggregation Interface,BAGG)。
l 三层聚合组/三层聚合接口:三层聚合组的成员端口全部为三层以太网接口,其对应的聚合接口称为三层聚合接口(Route-aggregation Interface,RAGG)。
l 当前设备仅支持二层聚合组/二层聚合接口。
l 聚合组的编号与聚合接口的编号是一一对应的,譬如聚合组1对应于聚合接口1。
l 聚合接口的速率和双工模式取决于对应聚合组内的选中端口(请参见“1.1.1 2. 成员端口的状态”):聚合接口的速率等于所有选中端口的速率之和,聚合接口的双工模式则与选中端口的双工模式相同。
聚合组内的成员端口具有以下两种状态:
l 选中(Selected)状态:此状态下的成员端口可以参与用户数据的转发,处于此状态的成员端口简称为“选中端口”。
l 非选中(Unselected)状态:此状态下的成员端口不能参与用户数据的转发,处于此状态的成员端口简称为“非选中端口”。
操作Key是系统在进行链路聚合时用来表征成员端口聚合能力的一个数值,它是根据成员端口上的一些信息(包括该端口的速率、双工模式等)的组合自动计算生成的,该数值就称为操作Key。这个信息组合中任何一项的变化都会引起操作Key的重新计算。在同一聚合组中,所有的选中端口都必须具有相同的操作Key。
根据对成员端口状态的影响不同,我们可以将成员端口上的配置分为以下三类:
(1) 端口属性类配置:包含速率、双工模式和链路状态(up/down)这三项配置内容,是成员端口上最基础的配置内容。
(2) 第二类配置:包含的配置内容如表1-1所示。在聚合组中,只有与对应聚合接口的第二类配置完全相同的成员端口才能够成为选中端口。
表1-1 第二类配置的内容
配置项 |
内容 |
端口隔离 |
端口是否加入隔离组、端口所属的端口隔离组 |
VLAN配置 |
端口上允许通过的VLAN、端口缺省VLAN ID、端口的链路类型(即Trunk、Hybrid、Access类型)、VLAN报文是否带Tag配置 |
MAC地址学习配置 |
是否具有MAC地址学习功能、端口是否具有最大学习MAC地址个数的限制、MAC地址表满后是否继续转发 |
l 在聚合接口上所作的第二类配置,将被自动同步到对应聚合组内的所有成员端口上。当聚合接口被删除后,这些配置仍将保留在原先的这些成员端口上。
l 由于成员端口上第二类配置的改变可能导致其选中/非选中状态发生变化,进而对业务产生影响,因此当在成员端口上进行此类配置时,系统将给出提示信息,由用户来决定是否继续执行该配置。
(3) 第一类配置:是相对于第二类配置而言的,包含的配置内容有MSTP等。在聚合组中,即使某成员端口与对应聚合接口的第一类配置存在不同,也不会影响该成员端口成为选中端口。
参考端口从成员端口中选出,其端口属性类配置和第二类配置将作为同一聚合组内的其它成员端口的参照,以确定这些成员端口的状态。
聚合组的工作机制如下:
当聚合组内有处于up状态的端口时,系统按照端口全双工/高速率->全双工/低速率->半双工/高速率->半双工/低速率的优先次序,选择优先次序最高、且第二类配置与对应聚合接口相同的端口作为该组的参考端口;如果优先次序相同,则选择端口号最小的端口作为参考端口。
聚合组内成员端口状态的确定流程如图1-2所示。
l 当一个成员端口的端口属性类配置或第二类配置改变时,其所在聚合组内各成员端口的选中/非选中状态可能会发生改变。
l 当聚合组内选中端口的数量已达到上限时,后加入的成员端口即使满足成为选中端口的其它条件,也会成为非选中端口。这样能够尽量维持当前选中端口上的流量不中断,但是由于设备重启时会重新计算选中端口,因此可能导致设备重启前、后各成员端口的选中/非选中状态不一致。
配置任务 |
说明 |
详细配置 |
|
配置聚合组 |
必选 |
||
聚合接口相关配置 |
配置聚合接口描述信息 |
可选 |
|
开启聚合接口链路状态变化Trap功能 |
可选 |
||
关闭聚合接口 |
可选 |
使能了802.1X的端口不能加入二层聚合组。
用户删除聚合接口时,系统将自动删除对应的聚合组,且该聚合组内的所有成员端口将全部离开该聚合组。
用户需要保证在同一链路两端端口的选中/非选中状态的一致性,否则聚合功能无法正常使用。
操作 |
命令 |
说明 |
进入系统视图 |
system-view |
- |
创建二层聚合接口,并进入二层聚合接口视图 |
interface bridge-aggregation interface-number |
必选 创建二层聚合接口后,系统将自动生成同编号的二层聚合组 |
退回系统视图 |
quit |
- |
进入二层以太网接口视图 |
interface interface-type interface-number |
必选 多次执行此步骤可将多个二层以太网接口加入聚合组 |
将二层以太网接口加入聚合组 |
port link-aggregation group number |
本节对能够在聚合接口上进行的部分配置进行介绍。除本节所介绍的以外,能够在以太网端口上进行的配置大多数也能在聚合接口上进行,具体配置请参见相关的配置手册。
通过在接口上配置描述信息,可以方便网络管理员根据这些信息来区分各接口的作用。
表1-4 配置聚合接口描述信息
操作 |
命令 |
说明 |
进入系统视图 |
system-view |
- |
进入聚合接口视图 |
interface bridge-aggregation interface-number |
- |
配置聚合接口的描述信息 |
description text |
可选 缺省情况下,描述信息为“该接口的接口名 Interface” |
在聚合接口上开启了接口链路状态变化Trap功能后,可以使聚合接口在链路状态发生改变时生成并发送端口Link up和Link down的Trap报文。有关Trap的详细介绍,请参见“SNMP-RMON操作”章节的介绍。
表1-5 开启聚合接口状态变化Trap功能
操作 |
命令 |
说明 |
进入系统视图 |
system-view |
- |
开启全局接口链路状态变化Trap功能 |
snmp-agent trap enable [ standard [ linkdown | linkup ] * ] |
可选 缺省情况下,全局接口链路状态变化Trap功能处于开启状态 |
进入聚合接口视图 |
interface bridge-aggregation interface-number |
- |
开启接口链路状态变化Trap功能 |
enable snmp trap updown |
