20-Segment Routing Command Reference

HomeSupportNFVH3C VSRReference GuidesCommand ReferencesH3C VSR Series Virtual Services Routers Command References(V7)-R1340-6W10020-Segment Routing Command Reference
03-SRv6 TE policy commands
Title Size Download
03-SRv6 TE policy commands 286.45 KB

SRv6 TE policy commands

address-family ipv6 sr-policy

Use address-family ipv6 sr-policy to create the BGP IPv6 SR policy address family and enter its view, or enter the view of the existing BGP IPv6 SR policy address family.

Use undo address-family ipv6 sr-policy to delete the BGP IPv6 SR policy address family and all the configuration in the BGP IPv6 SR policy address family.

Syntax

address-family ipv6 sr-policy

undo address-family ipv6 sr-policy

Default

The BGP IPv6 SR policy address family does not exist.

Views

BGP instance view

Predefined user roles

network-admin

Usage guidelines

The configuration in BGP IPv6 SR policy address family view applies only to routes and peers in the BGP IPv6 SR policy address family.

Examples

# In BGP instance view, create the BGP IPv6 SR policy address family and enter its view.

<Sysname> system-view

[Sysname] bgp 100

[Sysname-bgp-default] address-family ipv6 sr-policy

[Sysname-bgp-default-srpolicy-ipv6]

advertise ebgp enable

Use advertise ebgp enable to enable advertising BGP IPv6 SR policy routes to EBGP peers.

Use undo advertise ebgp enable to restore the default.

Syntax

advertise ebgp enable

undo advertise ebgp enable

Default

BGP IPv6 SR policy routes are not advertised to EBGP peers.

Views

BGP IPv6 SR policy address family

Predefined user roles

network-admin

Usage guidelines

By default, BGP IPv6 SR policy routes are advertised among IBGP peers. To advertise BGP IPv6 SR policy routes to EBGP peers, you must execute this command to enable the advertisement capability.

Examples

# Enable advertising SRv6 TE policy routes to EBGP peers.

<Sysname> system-view

[Sysname] bgp 100

[Sysname-bgp-default] address ipv6 sr-policy

[Sysname-bgp-default-srpolicy-ipv6] advertise ebgp enable

backup hot-standby

Use backup hot-standby to configure hot standby for an SRv6 TE policy.

Use undo backup hot-standby to restore the default.

Syntax

backup hot-standby { disable | enable }

undo backup hot-standby

Default

Hot standby is not configured for an SRv6 TE policy.

Views

SRv6 TE policy view

Predefined user roles

network-admin

Parameters

disable: Disables hot standby for the SRv6 TE policy.

enable: Enables hot standby for the SRv6 TE policy.

Usage guidelines

The hot standby feature takes the candidate path with the greatest preference value in the SRv6 TE policy as the primary path and that with the second greatest preference value as the standby path. When the forwarding paths corresponding to all SID lists of the primary path fails, the standby path immediately takes over to minimize service interruption.

You can enable hot standby for all SRv6 TE policies globally in SRv6 TE view or for a specific SRv6 TE policy in SRv6 TE policy view. The policy-specific configuration takes precedence over the global configuration. An SRv6 TE policy uses the global configuration only when it has no policy-specific configuration.

Examples

# Enable hot standby for SRv6 TE policy 1.

<Sysname> system-view

[Sysname] segment-routing ipv6

[Sysname-segment-routing-ipv6] traffic-engineering

[Sysname-srv6-te] policy 1

[Sysname-srv6-te-policy-1] backup hot-standby enable

Related commands

srv6-policy backup hot-standby enable

bestroute encap-type

Use bestroute encap-type to specify the packet encapsulation type preferred in optimal route selection.

Use undo bestroute encap-type to restore the default.

Syntax

bestroute encap-type { mpls | srv6 }

undo bestroute encap-type

Default

The device does not select optimal routes according to the packet encapsulation type.

Views

BGP-VPN instance view.

Predefined user roles

network-admin

Parameters

mpls: Prefers to use MPLS-encapsulated routes during optimal route selection.

srv6: Prefers to use SRv6-encapsulated routes during optimal route selection.

Usage guidelines

After this command is executed, BGP selects the optimal route in the VPN instance by using the following procedure:

1.     Selects the route according to the NEXT_HOP, Preferred-value, and LOCAL_PREF attributes in turn.

2.     Selects the route according to the encapsulation type specified by the bestroute encap-type command.

3.     Proceeds the subsequent steps in the original BGP route select procedure.

For more information about BGP route selection, see BGP overview in Layer 3—IP Routing Configuration Guide.

If you execute this command multiple times, the most recent configuration takes effect.

Examples

# Configure BGP to prefer SRv6-encapsulated routes during optimal route selection.

<Sysname> system-view

[Sysname] bgp 100

[Sysname-bgp-default] ip vpn-instance vpn1

[Sysname-bgp-default-vpn1] bestroute encap-type srv6

bfd echo

Use bfd echo to configure the echo packet mode BFD for an SRv6 TE policy.

Use undo bfd echo to restore the default.

Syntax

bfd echo { disable | enable [ source-ipv6 ipv6-address ] [ template template-name ] [ backup-template backup-template-name ] [ oam-sid sid ] }

undo bfd echo

Default

The echo packet mode BFD is not configured for an SRv6 TE policy. An SRv6 TE policy uses the echo BFD settings configured in SRv6 TE view.

Views

SRv6 TE policy view

Predefined user roles

network-admin

Parameters

disable: Disables the echo packet mode BFD for the SRv6 TE policy.

enable: Enables the echo packet mode BFD for the SRv6 TE policy.

source-ipv6 ipv6-address: Specifies the source IPv6 address of the BFD session. If you do not specify this option, the configuration in SRv6 TE view applies.

template template-name: Specifies a BFD session parameter template by its name, a case-sensitive string of 1 to 63 characters. If you do not specify this option, the template specified in SRv6 TE view applies.

backup-template backup-template-name e: Specifies a BFD session parameter template for the backup SID list. The backup-template-name argument indicates the template name, a case-sensitive string of 1 to 63 characters. If you do not specify this option, the backup template specified in SRv6 TE view applies.

oam-sid sid: Adds an OAM SID to BFD packets to identify the destination node. The sid argument represents the SRv6 SID of the destination node. If you do not specify this option, no OAM SID will be added to BFD packets. At present, the OAM SID must be set to the End.OP SID of the destination node.

Usage guidelines

You can configure the echo packet mode BFD for all SRv6 TE policies globally in SRv6 TE view or for a specific SRv6 TE policy in SRv6 TE policy view. The policy-specific configuration takes precedence over the global configuration. An SRv6 TE policy uses the global configuration only when it has no policy-specific configuration.

The device supports the echo packet mode BFD and the SBFD for an SRv6 TE policy. If both modes are configured for the same SRv6 TE policy, the SBFD takes effect.

Examples

# Enable the echo packet mode BFD for SRv6 TE policy 1, and specify the source IPv6 address of the BFD session as 11::11.

<Sysname> system-view

[Sysname] segment-routing ipv6

[Sysname-segment-routing-ipv6] traffic-engineering

[Sysname-srv6-te] policy 1

[Sysname-srv6-te-policy-1] bfd echo enable source-ipv6 11::11

Related commands

display segment-routing ipv6 te bfd

srv6-policy bfd echo

binding-sid

Use binding-sid to configure a BSID for an SRv6 TE policy.

Use undo binding-sid to delete the BSID.

Syntax

binding-sid ipv6 ipv6-address

undo binding-sid

Default

No BSID is configured for an SRv6 TE policy.

Views

SRv6 TE policy view

Predefined user roles

network-admin

Parameters

ipv6 ipv6-address: Specifies the BSID value, which is an IPv6 address.

Usage guidelines

You can use this command to manually configure a BSID for an SRv6 TE policy or leave the SRv6 TE policy to obtain a BSID automatically. If an SRv6 TE policy has only color and endpoint configuration, the SRv6 TE policy will automatically request a BSID.

The manually configured BSID has a higher priority over the automatically obtained BSID.

The BSID configured by this command must be on the locator specified for SRv6 TE policies in SRv6 TE view. Otherwise, the SRv6 TE policy cannot forward packets.

If you execute this command multiple times, the most recent configuration takes effect.

Examples

# Set the BSID of SRv6 TE policy srv6policy to 1000::1.

<Sysname> system-view

[Sysname] segment-routing ipv6

[Sysname-segment-routing-ipv6] traffic engineering

[Sysname-srv6-te] policy srv6policy

[Sysname-srv6-te-policy-srv6policy] binding-sid ipv6 1000::1

candidate-paths

Use candidate-paths to create and enter the candidate path view for an SRv6 TE policy, or enter the existing SRv6 TE policy candidate path view.

Use undo candidate-paths to delete the SRv6 TE policy candidate path view and all the configurations in the view.

Syntax

candidate-paths

undo candidate-paths

Default

The candidate path view for an SRv6 TE policy does not exist.

Views

SRv6 TE policy view

Predefined user roles

network-admin

Examples

# Create the SRv6 TE policy candidate paths instance and enter its view.

<Sysname> system-view

[Sysname] segment-routing ipv6

[Sysname-segment-routing-ipv6] traffic-engineering

[Sysname-srv6-te] policy srv6policy

[Sysname-srv6-te-policy-srv6policy] candidate-paths

[Sysname-srv6-te-policy-srv6policy-path]

color end-point

Use color end-point to configure the color and endpoint attributes of an SRv6 TE policy.

Use undo color to delete the color and endpoint settings of an SRv6 TE policy.

Syntax

color color-value end-point ipv6 ipv6-address

undo color

Default

The color and endpoint attributes of an SRv6 TE policy are not configured.

Views

SRv6 TE policy view

Predefined user roles

network-admin

Parameters

color-value: Specifies the color attribute value, in the range of 0 to 4294967295.

Ipv6-address: Specifies the endpoint IPv6 address.

Usage guidelines

If you execute this command multiple times, the most recent configuration takes effect.

Different SRv6 TE policies cannot have the same color or endpoint IP address.

Examples

# Configure the color as 20 and endpoint IPv6 address as 1000::1 for SRv6 TE policy srv6policy.

<Sysname> system-view

[Sysname] segment-routing ipv6

[Sysname-segment-routing-ipv6] traffic-engineering

[Sysname-srv6-te] policy srv6policy

[Sysname-srv6-te-policy-srv6policy] color 20 end-point ipv6 1000::1

color match dscp

Use color match dscp to create color-to-DSCP mappings for an SRv6 TE policy group.

Use undo color match dscp to delete color-to-DSCP mappings for the SRv6 TE policy group.

Syntax

color color-value match dscp { ipv4 | ipv6 } dscp-value-list

undo color color-value match dscp { ipv4 | ipv6 } dscp-value-list

color color-value match dscp { ipv4 | ipv6 } default

undo color color-value match dscp { ipv4 | ipv6 } [ default ]

Default

No color-to-DSCP mappings are created for an SRv6 TE policy group.

Views

SRv6 TE policy group view

Predefined user roles

network-admin

Parameters

color-value: Specifies the color attribute value of an SRv6 TE policy, in the range of 0 to 4294967295.

ipv4: Specifies DSCP values of IPv4 packets.

ipv6: Specifies DSCP values of IPv6 packets.

dscp-value-list: Specifies a space-separated list of up to 32 DSCP value items. Each item specifies a DSCP value in the range of 0 to 63 or a range of DSCP values in the form of dscp-value1 to dscp-value2. The value for the dscp-value2 argument must be greater than or equal to the value for the dscp-value1 argument.

default: Configures a default color-to-DSCP mapping. Packets that do not match any mappings are steered to the default SRv6 TE policy (the policy specified in the default mapping).

Usage guidelines

You can map the color values of only valid SRv6 TE policies to DSCP values.

You can configure color-to-DSCP mappings separately for the IPv4 address family and IPv6 address family. For a specific address family, a DSCP value can be mapped to only one color value.

Use the color match dscp default command to specify the default SRv6 TE policy for an address family. If no SRv6 TE policy in an SRv6 TE policy group matches a specific DSCP value, the default SRv6 TE policy is used to forward packets containing the DSCP value. Only one default SRv6 TE policy can be specified for an address family.

When the device receives an IPv4 or IPv6 packet that does not match any color-to-DSCP mapping, the device selects a valid SRv6 TE policy for the packet in the following order:

1.     The default SRv6 TE policy specified for the same address family as the packet.

2.     The default SRv6 TE policy specified for the other address family.

3.     The SRv6 TE policy mapped to the smallest DSCP value in the same address family as the packet.

4.     The SRv6 TE policy mapped to the smallest DSCP value in the other address family.

Examples

# In SRv6 TE policy group 10, map DSCP value 30 to color value 20 for IPv4 packets, so that IPv4 packets with a matching DSCP value are steered to the associated SRv6 TE policy.

<Sysname> system-view

[Sysname] segment-routing ipv6

[Sysname-segment-routing-ipv6] traffic-engineering

[Sysname-srv6-te] policy-group 10

[Sysname-srv6-te-policy-group-10] color 20 match dscp ipv4 30

display bgp routing-table ipv6 sr-policy

Use display bgp routing-table ipv6 sr-policy to display route information of a BGP SRv6 TE policy.

Syntax

display bgp [ instance instance-name ] routing-table ipv6 sr-policy [ sr-policy-prefix [ advertise-info ] | { color color-value | end-point ipv6 ipv6-address } * | peer ipv6-address { advertised-routes | received-routes } [ statistics ] | statistics ]

Views

Any view

Predefined user roles

network-admin

network-operator

Parameters

instance instance-name: Specifies a BGP instance by its name, a case-sensitive string of 1 to 31 characters. If you do not specify a BGP instance, this command displays information about the default instance.

sr-policy-prefix: Specifies a BGP IPv6 SR policy route prefix, which is a case-insensitive string of 1 to 512 characters in the format of BGP IPv6 SR policy route/prefix length.

color color-value: Specifies the color attribute value of a BGP IPv6 SR policy route, in the range of 1 to 4294967295.

end-point ipv6 ipv6-address: Specifies the end-point IPv6 address of a BGP IPv6 SR policy route.

advertise-info: Displays advertisement information about BGP IPv6 SR policy routes.

peer ipv6-address: Specifies a peer by its IPv6 address.

advertised-routes: Displays detailed information about the BGP IPv6 SR policy routes advertised to the specified peer.

received-routes: Displays detailed information about the BGP IPv6 SR policy routes received from the specified peer.

statistics: Displays route statistics.

Usage guidelines

If you do not specify any parameters, this command displays brief information about all BGP IPv6 SR policy routes.

Examples

# Display brief information about all BGP IPv6 SR policy routes.

<Sysname> display bgp routing-table ipv6 sr-policy

 

 Total number of routes: 1

 

 BGP local router ID is 2.2.2.2

 Status codes: * - valid, > - best, d - dampened, h - history

               s - suppressed, S - stale, i - internal, e - external

               a – additional-path

       Origin: i - IGP, e - EGP, ? - incomplete

 

>i Network : [46][46][8::8]/192

   NextHop : 1::2                                  LocPrf    : 100

   PrefVal : 0                                     MED       : 0

   Path/Ogn: i

Table 1 Command output

Field

Description

Status codes

Status codes of the route.

Origin

Origin of the route:

·     i – IGP—Originated in the AS.

·     e – EGP—Learned through an EGP.

·     ? – incomplete—Unknown origin.

Network

BGP IPv6 SR policy route, comprised of the following elements:

·     SRv6 TE policy candidate path preference.

·     SRv6 TE policy color attribute value.

·     Endpoint IPv6 address.

NextHop

Next hop IP address.

LocPrf

Local preference value.

PrefVal

Preferred value of the route.

MED

Multi-Exit Discriminator attribute value.

Path/Ogn

AS_PATH and ORIGIN attributes of the route:

·     AS_PATH—Records the ASs the route has passed.

·     ORIGIN—Identifies the origin of the route.

# Display detailed information about BGP IPv6 SR policy route [46][46][8::8]/192.

<Sysname> display bgp routing-table ipv6 sr-policy [46][46][8::8]/192

 

BGP local router ID: 5.5.5.1

Local AS number: 100

 

Paths: 1 available, 1 best

 

 BGP routing table information of [46][46][8::8]/192

 Imported route.

 Original nexthop: ::

 Output interface: NULL0 

 Route age       : 19h45m02s

 OutLabel        : NULL

 RxPathID        : 0x0

 TxPathID        : 0x0

 AS-path         : (null)

 Origin          : igp

 Attribute value : MED 0, localpref 100, pref-val 32768

 State           : valid, local, best

 IP precedence   : N/A

 QoS local ID    : N/A

 Traffic index   : N/A

 Tunnel encapsulation info:

    Type: 15 (SR policy)

     Policy name: p1

     Binding SID: 2::6

     Preference: 100

     Path: 1

      Weight: 1

      SIDs: {2::2}

Table 2 Command output

Field

Description

Paths

Route information:

·     available—Number of valid routes.

·     best—Number of optimal routes.

BGP routing table information of [46][46][8::8]/192

Information of the BGP IPv6 SR policy route [46][46][8::8]/192, where:

·     [46] is the SRv6 TE policy candidate path preference

·     [46] is the SRv6 TE policy color attribute value.

·     [8::8] is the endpoint IPv6 address.

From

IP address of the BGP peer that advertised the route.

Rely Nexthop

Recursive nexthop IP address. If no next hop is found by route recursion, this field displays not resolved.

Original nexthop

Original nexthop IP address. If the route was obtained from a BGP update message, the original next hop is the nexthop IP address in the message.

Route age

Time elapsed since the last update for the route.

OutLabel

Outgoing label of the route.

RxPathID

Received Add-Path ID of the route.

TxPathID

Advertised Add-Path ID of the route.

AS-path

AS_PATH attribute of the route.

Origin

Origin of the route:

·     igp—Originated in the AS.

·     egp—Learned through an EGP.

·     incomplete—Unknown origin.

Attribute value

BGP path attributes:

·     MED—MED value.

·     localprefLocal preference value.

·     pref-val—Preferred value.

·     pre—Protocol preference.

State

Current state of the route. Options include:

·     valid—Valid route.

·     internal—Internal route.

·     external—External route.

·     local—Locally generated route.

·     synchronize—Synchronized route.

·     best—Optimal route.

·     delay—Delayed route. The route will be delayed for optimal route selection. This value is available only in detailed information of the route.

·     not preferred for reason—Reason why the route is not selected as the optimal route. For more information, see Table 3.

IP precedence

IP precedence of the route, in the range of 0 to 7. N/A indicates that the route does not support this field.

QoS local ID

QoS local ID of the route, in the range of 1 to 4095. N/A indicates that the route does not support this field.

Traffic index

Traffic index in the range of 1 to 64. N/A indicates that the route does not support this field.

Type: 15 (SR Policy)

The tunnel encryption type is 15, which represents SR policy.

Preference

Candidate path preference.

Binding SID

BSID value of the SRv6 TE policy.

Path

Candidate path.

Weight

Weight of the SID list.

SIDs

List of SIDs. A G-SID is displayed in the format of {sid-value, coc32, prefix-length}, where sid-value is the SID value and prefix-length is the common prefix length.

Table 3 Reason why the route is not selected as the optimal route

Reason

Description

preferred-value

Routes with larger preferred values exist.

local-preference

Routes with larger local preference values exist.

as-path

Routes with smaller AS_PATH attribute values exist.

origin

There are routes whose origin has a higher priority. The route origins are IGP, EGP, and INCOMPLETE in descending order of priority.

med

Routes with smaller MED values exist.

remote-route

There are routes whose remote-route attribute has a higher priority.

BGP selects the optimal route from remote routes in this order:

·     Route learned from an EBGP peer.

·     Route learned from a confederation EBGP peer.

·     Route learned from a confederation IBGP peer.

·     Route learned from an IBGP peer.

igp-cost

Routes with smaller IGP metrics exist.

relydepth

Routes with smaller recursion depth values exist.

rfc5004

A route received from an EBGP peer is the current optimal route. BGP does not change the optimal route when it receives routes from other EBGP peers.

router-id

Routes with smaller router IDs exist.