可选 缺省情况下,接口链路状态变化Trap功能处于开启状态 |
对聚合接口的开启/关闭操作,将会影响聚合接口对应的聚合组内成员端口的选中/非选中状态和链路状态:
l 关闭聚合接口时,将使对应聚合组内所有处于选中状态的成员端口都变为非选中端口,且所有成员端口的链路状态都将变为down。
l 开启聚合接口时,系统将重新计算对应聚合组内成员端口的选中/非选中状态,且所有成员端口的链路状态都将变为up。
表1-6 关闭聚合接口
操作 |
命令 |
说明 |
进入系统视图 |
system-view |
- |
进入聚合接口视图 |
interface bridge-aggregation interface-number |
- |
关闭聚合接口 |
shutdown |
必选 缺省情况下,聚合接口处于开启状态 |
在完成上述配置后,在任意视图下执行display命令可以显示配置后以太网链路聚合的运行情况,通过查看显示信息验证配置的效果。
在用户视图下执行reset命令可以清除聚合接口上的统计信息。
表1-7 以太网链路聚合显示与维护
操作 |
命令 |
显示成员端口上链路聚合的详细信息 |
display link-aggregation member-port [ interface-list ] |
显示所有聚合组的摘要信息 |
display link-aggregation summary |
显示指定聚合组的详细信息 |
display link-aggregation verbose [ bridge-aggregation [ interface-number ] ] |
清除聚合接口上的统计信息 |
reset counters interface [ bridge-aggregation [ interface-number ] ] |
在聚合组中,只有端口属性类配置(请参见“1.1.1 4. 配置分类”)和第二类配置(请参见“1.1.1 4. 配置分类”)都与参考端口(请参见“1.1.1 5. 参考端口”)相同的成员端口才可以成为选中端口。因此,用户需通过配置使各成员端口的上述配置与参考端口保持一致,而除此以外的其它配置则只需在聚合接口上进行,不必再在成员端口上重复配置。
l Device A与Device B通过各自的以太网端口GigabitEthernet1/0/1~GigabitEthernet1/0/3相互连接。
l 在Device A和Device B上分别配置链路聚合组,并使两端的VLAN 10和VLAN 20之间分别互通。
(1) 配置Device A
# 创建VLAN 10,并将端口GigabitEthernet1/0/4加入到该VLAN中。
<DeviceA> system-view
[DeviceA] vlan 10
[DeviceA-vlan10] port gigabitEthernet 1/0/4
[DeviceA-vlan10] quit
# 创建VLAN 20,并将端口GigabitEthernet1/0/5加入到该VLAN中。
[DeviceA] vlan 20
[DeviceA-vlan20] port gigabitEthernet 1/0/5
[DeviceA-vlan20] quit
# 创建二层聚合接口1。
[DeviceA] interface bridge-aggregation 1
[DeviceA-Bridge-Aggregation1] quit
# 分别将端口GigabitEthernet1/0/1至 GigabitEthernet1/0/3加入到聚合组1中。
[DeviceA] interface gigabitethernet 1/0/1
[DeviceA-gigabitethernet1/0/1] port link-aggregation group 1
[DeviceA-gigabitethernet1/0/1] quit
[DeviceA] interface gigabitethernet 1/0/2
[DeviceA-gigabitethernet1/0/2] port link-aggregation group 1
[DeviceA-gigabitethernet1/0/2] quit
[DeviceA] interface gigabitethernet 1/0/3
[DeviceA-gigabitethernet1/0/3] port link-aggregation group 1
[DeviceA-gigabitethernet1/0/3] quit
# 配置二层聚合接口1为Trunk端口,并允许VLAN 10和20的报文通过。
该配置将被自动同步到聚合组1内的所有成员端口上。
[DeviceA] interface bridge-aggregation 1
[DeviceA-Bridge-Aggregation1] port link-type trunk
[DeviceA-Bridge-Aggregation1] port trunk permit vlan 10 20
Please wait... Done.
Configuring GigabitEthernet1/0/1... Done.
Configuring GigabitEthernet1/0/2... Done.
Configuring GigabitEthernet1/0/3... Done.
[DeviceA-Bridge-Aggregation1] quit
(2) 配置Device B
Device B的配置与Device A相似,配置过程略。
(3) 检验配置效果
# 查看Device A上所有聚合组的摘要信息。
[DeviceA] display link-aggregation summary
Aggregation Interface Type:
BAGG -- Bridge-Aggregation, RAGG -- Route-Aggregation
Loadsharing Type: Shar -- Loadsharing, NonS -- Non-Loadsharing
AGG Select Unselect Share
Interface Ports Ports Type
-------------------------------------------------------------------------------
BAGG1 3 0 Shar
不同款型规格的资料略有差异, 详细信息请向具体销售和400咨询。H3C保留在没有任何通知或提示的情况下对资料内容进行修改的权利!