If one of the routes is advertised by a route reflector, BGP compares the ORIGINATOR_ID of the route with the router IDs of other routes. Then, BGP selects the route with the smallest ID as the optimal route.

cluster-list

Routes with smaller CLUSTER_LIST attribute values exist.

peer-address

Routes advertised by peers with lower IP addresses exist.

received

Earlier learned routes exist.

# Displays advertisement information about the BGP IPv6 SR policy route [46][46][8::8]/192.

<Sysname> display bgp routing-table ipv6 sr-policy [46][46][8::8]/192 advertise-info

 

 

 BGP local router ID: 2.2.2.2

 Local AS number: 1

 

 Paths:   1 best

 

 BGP routing table information of [46][46][8::8]/192(TxPathID:0):

 Advertised to peers (2 in total):

    1::1

    3::3

Table 4 Command output

Field

Description

Paths

Number of optimal paths to reach the destination network.

BGP routing table information of [46][46][8::8]/192(TxPathID:0)

Advertisement information about the BGP IPv6 SR policy route [46][46][8::8]/192. TxPathID represents the advertised Add-Path ID of the route.

Advertised to peers (2 in total)

Indicates the peers to which the route has been advertised. The number in the parentheses indicates the total number of the peers.

# Display statistics about the BGP IPv6 SR policy routes advertised to peer 2::2.

<Sysname> display bgp routing-table ipv6 sr-policy peer 2::2 advertised-routes statistics

 

 Advertised routes total: 2

# Display statistics about the BGP IPv6 SR policy routes received from peer 2::2.

<Sysname> display bgp routing-table ipv6 sr-policy peer 2::2 received-routes statistics

 

 Received routes total: 1

Table 5 Command output

Field

Description

Advertised routes total

Total number of routes advertised to the specified peer.

Received routes total

Total number of routes received from the specified peer.

# Display statistics about BGP IPv6 SR policy routes.

<Sysname> display bgp routing-table ipv6 sr-policy statistics

 

 Total number of routes: 3

display segment-routing ipv6 te bfd

Use display segment-routing ipv6 te bfd to display BFD information for SRv6 TE policies.

Syntax

display segment-routing ipv6 te bfd [ down | policy { { color color-value | end-point ipv6 ipv6-address } * | name policy-name } | up ]

Views

Any view

Predefined user roles

network-admin

network-operator

Parameters

down: Displays BFD information for SRv6 TE policies in down state.

policy: Displays BFD information for the specified SRv6 TE policy.

color color-value: Specifies the color attribute value of an SRv6 TE policy, in the range of 0 to 4294967295.

end-point ipv6 ipv6-address: Specifies the IPv6 address of the endpoint of an SRv6 TE policy.

name policy-name: Specifies the name of an SRv6 TE policy, a case-sensitive string of 1 to 59 characters.

up: Displays BFD information for SRv6 TE policies in up state.

Usage guidelines

If you do not specify any parameters, this command displays BFD information for all SRv6 TE policies.

Examples

# Display BFD information for all SRv6 TE policies.

<Sysname> display segment-routing ipv6 te policy bfd

 Color: 10

 Endpoint: 4::4

 Policy name: p1

 State: Up

   Nid: 2149580801

   BFD type: ECHO

   Source IPv6: 1::1

   State: Up

   Timer: 37

   VPN index: 1

   Template name: abc

Table 6 Command output

Field

Description

Color

Color attribute value of an SRv6 TE policy.

Endpoint

Endpoint IP address of the SRv6 TE policy.

Policy name

Name of the SRv6 TE policy.

State

SBFD session state:

·     Up

·     Down

·     Delete

Nid

Forwarding entry index for an SID list.

BFD type

The current software version supports only the BFD echo mode.

Source IPv6

Source IPv6 address of the BFD session.

Timer

BFD session timer, in seconds.

VPN index

Index of the VPN instance.

Template name

Name of the echo mode BFD template.

display segment-routing ipv6 te forwarding

Use display segment-routing ipv6 te forwarding to display SRv6 TE forwarding information.

Syntax

display segment-routing ipv6 te forwarding [ policy { name policy-name | { color color-value | end-point ipv6 ipv6-address } * } ] [ verbose ]

Views

Any view

Predefined user roles

network-admin

network-operator

Parameters

policy: Displays forwarding information of the specified SRv6 TE policy. If you do not specify an SRv6 TE policy, this command displays forwarding information of all SRv6 TE policies.

name policy-name: Specifies the name of an SRv6 TE policy, a case-sensitive string of 1 to 59 characters.

color color-value: Specifies the color of an SRv6 TE policy, in the range of 0 to 4294967295.

end-point ipv6 ip-address: Specifies the endpoint IPv6 address of an SRv6 TE policy.

verbose: Displays detailed SRv6 TE forwarding information. If you do not specify this keyword, the command displays brief SRv6 TE forwarding information.

Examples

# Display brief information about all SRv6 TE policies.

<Sysname> display segment-routing ipv6 te forwarding

Total forwarding entries: 1

 

Policy name/ID: p1/0

 Binding SID: 8000::1

 Forwarding index: 2150629377

 Main path:

   Seglist ID: 1

     Seglist forwarding index: 2149580801

     Weight: 1

     Outgoing forwarding index: 2148532225

       Interface: GE1/0

       Nexthop: FE80::6CCE:CBFF:FE91:206

 Backup path:

   Seglist ID: 2

     Seglist forwarding index: 2149580802

       Weight: 1

       Outgoing forwarding index: 2148532226

         Interface: GE2/0

         Nexthop: FE80::6CCE:CBFF:FE91:207

# Display detailed information about all SRv6 TE policies.

<Sysname> display segment-routing ipv6 te forwarding verbose

 

Total forwarding entries: 1

 

Policy name/ID: p1/0

 Binding SID: 8000::1

 Forwarding index: 2150629377

 Inbound statistics:

   Total octets: 525

   Total packets: 1

   Erroneous packets: 0

   Dropped packets: 0

   Input rate in last 300 seconds:

     0 bits/sec, 0 pkts/sec

   Input rate in last statistical period (20 sec):

     0 bits/sec, 0 pkts/sec

Outbound statistics:

   Total octets: 750

   Total packets: 1

   Erroneous packets: 0

   Dropped packets: 0

   Output rate in last 300 seconds:

     0 bits/sec, 0 pkts/sec

   Output rate in last statistical period (20 sec):

     0 bits/sec, 0 pkts/sec

Main path:

   Seglist ID: 1

     Seglist forwarding index: 2149580801

     Weight: 1

     Outbound statistics:

       Total octets: 750

       Total packets: 1

       Erroneous packets: 0

       Dropped packets: 0

       Output rate in last 300 seconds:

         0 bits/sec, 0 pkts/sec

       Output rate in last statistical period (20 sec):

         0 bits/sec, 0 pkts/sec

       Output service-class 4:

         416 octets, 4 packets,

         0 errors, 0 dropped packets

         Output rate in last 300 seconds:

           0 bits/sec, 0 pkts/sec

         Output rate in last statistical period (20 sec):

           0 bits/sec, 0 pkts/sec

     Outgoing forwarding index: 2148532225

       Interface: GE1/0

       Nexthop: FE80::6CCE:CBFF:FE91:206

         Path ID: 1

         SID list: {44::44, 45::45}

       Outbound statistics:

         Total octets: 750

         Total packets: 1

         Erroneous packets: 0

         Dropped packets: 0

         Output rate in last 300 seconds:

           0 bits/sec, 0 pkts/sec

         Output rate in last statistical period (20 sec):

           0 bits/sec, 0 pkts/sec

         Output service-class 4:

           416 octets, 4 packets,

           0 errors, 0 dropped packets

           Output rate in last 300 seconds:

             0 bits/sec, 0 pkts/sec

           Output rate in last statistical period (20 sec):

             0 bits/sec, 0 pkts/sec

 

Backup path:

   Seglist ID: 2

     Seglist forwarding index: 2149580802

     Weight: 1

       Outgoing forwarding index: 2148532226

         Interface: GE2/0

         Nexthop: FE80::6CCE:CBFF:FE91:207

           Path ID: 2

           SID list: {44::44, 45::47}

Table 7 Command output

Field

Description

Total forwarding entries

Total number of SRv6 TE forwarding entries.

Policy name/ID

Name/ID of an SRv6 TE policy.

Binding SID

SID value of the ingress node.

Forwarding index

Index of the SRv6 TE policy forwarding entry.

Inbound statistics

Statistics on inbound traffic (the traffic received by the BSID).

Total octets

Total number of octets forwarded.

Total packets

Total number of packets forwarded.

Erroneous packets

Number of erroneous packets.

Dropped packets

Number of dropped packets.

   Input rate in last 300 seconds:

     0 bits/sec, 0 pkts/sec

Inbound traffic rate (in bits/second and packets/second) in the most recent 300 seconds.

   Input rate in last statistical period (20 sec):

     0 bits/sec, 0 pkts/sec

Inbound traffic rate (in bits/second and packets/second) in the most recent statistical interval.

To set the statistical interval, use the srv6-policy forwarding statistics interval command.

Outbound statistics

Statistics on outbound traffic.

   Output rate in last 300 seconds:

     0 bits/sec, 0 pkts/sec

Outbound traffic rate (in bits/second and packets/second) in the most recent 300 seconds.

   Output rate in last statistical period (20 sec):

     0 bits/sec, 0 pkts/sec

Outbound traffic rate (in bits/second and packets/second) in the most recent statistical interval.

To set the statistical interval, use the srv6-policy forwarding statistics interval command.

Output service-class

Outbound traffic statistics for the specified service class.

A value of 255 means no service class is configured for the SRv6 TE policy. The SRv6 TE policy has the lowest forwarding priority.

Main path

Main path for traffic forwarding.

Backup path

Backup path for traffic forwarding.

Seglist ID

ID of the SID list.

Seglist forwarding index

Forwarding entry index of the SID list.

Weight

Weight of the SID list.

Outgoing forwarding index

The nexthop forwarding entry index of the first address in the SID list.

Interface

Brief name of the outgoing interface.

Nexthop

Next hop IPv6 address.

Path ID

ID of the SRv6 TE policy candidate path.

SID list

List of SIDs.

SID

SID of the node, which is an IPv6 address.

Common prefix length

Common prefix length of the G-SID.

G-SID length

Length of the G-SID.

display segment-routing ipv6 te policy

Use display segment-routing ipv6 te policy to display SRv6 TE policy information.

Syntax

display segment-routing ipv6 te policy [ name policy-name | down | up | { color color-value | end-point ipv6 ipv6-address } * ]

Views

Any view

Predefined user roles

network-admin

network-operator

Parameters

name policy-name: Specifies an SRv6 TE policy by its name, a case-sensitive string of 1 to 59 characters.

down: Specifies the SRv6 TE policies in down state.

up: Specifies the SRv6 TE policies in up state.

color color-value: Specifies the color of an SRv6 TE policy, in the range of 0 to 4294967295.

end-point ipv6 ipv6-address: Specifies the endpoint IPv6 address of an SRv6 TE policy.

Usage guidelines

If you do not specify any parameters, this command displays information about all SRv6 TE policies.

Examples

# Display information about all SRv6 TE policies.

<Sysname> display segment-routing ipv6 te policy

Name/ID: p1/0

 Color: 10

 Endpoint: 1000::1

 Name from BGP:

 BSID:

  Mode: Dynamic              Type: Type 2              Request state: Succeeded

  Current BSID: 8000::1      Explicit BSID: -          Dynamic BSID: 8000::1

 Reference counts: 3

 Flags: A/BS/NC

 Status: Up

 AdminStatus: Not configured

 Up time: 2020-03-09 16:09:40

 Down time: 2020-03-09 16:09:13

 Hot backup: Enabled

 Statistics: Enabled

 SBFD: Enabled

  Remote: 1000

  SBFD template name: abc

  SBFD backup-template name: -

  OAM SID: -

 BFD Echo: Not configured

 Forwarding index: 2150629377

 Service-class: -

 Candidate paths state: Configured

 Candidate paths statistics:

  CLI paths: 1          BGP paths: 0          PCEP paths: 0

 Candidate paths:

  Preference : 20

   CpathName:

   Instance ID: 0               ASN: 0              Node address: 0.0.0.0

   Peer address:  ::

   Optimal: Y                   Flags: V/A

   Explicit SID list:

    ID: 1                      Name: Sl1

    Weight: 1                  Forwarding index: 2149580801

    State: Up                  State(Echo BFD): Down

Table 8 Command output

Field

Description

Name/ID

SRv6 TE policy name/ID.

Color

Color attribute of the SRv6 TE policy.

Endpoint

Endpoint IPv6 address of the SRv6 TE policy. If the endpoint is not configured, this field displays None.

Name from BGP

Name of the SRv6 TE policy obtained from BGP. If no SRv6 TE policy was obtained from BGP, this field is empty.

BSID

SID value of the ingress node.

Mode

BSID configuration mode:

·     Explicit—Manually configured.

·     Dynamic—Dynamically requested.

·     None—Not configured.

Type

BSID type:

·     None—Not configured.

·     Type 2—IPv6 address.

Request state

BSID request state:

·     Conflicted—BSID conflict.

·     Failed.

·     Succeeded.

Explicit BSID

Manually configured BSID.

Dynamic BSID

Dynamically requested BSID.

Reference counts

Number of times that the SRv6 TE policy has been referenced.

Flags

SRv6 TE policy flags:

·     A—Active SRv6 TE policy.

·     C—Optimal SRv6 TE policy.

·     N—In optimal SRv6 TE policy selection progress.

·     BA—Requesting BSID.

·     BS—Optimal BSID.

·     D—Deleted SRv6 TE policy.

·     CF—Conflicted with an existing BSID.

·     NC—Manually configured SRv6 TE policy.

·     NB—SRv6 TE policy obtained from a BGP route.

Status

SRv6 TE policy state:

·     Up

·     Down

AdminStatus

Whether the shutdown command has been configured for the SRv6 TE policy:

·     Configured—The policy is administratively down.

·     Not configured—The policy is administratively up.

Up time

Date and time when the SRv6 TE policy became up.

Down time

Date and time when the SRv6 TE policy became down.

Hot backup

Hot standby status for the SRv6 TE policy:

·     Enabled.

·     Disabled.

·     Not configured.

Statistics

Traffic statistics status for the SRv6 TE policy:

·     Disabled.

·     Enabled.

·     Not configured.

SBFD

SBFD status for the SRv6 TE policy:

·     Enabled.

·     Disabled.

·     Not configured.

Remote

Remote discriminator of the SBFD session.

SBFD template name

Name of the SBFD template for the main path.

SBFD backup-template name

Name of the SBFD template for the backup SID list.

OAM SID

OAM SID added to SBFD packets or Echo BFD packets.

BFD Echo

Echo packet mode BFD status for the SRv6 TE policy:

·     Enabled.

·     Disabled.

·     Not configured.

Source IPv6 address

Source IPv6 address of the echo packet mode BFD session.

Echo template name

Name of the echo BFD template.

Echo backup-template name

Name of the echo BFD template for the backup SID list.

Forwarding index

Forwarding entry index of the SRv6 TE policy.

Service-class

Service class value of the SRv6 TE policy. If the default service class is used, this field displays a hyphen (-).

Candidate paths state

Whether candidate paths are configured:

·     Configured.

·     Not configured.

Candidate paths statistics

Candidate paths statistics by path origin.

CLI paths

Number of manually configured candidate paths.

BGP paths

Number of candidate paths obtained from BGP SRv6 Policy routes.

PCEP paths

This field is not supported in the current software version.

Number of candidate paths obtained from PCEP.

Candidate paths

SRv6 TE policy candidate path information.

Preference

SRv6 TE policy candidate path preference.

CPathName

Name of the candidate path obtained from a BGP route. If no path name was obtained, this field is empty.

Instance ID

BGP instance ID. A value of 0 indicates that the device does not obtain SRv6 TE policy information from BGP peers.

ASN

AS number. A value of 0 indicates that the device does not obtain SRv6 TE policy information from BGP peers.

Node address

BGP node address.

For an SRv6 TE policy obtained from a BGP peer, the node address is the Router ID of the BGP peer.

For an SRv6 TE policy obtained in other methods, the node address is 0.0.0.0.

Peer address

BGP peer address.

For a manually configured SRv6 TE policy, the peer address is ::.

For an SRv6 TE policy obtained from a BGP peer, the peer address is the address of the BGP peer.

Optimal

Whether the path is the optimal path:

·     Y—Yes.

·     N—No.

Flags

Flags of the SRv6 TE policy candidate path:

·     V—Valid candidate path.

·     A—Active candidate path.

·     None—No candidate path.

Explicit SID list

Explicit SID list in the candidate path of the SRv6 TE policy.

ID

SID list ID.

Name

SID list name.

Weight

Weight of the SID list in the candidate path.

Forwarding index

Forwarding entry index of the SID list.

State

SID list state:

·     UP.

·     DOWN.

State(type)

SBFD or echo BFD session state for the SID list:

·     Up.

·     Down.

·     Path Inactive—The candidate path contains no available SID list.

·     Unknown—The SBFD or echo BFD result is unknown.

If SBFD or echo BFD is not configured, this field displays a hyphen (-).

display segment-routing ipv6 te policy last-down-reason

Use display segment-routing ipv6 te policy last-down-reason to display information about the most recent down event for SRv6 TE policies.

Syntax

display segment-routing ipv6 te policy last-down-reason [ binding-sid bsid | color color-value endpoint ipv6 ipv6-address | policy-name policy-name ]

Views

Any view

Predefined user roles

network-admin

network-operator

Parameters

binding-sid bsid: Specifies an SRv6 TE policy by its BSID, which is an IPv6 address.

color color-value endpoint ipv6 ipv6-address: Specifies an SRv6 TE policy by its color attribute value and endpoint IPv6 address. The value range for the color attribute value is 0 to 4294967295.

policy-name policy-name: Specifies an SRv6 TE policy by its name, a case-sensitive string of 1 to 59 characters.

Usage guidelines

If you do not specify any parameters, this command displays information about the most recent down event for all SRv6 TE policies.

Examples

# Display information about the most recent down event for SRv6 TE policy abc.

<Sysname> display segment-routing ipv6 te policy last-down-reason policy-name abc

Name/ID: p1/1

  Color: 10

  Endpoint: 4::4

  BSID: 5000::2

  Up time: 2020-06-23 15:42:14

  Down time: 2020-06-23 15:41:15

  Down reason: Candidate path invalid segment list

  Candidate paths:

    Preference : 10

      CPathName:

      Explicit SID list:

        ID: 1                     Name: s1

        Up time: 2020-06-23 15:42:14

        Down time: 2020-06-23 15:41:15

        Down reason: No SRv6 SID Out

Table 9 Command output

Field

Description

Name/ID

Name/ID of an SRv6 TE policy.

Color

Color attribute value of the SRv6 TE policy. If the color attribute is not configured, this field displays 0.

Endpoint

Endpoint address of the SRv6 TE policy. If the endpoint address is not configured, this field displays None.

BSID

SID value of the ingress node.

Up time

Time when the SRv6 TE policy came up.

Down time

Time when the SRv6 TE policy went down.

Down reason

Reason for the down event of the SRv6 TE policy:

·     Admin down—The SRv6 TE policy has been shut down by the shutdown command.

·     No Endpoint.

·     No candidate path.

·     No valid candidate path.

·     Candidate path invalid segment list—All SID lists in the candidate path are down.

·     Policy unconfigured—The SRv6 TE policy is being deleted.

·     Internal error.

Candidate paths

Candidate path information of the SRv6 TE policy.

Preference

Preference of the candidate path.

CPathName

Name of the candidate path. If no candidate path name is obtained from BGP, this field is empty.

Explicit SID List

SID list in the candidate path of the SRv6 TE policy.

ID

SID list index.

Name

SID list name.

Up time

Time when the SID list came up.

Down time

Time when the SID list went down.

Down reason

Reason for the down event of the SID list:

·     No SID list—The SID list does not exist.

·     No SRv6 SID Out—The first SID in the SID list has no outgoing interface.

·     Internal error.

display segment-routing ipv6 te policy statistics

Use display segment-routing ipv6 te policy statistics to display SRv6 TE policy statistics.

Syntax

display segment-routing ipv6 te policy statistics

Views

Any view

Predefined user roles

network-admin

network-operator

Examples

# Display SRv6 TE policy statistics.

<Sysname> display segment-routing ipv6 te policy statistics

 

         IPv6 TE Policy Database Statistics

Total policies: 1 (1 up 0 down)

    Configured: 1 (1 up 0 down)

    From BGP: 0 (Added 0 deleted 0   0 up 0 down)

Total candidate paths: 1

    Configured: 1

    From BGP: 0 (Added 0 deleted 0)

Total SID lists: 1 (1 up 0 down)

    Configured: 1 (1 up 0 down)

    From BGP: 0 (0 up 0 down)

Table 10 Command output

Field

Description

Total policies

Total number of SRv6 TE policies:

·     up—Number of SRv6 TE policies in up state.

·     down—Number of SRv6 TE policies in down state.

Configured

Number of manually configured SR policies.

·     up—Number of SRv6 TE policies in up state.

·     down—Number of SRv6 TE policies in down state.

From BGP

Number of SR policies learned through BGP.

·     Added—Number of BGP-added SRv6 TE policies.

·     deleted—Number of BGP-deleted SRv6 TE policies.

·     up—Number of SRv6 TE policies in up state.

·     down—Number of SRv6 TE policies in down state.

display segment-routing ipv6 te policy status

Use display segment-routing ipv6 te policy status to display status information about SRv6 TE policies.

Syntax

display segment-routing ipv6 te policy status [ policy-name policy-name ]

Views

Any view

Predefined user roles

network-admin

network-operator

Parameters

policy-name policy-name: Specifies an SRv6 TE policy by its name, a case-sensitive string of 1 to 59 characters. If you do not specify this option, the command displays status information about all SRv6 TE policies.

Usage guidelines

The device executes the check items for an SRv6 TE policy one by one.

If the result for a check item is Passed, it means that the SRv6 TE policy passed the check for this item and the next item check starts.

If the result for a check item is Failed, the subsequent items will not be checked and the check result for those items is displayed as a hyphen (-).

Examples

# Display status information about all SRv6 TE policies.

<Sysname> display segment-routing ipv6 te policy status

Name/ID: p1/0

Status: Up

  Check admin status                  : Passed

  Check for endpoint & color          : Passed

  Check for segment list              : Passed

  Check valid candidate paths         : Passed

  Check for BSIDs                     : Passed

Table 11 Command output

Field

Description

Name/ID

Name/ID of an SRv6 TE policy.

Status

State of the SRv6 TE policy:

·     Up.

·     Down.

Check admin status

Check the administrative status of the SRv6 TE policy:

·     Passed—The SRv6 TE policy is administratively up.

·     Failed—The SRv6 TE policy is administratively shut down by using the shutdown command.

Check for endpoint & color

Check for the endpoint and color configuration for the SRv6 TE policy:

·     Passed—The endpoint address and color are configured.

·     Failed—The endpoint address or color is not configured.

Check for segment lists

Check for valid SID lists in the candidate paths of the SRv6 TE policy:

·     Passed—A valid SID list exists.

·     Failed—No valid SID list exists.

Check valid candidate paths

Check for an up candidate path in the SRv6 TE policy:

·     Passed—An up candidate path exists.

·     Failed—No up candidate path exists.

Check for BSIDs

Check for the binding SID configuration for the SRv6 TE policy:

·     Passed—A BSID is specified for the SRv6 TE policy.

·     Failed—No BSID is specified for the SRv6 TE policy.

display segment-routing ipv6 te policy-group

Use display segment-routing ipv6 te policy-group to display information about SRv6 TE policy groups.

Syntax

display segment-routing ipv6 te policy-group [ group-id ] [ verbose ]

Views

Any view

Predefined user roles

network-admin

network-operator

Parameters

group-id: Specifies an SRv6 TE policy group by its ID in the range of 1 to 4294967295. If you do not specify this argument, the command displays information about all SRv6 TE policy groups.

verbose: Displays detailed SRv6 TE policy information. If you do not specify this keyword, the command displays brief SRv6 TE policy information.

Examples

# Display brief information about all SRv6 TE policy groups.

<Sysname> display segment-routing ipv6 te policy-group

Total number of policy groups: 1

 

GroupID      GroupState    UPMappings     TotalMappings

10           Up            26             26

# Display detailed information about all SRv6 TE policy groups.

<Sysname> display segment-routing ipv6 te policy-group verbose

Total number of policy groups: 1

 

GroupID: 10                        GroupState: Up

GroupNID: 2151677953               Referenced: 1

Flags: A

Endpoint: 4::4

UP/Total Mappings: 26/26

  Color       Type       DSCP

  10          IPv4       10, 12, 14, 16, 18, 20

Table 12 Command output

Field

Description

UPMappings

Number of up (valid) color-to-DSCP mappings in the SRv6 TE policy group.

TotalMappings

Total number of color-to-DSCP mappings in the SRv6 TE policy group.

GroupNID

Index of the forwarding entry for the SRv6 TE policy group.

Referenced

Number of times that the SRv6 TE policy group has been used.

Flags

Flags of the SRv6 TE policy group:

·     A—Assign the forwarding entry index of the SRv6 TE policy group.

·     F—Issue the forwarding entry of the SRv6 TE policy group.

·     W—Waiting for assigning the forwarding entry index of the SRv6 TE policy group.

·     D—Delete the SRv6 TE policy group.

·     None—The SRv6 TE policy group is in initialized or stable state.

Endpoint

Destination node IP address of the SRv6 TE policy group. None indicates that the endpoint is not configured.

UP/Total Mappings

Number of valid color-to-DSCP mappings/total number of configured color-to-DSCP mappings in the SRv6 TE policy group.

Color

Color value

Type

Packet type: IPv4 or IPv6.

DSCP

DSCP value.

display segment-routing ipv6 te sbfd

Use display segment-routing ipv6 te sbfd to display SBFD information for SRv6 TE policies.

Syntax

display segment-routing ipv6 te sbfd [ down | policy { { color color-value | end-point ipv6 ipv6-address } * | name policy-name } | up ]

Views

Any view

Predefined user roles

network-admin

network-operator

Parameters

down: Displays SBFD information for SRv6 TE policies in down state.

policy: Displays SBFD information for the specified SRv6 TE policy.

color color-value: Specifies the color attribute value of an SRv6 TE policy, in the range of 0 to 4294967295.

end-point ipv6 ipv6-address: Specifies the IPv6 address of the endpoint of an SRv6 TE policy.

name policy-name: Specifies the name of an SRv6 TE policy, a case-sensitive string of 1 to 59 characters.

up: Displays SBFD information for SRv6 TE policies in up state.

Usage guidelines

If you do not specify any parameters, this command displays SBFD information for all SRv6 TE policies.

Examples

# Display SBFD information for all SRv6 TE policies.

<Sysname> display segment-routing ipv6 te policy sbfd

 Color: 10

 Endpoint: 4::4

 Policy name: p1

 State: Down

 

   Nid: 2149580801

   BFD type: SBFD

   Remote Discr: 100

   State: Down

   Timer: 30

   VPN index: 0

   Template name: abc

Table 13 Command output

Field

Description

Color

Color attribute value of an SRv6 TE policy.

Endpoint

Endpoint IP address of the SRv6 TE policy.

Policy name

Name of the SRv6 TE policy.

State

SBFD session state:

·     Up.

·     Down.

·     Delete.

Nid

Forwarding entry index for an SID list.

BFD type

The current software version supports only the SBFD type.

Remote Discr

Remote discriminator.

Timer

SBFD session timer, in seconds.

display segment-routing ipv6 te segment-list

Use display segment-routing ipv6 te segment-list to display SRv6 TE SID list information.

Syntax

display segment-routing ipv6 te segment-list [ name seglist-name | id id-value ]

Views

Any view

Predefined user roles

network-admin

network-operator

Parameters

name segment-list-name: Specifies a SID list by its name, a case-sensitive string of 1 to 128 characters.

id id-value: Specifies a SID list by its ID. The value range for the SID list ID is 1 to 4294967295.

Usage guidelines

If you do not specify a SID list name or ID, this command displays information about all SRv6 TE SID lists.

To view SID list ID information, execute the display segment-routing ipv6 te policy command.

Examples

# Display information about all SRv6 TE SID lists.

<Sysname> display segment-routing ipv6 te segment-list

 

Total Segment lists: 1

 

Name/ID: A/1

 Origin: CLI

 Status: Up

 Nodes: 1

 

  Index    : 1                            SID: 1::2

  Type     : Type 2                     Flags: None

  Coc Type : -           Common prefix length: 0

Table 14 Command output

Field

Description

Total Segment lists

Number of SID lists.

Name/ID

SID list name/ID.

Origin

Origin of the SID list. Options include:

·     CLI—Locally configured in the CLI.

·     BGP—Issued by BGP.

·     PCE—Issued by a PCE. (This option is not supported in the current software version.)

If the SID list does not have a valid origin, this field displays a hyphen (-).

Status

SID list status, Down or Up.

Nodes

Number of nodes in the SID list.

Index

Node index.

SID

SID value (IPv6 address) of the node.

Type

SID type of the node:

·     None—Not configured.

·     Type 2—IPv6 address.

Flags

Node flags, which are not defined and displayed as None.

COC type

Compression type of the SID, which is COC32, representing the 32-bit compression.

If the SID is not compressed, this field displays a hyphen (-).

Common prefix length

Common prefix length of the G-SID.

end-point

Use end-point to configure the endpoint IP address for the SRv6 TE policy group.

Use undo end-point to restore the default.

Syntax

end-point ipv6 ipv6-address

undo end-point ipv6

Default

No endpoint address is configured for the SRv6 TE policy group.

Views

SRv6 TE policy group view

Predefined user roles

network-admin

Parameters

ipv6 ipv6-address: Specifies the endpoint IPv6 address for the SRv6 TE policy group.

Usage guidelines

The SRv6 TE policies added to the SRv6 TE policy group must use the same endpoint IPv6 address as the SRv6 TE policy group.

If you execute this command multiple times, the most recent configuration takes effect.

Examples

# Configure the endpoint address as 100::2 for SRv6 TE policy group 10.

<Sysname> system-view

[Sysname] segment-routing ipv6

[Sysname-segment-routing-ipv6] traffic-engineering

[Sysname-srv6-te] policy-group 10

[Sysname-srv6-te-policy-group-10] end-point ipv6 100::2

explicit segment-list

Use explicit segment-list to specify a SID list for a candidate path.

Use undo explicit segment-list to delete a SID list of a candidate path or restore the default weight of a SID list.

Syntax

explicit segment-list segment-list-name [ weight weight-value ]

undo explicit segment-list segment-list-name [ weight ]

Default

No SID lists are specified for an SRv6 TE policy candidate path.

Views

SRv6 TE policy path preference view

Predefined user roles

network-admin

Parameters

segment-list-name: Specifies an SID list name, a case-sensitive string of 1 to 128 characters.

weight weight-value: Specifies a weight for the SID list, in the range of 1 to 4294967295. The default weight is 1.

Usage guidelines

An SRv6 TE policy uses the SID list specified for the highest-preference candidate path as a traffic forwarding subpath.

An SRv6 TE policy candidate path can have multiple SID lists. All the SID lists can be used to forward traffic for load sharing based on their weights. Assume SID lists a, b, and c are assigned weights x, y, z, respectively. The load of SID list a is x/(x+y+z) of the total traffic.

If you assign weight values for the same SID list multiple times, the most recent configuration takes effect.

Examples

# Configure SID list abc for the SRv6 TE policy candidate path with preference 20, and the set the SID list weight to 20.

<Sysname> system-view

[Sysname] segment-routing ipv6

[Sysname-segment-routing-ipv6] traffic-engineering

[Sysname-srv6-te] policy a1

[Sysname-srv6-te-policy-a1] candidate-paths

[Sysname-srv6-te-policy-a1-path] preference 20

[Sysname-srv6-te-policy-a1-path-pref-20] explicit segment-list abc weight 20

Related commands

segment-list

forwarding statistics

Use forwarding statistics to configure traffic forwarding statistics for an SRv6 TE policy.

Use undo forwarding statistics to restore the default.

Syntax

forwarding statistics { disable | [ service-class ] enable }

undo forwarding statistics

Default

An SRv6 TE policy uses the traffic forwarding statistics configuration in SRv6 TE view.

Views

SRv6 TE policy view

Predefined user roles

network-admin

Parameters

disable: Disables the SRv6 TE policy forwarding statistics.

enable: Enables the SRv6 TE policy forwarding statistics.

service-class: Enables the SRv6 TE policy forwarding statistics based on service class. If you specify this keyword, in addition to statistics of total traffic forwarded through the SRv6 TE policy tunnel, the command collects traffic statistics for each service class. If you specify do not specify this keyword, the command collects only the statistics of total traffic forwarded through the SRv6 TE policy.

Usage guidelines

You can configure traffic forwarding statistics for all SRv6 TE policies globally in SRv6 TE view or for a specific SRv6 TE policy in SRv6 TE policy view. The policy-specific configuration takes precedence over the global configuration. An SRv6 TE policy uses the global configuration only when it has no policy-specific configuration.

If you execute this command multiple times, the most recent configuration takes effect.

Examples

# Enable traffic forwarding statistics for SRv6 TE policy 1.

<Sysname> system-view

[Sysname] segment-routing ipv6

[Sysname-segment-routing-ipv6] traffic-engineering

[Sysname-srv6-te] policy 1

[Sysname-srv6-te-policy-1] forwarding statistics enable

Related commands

display segment-routing ipv6 te forwarding

reset segment-routing ipv6 te forwarding statistics

srv6-policy forwarding statistic enable

srv6-policy forwarding statistic interval

import-route sr-policy

Use import-route sr-policy to enable BGP to redistribute BGP IPv6 SR policy routes.

Use undo import-route sr-policy to restore the default.

Syntax

import-route sr-policy

undo import-route sr-policy

Default

BGP does not redistribute BGP IPv6 SR policy routes.

Views

BGP IPv6 SR policy address family

Predefined user roles

network-admin

Usage guidelines

After you execute this command, the system will redistribute the local BGP IPv6 SR policy routes to the BGP routing table and advertise the routes to IBGP peers. Then, the peers can forward traffic based on the BGP IPv6 SR policy.

Examples

# In BGP IPv6 SR policy address family view, enable BGP to redistribute BGP IPv6 SR policy routes.

<Sysname> system-view

[Sysname] bgp 100

[Sysname-bgp-default] address-family ipv6 sr-policy

[Sysname-bgp-default-srpolicy-ipv6] import-route sr-policy

index

Use index to add a node to a SID list.

Use undo index to delete a node from a SID list.

Syntax

index index-number ipv6 ipv6-address

undo index index-number

Default

No nodes exist in a SID list.

Views

SID list view

Predefined user roles

network-admin

Parameters

index-number: Specifies the node index, in the range of 1 to 65535.

ipv6 ipv6-address: Specifies the IPv6 address of the node.

Usage guidelines

When you add a G-SID to the SID list, the common prefix length configured by this command must be the same as that of the locator where the next node belongs.

Examples

# Add a node to SID list abc, and set the node index to 1 and IPv6 address to 1000::1.

<Sysname> system-view

[Sysname] segment-routing ipv6

[Sysname-segment-routing-ipv6] traffic-engineering

[Sysname-srv6-te] segment-list abc

[Sysname-srv6-te-sl-abc] index 1 ipv6 1000::1

Related commands

locator

policy

Use policy to create an SRv6 TE policy and enter its view, or enter the view of an existing SRv6 TE policy.

Use undo policy to delete an SRv6 TE policy and all the configuration in the SRv6 TE policy.

Syntax

policy policy-name

undo policy policy-name

Default

No SRv6 TE policies exist.

Views

SRv6 TE view

Predefined user roles

network-admin

Parameters

policy-name: Specifies an SRv6 TE policy name, a case-sensitive string of 1 to 59 characters.

Examples

# Create an SRv6 TE policy named srv6policy and enter its view.

<Sysname> system-view

[Sysname] segment-routing ipv6

[Sysname-segment-routing-ipv6] traffic-engineering

[Sysname-srv6-te] policy p1

[Sysname-srv6-te-policy-p1]

policy-group

Use policy-group to create an SRv6 TE policy group and enter its view, or enter the view of an existing SRv6 TE policy group.

Use undo policy-group to delete an SRv6 TE policy group and all the configuration in the SRv6 TE policy group.

Syntax

policy-group group-id

undo policy-group group-id

Default

No SRv6 TE policy groups exist.

Views

SRv6 TE view

Predefined user roles

network-admin

Parameters

group-name: Specifies an SRv6 TE policy group by its ID in the range of 1 to 4294967295.

Usage guidelines

You can add SRv6 TE policies to an SRv6 TE policy group to implement SRv6 TE policy based forwarding according to DSCP values of packets.

Examples

# Create SRv6 TE policy group 1 and enter its view.

<Sysname> system-view

[Sysname] segment-routing ipv6

[Sysname-segment-routing-ipv6] traffic-engineering

[Sysname-srv6-te] policy-group 1

[Sysname-srv6-te-policy-group-1]

preference

Use preference to set the preference for an SRv6 TE policy candidate path and enter SRv6 TE policy path preference view, or enter an existing SRv6 TE policy path preference view.

Use undo preference to delete an SRv6 TE policy candidate path preference and all the configuration in the SRv6 TE policy path preference view.

Syntax

preference preference-value

undo preference preference-value

Views

SRv6 TE policy candidate path view

Predefined user roles

network-admin

Parameters

preference-value: Specifies a candidate path preference in the range of 1 to 65535. A bigger value represents a higher preference.

Usage guidelines

A preference represents a candidate path of an SRv6 TE policy.

Examples

# Set the preference of an SRv6 TE policy candidate path to 20, and enter SRv6 TE policy path preference view.

<Sysname> system-view

[Sysname] segment-routing ipv6

[Sysname-segment-routing-ipv6] traffic-engineering

[Sysname-srv6-te] policy a1

[Sysname-srv6-te-policy-a1] candidate-paths

[Sysname-srv6-te-policy-a1-path] preference 20

[Sysname-srv6-te-policy-a1-path-pref-20]

reset segment-routing ipv6 te forwarding statistics

Use reset segment-routing ipv6 te forwarding statistics to clear forwarding statistics for all SRv6 TE policies.

Syntax

reset segment-routing ipv6 te forwarding statistics

Views

User view

Predefined user roles

network-admin

Examples

# Clear SRv6 TE policy forwarding statistics.

<Sysname> reset segment-routing ipv6 te forwarding statistics

Related commands

display segment-routing ipv6 te forwarding

forwarding statistics

srv6-policy forwarding statistics enable

srv6-policy forwarding statistics interval

router-id filter

Use router-id filter to enable Router ID filtering.

Use undo router-id filter to disable Router ID filtering.

Syntax

router-id filter

undo router-id filter

Default

Router ID filtering is disabled.

Views

BGP IPv6 SR policy address family.

Predefined user roles

network-admin

Usage guidelines

For the device to process only part of the received BGP IPv6 SR policy routes, you can execute this command to enable filtering the routes by Router ID.

This command enables the device to check the Route Target attribute of a received BGP IPv6 SR policy route. The device accepts the route only if the Route Target attribute contains the Router ID of the local device.

To use Router ID filtering, make sure you add Route Target attributes to BGP IPv6 SR policy routes properly by using routing policy or other methods. Otherwise, Router ID filtering might learn or drop BGP IPv6 SR policy routes incorrectly.

Examples

# Enable Router ID filtering.

<Sysname> system-view

[Sysname] bgp 100

[Sysname-bgp-default] address-family ipv6 sr-policy

[Sysname-bgp-default-srpolicy-ipv6] router-id filter

sbfd

Use sbfd to configure SBFD for an SRv6 TE policy.

Use undo sbfd to restore the default.

Syntax

sbfd { disable | enable [ remote remote-id ] [ template template-name ] [ backup-template backup-template-name ] [ oam-sid sid ] }

undo sbfd

Default

SBFD is disabled for an SRv6 TE policy. An SRv6 TE policy uses the SBFD configuration in SRv6 TE view.

Views

SRv6 TE policy view

Predefined user roles

network-admin

Parameters

disable: Disables SBFD for the SRv6 TE policy.

enable: Enables SBFD for the SRv6 TE policy.

remote remote-id: Specifies the remote discriminator of the SBFD session, in the range of 1 to 4294967295. If you do not specify this option, the configuration in SRv6 TE view applies.

template template-name: Specifies an SBFD session parameter template by its name, a case-sensitive string of 1 to 63 characters. If you do not specify this option, the template specified in SRv6 TE view applies.

backup-template backup-template-name: Specifies as SBFD session parameter template for the backup SID list. The backup-template-name argument indicates the template name, a case-sensitive string of 1 to 63 characters. If you do not specify this option, the backup template specified in SRv6 TE view applies.

oam-sid sid: Adds an OAM SID to SBFD packets to identify the destination node. The sid argument represents the SRv6 SID of the endpoint destination node. If you do not specify this option, no OAM SID will be added to BFD packets. At present, the OAM SID must be set to the End.OP SID of the destination node.

Usage guidelines

You can configure SBFD for all SRv6 TE policies globally in SRv6 TE view or for a specific SRv6 TE policy in SRv6 TE policy view. The policy-specific configuration takes precedence over the global configuration. An SRv6 TE policy uses the global configuration only when it has no policy-specific configuration.

The remote discriminator specified in this command must be the same as that specified in the sbfd local-discriminator command on the reflector. Otherwise, the reflector will not send responses to the initiator.

The device supports the echo packet mode BFD and the SBFD for an SRv6 TE policy. If both modes are configured for the same SRv6 TE policy, the SBFD takes effect.

Examples

# Enable SBFD for SRv6 TE policy 1.

<Sysname> system-view

[Sysname] segment-routing ipv6

[Sysname-segment-routing-ipv6] traffic-engineering

[Sysname-srv6-te] policy 1

[Sysname-srv6-te-policy-1] sbfd enable

Related commands

display segment-routing ipv6 te sbfd

sbfd local-discriminator (High Availability Command Reference)

srv6-policy sbfd

segment-list

Use segment-list to create a SID list and enter its view, or enter the view of an existing SID list.

Use undo segment-list to delete a SID list and all the configuration in the SID list.

Syntax

segment-list segment-list-name

undo segment-list segment-list-name

Default

No SID lists exist.

Views

SRv6 TE view

Predefined user roles

network-admin

Parameters

segment-list-name: Specifies the SID list name, a case-sensitive string of 1 to 128 characters.

Examples

# Create a SID list named abc and enter its view.

<Sysname> system-view

[Sysname] segment-routing ipv6

[Sysname-segment-routing-ipv6] traffic-engineering

[Sysname-srv6-te] segment-list abc

[Sysname-srv6-te-sl-abc]

service-class

Use service-class to set a service class value for an SRv6 TE policy.

Use undo service-class to restore the default.

Syntax

service-class service-class-value

undo service-class

Default

No service class value is set for an SRv6 TE policy.

Views

SRv6 TE policy view

Predefined user roles

network-admin

Parameters

service-class-value: Specifies a service class value in the range of 0 to 15. The smaller the service class value, the lower the SRv6-TE policy priority. An SRv6-TE policy that is not assigned a service class value has the lowest priority.

Usage guidelines

The device compares the service class value of the traffic with the service class values of SRv6 TE policies and forwards the traffic to a matching tunnel. The device uses the following rules to select an SRv6 TE policy to forward the traffic:

·     If the traffic matches only one SRv6 TE policy, the device uses this SRv6 TE policy.

·     If the traffic matches multiple SRv6 TE policies, the device selects an SRv6 TE policy based on the flow forwarding mode:

¡     If there is only one flow and flow-based forwarding is used, the device randomly selects a matching SRv6 TE policy for packets of the flow.

¡     If there are multiple flows or if there is one flow but packet-based forwarding is used, the device uses all matching SRv6 TE policies to load share the packets.

For more information about the flow identification and load sharing mode, see the ip load-sharing mode command.

·     If the traffic does not match any SRv6 TE policy, the device randomly selects an SRv6 TE policy from all SRv6 TE policies with the smallest service class value.

To set a service class value for traffic, use the remark service-class command in traffic behavior view.

Examples

# Set the service class value to 5 for SRv6 TE policy.

<Sysname> system-view

[Sysname] segment-routing ipv6

[Sysname-segment-routing-ipv6] traffic-engineering

[Sysname-srv6-te] policy 1

[Sysname-srv6-te-policy-1] service-class 5

Related commands

ip load-sharing mode (Layer 3IP Services Command Reference)

remark service-class (ACL and QoS Command Reference)

shutdown

Use shutdown to shut down an SRv6 TE policy.

Use undo shutdown to bring up an SRv6 TE policy.

Syntax

shutdown

undo shutdown

Default

An SRv6 TE policy is not administratively shut down.

Views

SRv6 TE policy view

Predefined user roles

network-admin

Usage guidelines

If multiple SRv6 TE policies exist on the device, you can shut down unnecessary SRv6 TE policies to prevent them from affecting traffic forwarding.

Examples

# Shut down SRv6 TE policy 1.

<Sysname> system-view

[Sysname] segment-routing ipv6

[Sysname-segment-routing-ipv6] traffic-engineering

[Sysname-srv6-te] policy 1

[Sysname-srv6-te-policy-1] shutdown

sr-policy steering

Use sr-policy steering to configure the traffic steering mode for SRv6 TE policies.

Use undo sr-policy steering to restore the default.

Syntax

sr-policy steering { disable | policy-based }

undo sr-policy steering

Default

The device steering data packets to SRv6 TE policies based on colors of the packets.

Views

BGP instance view

Predefined user roles

network-admin

Parameters

disable: Disables color-based traffic steering to an SRv6 TE policy.

policy-based: Steers traffic to an SRv6 TE policy based on the bound policy, color, and load sharing tunnel policy in a descending order of priority.

Usage guidelines

The following traffic steering modes are available for SRv6 TE policies:

·     Based on color—The device searches for an SRv6 TE policy that has the same color and endpoint address as the color and nexthop address of a BGP route. If a matching SRv6 TE policy exists, the device recurse the BGP route to that SRv6 TE policy. Then, when the device receives packets that match the BGP route, it forwards the packets through the SRv6 TE policy.

·     Based on tunnel policy—On an IPv6 L3VPN over SRv6 network or EVPN L3VPN over SRv6 network, deploy a tunnel policy that uses an SRv6 TE policy. In this way, the SRv6 TE policy will be used as the public tunnel to carry the packets of a VPN instance. For more information about the tunnel policy configuration, see MPLS Configuration Guide.

This command does not take effect on L2VPN networks.

Examples

# Configure the SRv6 TE traffic steering mode as tunnel policy.

<Sysname> system-view

[Sysname] bgp 100

[Sysname-bgp-default] sr-policy steering policy-based

srv6-policy backup hot-standby enable

Use srv6-policy backup hot-standby enable to enable hot standby for all SRv6 TE policies.

Use undo srv6-policy backup hot-standby enable to disable hot standby for all SRv6 TE policies.

Syntax

srv6-policy backup hot-standby enable

undo srv6-policy backup hot-standby enable

Default

Hot standby is disabled for all SRv6 TE policies.

Views

SRv6 TE view

Predefined user roles

network-admin

Usage guidelines

The hot standby feature takes the candidate path with the greatest preference value in the SRv6 TE policy as the primary path and that with the second greatest preference value as the standby path. When the forwarding paths corresponding to all SID lists of the primary path fails, the standby path immediately takes over to minimize service interruption.

You can enable hot standby for all SRv6 TE policies globally in SRv6 TE view or for a specific SRv6 TE policy in SRv6 TE policy view. The policy-specific configuration takes precedence over the global configuration. An SRv6 TE policy uses the global configuration only when it has no policy-specific configuration.

Examples

# Enable hot standby for all SRv6 TE policies.

<Sysname> system-view

[Sysname] segment-routing ipv6

[Sysname-segment-routing-ipv6] traffic-engineering

[Sysname-srv6-te] srv6-policy backup hot-standby enable

Related commands

backup hot-standby

srv6-policy bfd echo

Use srv6-policy bfd echo to enable the echo packet mode BFD for all SRv6 TE policies.

Use undo srv6-policy bfd echo to disable the echo packet mode BFD for all SRv6 TE policies.

Syntax

srv6-policy bfd echo source-ipv6 ipv6-address [ template template-name ] [ backup-template backup-template-name ]

undo srv6-policy bfd echo

Default

The echo packet mode BFD is disabled for all SRv6 TE policies.

Views

SRv6 TE view

Predefined user roles

network-admin

Parameters

source-ipv6 ipv6-address: Specifies the source IPv6 address of the BFD session.

template template-name: Specifies a BFD session parameter template by its name, a case-sensitive string of 1 to 63 characters. If you do not specify this option, the BFD session uses multihop BFD session settings configured in system view.

backup-template backup-template-name e: Specifies a BFD session parameter template for the backup SID list. The backup-template-name argument indicates the template name, a case-sensitive string of 1 to 63 characters. If you do not specify this option, the BFD session uses multihop BFD session settings configured in system view.

Usage guidelines

You can configure the echo packet mode BFD for all SRv6 TE policies globally in SRv6 TE view or for a specific SRv6 TE policy in SRv6 TE policy view. The policy-specific configuration takes precedence over the global configuration. An SRv6 TE policy uses the global configuration only when it has no policy-specific configuration.

The device supports the echo packet mode BFD and the SBFD for an SRv6 TE policy. If both modes are configured for the same SRv6 TE policy, the SBFD takes effect.

Examples

# Enable the echo packet mode BFD for all SRv6 TE policies, and specify the source IPv6 address of the BFD session as 11::11.

<Sysname> system-view

[Sysname] segment-routing ipv6

[Sysname-segment-routing-ipv6] traffic-engineering

[Sysname-srv6-te] srv6-policy bfd echo source-ipv6 11::11

Related commands

bfd echo

display segment-routing ipv6 te bfd

srv6-policy forwarding statistics enable

Use srv6-policy forwarding statistics enable to enable traffic forwarding statistics for all SRv6 TE policies.

Use undo srv6-policy forwarding statistics enable to disable traffic forwarding statistics for all SRv6 TE policies.

Syntax

srv6-policy forwarding statistics [ service-class ] enable

undo srv6-policy forwarding statistics enable

Default

Traffic forwarding statistics is disabled for all SRv6 TE policies.

Views

SRv6 TE view

Predefined user roles

network-admin

Parameters

service-class: Enables the SRv6 TE policy forwarding statistics based on service class. If you specify this keyword, in addition to statistics of total traffic forwarded through the SRv6 TE policy tunnel, the command collects traffic statistics for each service class. If you specify do not specify this keyword, the command collects only the statistics of total traffic forwarded through the SRv6 TE policy.

Usage guidelines

You can configure traffic forwarding statistics for all SRv6 TE policies globally in SRv6 TE view or for a specific SRv6 TE policy in SRv6 TE policy view. The policy-specific configuration takes precedence over the global configuration. An SRv6 TE policy uses the global configuration only when it has no policy-specific configuration.

If you execute this command multiple times, the most recent configuration takes effect.

Examples

# Enable traffic forwarding statistics for all SRv6 TE policies.

<Sysname> system-view

[Sysname] segment-routing ipv6

[Sysname-segment-routing-ipv6] traffic-engineering

[Sysname-srv6-te] srv6-policy forwarding statistics enable

Related commands

display segment-routing ipv6 te forwarding

forwarding statistic

reset segment-routing ipv6 te forwarding statistics

srv6-policy forwarding statistics interval

srv6-policy forwarding statistics interval

Use srv6-policy forwarding statistics interval to configure the traffic forwarding statistics interval for all SRv6 TE policies.

Use undo srv6-policy forwarding statistics interval to restore the default.

Syntax

srv6-policy forwarding statistics interval interval

undo srv6-policy forwarding statistics interval

Default

The SRv6 TE policies forwarding statistics interval is 30 seconds.

Views

SRv6 TE view

Predefined user roles

network-admin

Parameters

interval: Specifies the SRv6 TE policy traffic forwarding statistics interval in the range of 5 to 65535, in seconds.

Predefined user roles

This command takes effect only all SRv6 TE policies.

Examples

# Set the SRv6 TE policy traffic forwarding statistics interval to 90 seconds.

<Sysname> system-view

[Sysname] segment-routing ipv6

[Sysname-segment-routing-ipv6] traffic-engineering

[Sysname-srv6-te] srv6-policy forwarding statistics interval 90

Related commands

display segment-routing ipv6 te forwarding

forwarding statistic

reset segment-routing ipv6 te forwarding statistics

srv6-policy forwarding statistics enable

srv6-policy locator

Use srv6-policy locator to specify a locator for SRv6 TE.

Use undo srv6-policy locator to cancel the locator configuration.

Syntax

srv6-policy locator locator-name

undo srv6-policy locator

Default

No locator is specified for SRv6 TE.

Views

SRv6 TE view

Predefined user roles

network-admin

Parameters

locator-name: Specifies a locator by its name, a case-sensitive string of 1 to 31 characters.

Usage guidelines

The locator specified in SRv6 TE view restricts the BSID range. Only BSIDs within the range of the locator can take effect.

You cannot change the locator for SRv6 TE by repeatedly executing this command. To change the locator, first execute the undo srv6-policy locator command to remove the specified locator and then execute the srv6-policy locator command to specify a new locator.

Examples

# Specify locator test1 in SRv6 TE view.

<Sysname> system-view

[Sysname] segment-routing ipv6

[Sysname-segment-routing-ipv6] traffic-engineering

[Sysname-srv6-te] srv6-policy locator test1

srv6-policy sbfd

Use srv6-policy sbfd to enable SBFD for all SRv6 TE policies and configure the SBFD session parameters.

Use undo srv6-policy sbfd to disable SBFD for all SRv6 TE policies.

Syntax

srv6-policy sbfd remote remote-id [ template template-name ] [ backup-template backup-template-name ]

undo srv6-policy sbfd

Default

SBFD for all SRv6 TE policies is disabled.

Views

SRv6 TE view

Predefined user roles

network-admin

Parameters

remote remote-id: Specifies the remote discriminator of the SBFD session, in the range of 1 to 4294967295.

template template-name: Specifies an SBFD session parameter template by its name, a case-sensitive string of 1 to 63 characters. If you do not specify this option, the SBFD uses the multihop SBFD session settings configured in system view.

backup-template backup-template-name: Specifies an SBFD session parameter template for the backup SID list. The backup-template-name argument indicates the template name, a case-sensitive string of 1 to 63 characters. If you do not specify this option, the SBFD uses the multihop SBFD session settings configured in system view.

Predefined user roles

You can configure SBFD for all SRv6 TE policies globally in SRv6 TE view or for a specific SRv6 TE policy in SRv6 TE policy view. The policy-specific configuration takes precedence over the global configuration. An SRv6 TE policy uses the global configuration only when it has no policy-specific configuration.

The remote discriminator specified in this command must be the same as that specified in the sbfd local-discriminator command on the reflector. Otherwise, the reflector will not send responses to the initiator.

The device supports the echo packet mode BFD and the SBFD for an SRv6 TE policy. If both modes are configured for the same SRv6 TE policy, the SBFD takes effect.

Examples

# Enable SBFD for all SRv6 TE policies, and specify the SBFD session remote discriminator as 1000001.

<Sysname> system-view

[Sysname] segment-routing ipv6

[Sysname-segment-routing-ipv6] traffic-engineering

[Sysname-srv6-te] srv6-policy sbfd remote 1000001

Related commands

display segment-routing ipv6 te sbfd

sbfd

sbfd local-discriminator (High Availability Command Reference)

srv6-policy switch-delay delete-delay

Use srv6-policy switch-delay delete-delay to configure the switchover delay time and deletion delay time for the SRv6 TE policy forwarding path.

Use undo srv6-policy switch-delay to restore the default.

Syntax

srv6-policy switch-delay switch-delay-time delete-delay delete-delay-time

undo srv6-policy switch-delay

Default

The switchover delay time and deletion delay time for the SRv6 TE policy forwarding path is 5000 milliseconds and 20000 milliseconds, respectively.

Views

SRv6 TE view

Predefined user roles

network-admin

Parameters

switch-delay-time: Sets the forwarding path switchover delay time in the range of 0 to 600000 milliseconds.

delete-delay-time: Sets the forwarding path deletion delay time in the range of 0 to 600000 milliseconds.

Predefined user roles

The switchover delay and deletion delay mechanism is used to avoid traffic forwarding interruption during a forwarding path switchover.

When updating an SRv6 TE policy forwarding path, the device first establishes the new forwarding path before it deletes the old one. During the new path setup process, the device uses the old path to forward traffic until the switchover delay timer expires. When the switchover delay timer expires, the device switches traffic to the new path. The old path is deleted when the deletion delay timer expires.

Examples

# Set the SRv6 TE policy forwarding path switchover delay time to 8000 milliseconds and the deletion delay time to 15000 milliseconds.

<Sysname> system-view

[Sysname] segment-routing ipv6

[Sysname-segment-routing-ipv6] traffic-engineering

[Sysname-srv6-te] srv6-policy switch-delay 8000 delete-delay 15000

traffic-engineering

Use traffic-engineering to create and enter the SRv6 TE view, or enter the existing SR TE view.

Use undo traffic-engineering to delete the SRv6 TE view and all the configuration in the view.

Syntax

traffic-engineering

undo traffic-engineering

Default

The SRv6 TE view does not exist.

Views

SRv6 view

Predefined user roles

network-admin

Examples

# Create and enter the SRv6 TE view.

<Sysname> system-view

[Sysname] segment-routing ipv6

[Sysname-segment-routing-ipv6] traffic-engineering

[Sysname-srv6-te]

ttl-mode

Use ttl-mode to configure the TTL processing mode of SRv6 TE policies.

Use undo ttl-mode to restore the default.

Syntax

ttl-mode { pipe | uniform }

undo ttl-mode

Default

The TTL processing mode of SRv6 TE policies is pipe.

Views

SRv6 view

Predefined user roles

network-admin

Parameters

pipe: Specifies the pipe TTL processing mode.

uniform: Specifies the uniform TTL processing mode.

Predefined user roles

An SRv6 TE policy used as a public tunnel supports the following TTL processing modes:

·     Uniform—When the ingress node adds a new IPv6 header to an IP packet, it copies the TTL value of the original IP packet to the Hop Limit field of the new IPv6 header. Each node on the SRv6 TE policy forwarding path decreases the Hop Limit value in the new IPv6 header by 1. The node that de-encapsulates the packet copies the remaining Hop Limit value back to the original IP packet when it removes the new IPv6 header. The TTL value can reflect how many hops the packet has traversed in the public network. The tracert facility can show the real path along which the packet has traveled.

·     Pipe—When the ingress node adds a new IPv6 header to an IP packet, it does not copy the TTL value of the original IP packet to the Hop Limit field of the new IPv6 header. It sets the Hop Limit value in the new IPv6 header to 255. Each node on the SRv6 TE policy forwarding path decreases the Hop Limit value in the new IPv6 header by 1. The node that de-encapsulates the packet does not copy the remaining Hop Limit value back to the original IP packet when it removes the new IPv6 header. Therefore, the public network nodes are invisible to user networks, and the tracert facility cannot show the real path in the public network.

Examples

# Configure the TTL processing mode of SRv6 TE policies to uniform.

<Sysname> system-view

[Sysname] segment-routing ipv6

[Sysname-segment-routing-ipv6] ttl-mode uniform

 

  • Cloud & AI
  • InterConnect
  • Intelligent Computing
  • Security
  • SMB Products
  • Intelligent Terminal Products
  • Product Support Services
  • Technical Service Solutions
All Services
  • Resource Center
  • Policy
  • Online Help
All Support
  • Become a Partner
  • Partner Resources
  • Partner Business Management
All Partners
  • Profile
  • News & Events
  • Online Exhibition Center
  • Contact Us
All About Us
新华三官网