11-Segment Routing Command Reference

HomeSupportReference GuidesCommand ReferencesH3C MSR1000[2600][3600] Routers Command Reference(V9)-R9119-6W10011-Segment Routing Command Reference
03-SRv6 TE policy commands
Title Size Download
03-SRv6 TE policy commands 457.08 KB

Contents

SRv6 TE policy commands· 1

address-family ipv6 sr-policy· 1

advertise ebgp enable· 1

autoroute enable· 2

autoroute metric· 3

backup hot-standby· 3

bestroute encap-type· 4

bfd echo· 5

bfd trigger path-down enable· 6

binding-sid· 8

candidate-paths· 8

color end-point 9

color match dscp· 10

delete-delay· 11

display bgp mirror remote-sid· 12

display bgp routing-table ipv6 sr-policy· 13

display evpn srv6 mirror remote-sid· 18

display segment-routing ipv6 te database· 19

display segment-routing ipv6 te bfd· 27

display segment-routing ipv6 te forwarding· 28

display segment-routing ipv6 te policy· 31

display segment-routing ipv6 te policy last-down-reason· 37

display segment-routing ipv6 te policy statistics· 38

display segment-routing ipv6 te policy status· 40

display segment-routing ipv6 te policy-group· 42

display segment-routing ipv6 te sbfd· 43

display segment-routing ipv6 te segment-list 44

display segment-routing ipv6 te source-sid· 46

distribute bgp-ls· 47

drop-upon-invalid· 48

dynamic (SRv6 TE policy path preference view) 49

dynamic (SRv6 TE-ODN view) 49

encapsulation-mode encaps include local-end.x· 50

encapsulation-mode encaps reduced· 51

end-point 52

explicit segment-list 53

fast-reroute mirror delete-delay· 54

fast-reroute mirror enable· 55

forwarding statistics· 55

import-route sr-policy· 56

index· 57

mirror remote-sid delete-delay· 58

on-demand· 59

pce delegation· 60

pce passive-delegate report-only· 61

pcep (SRv6 TE policy path preference dynamic view) 62

pcep (SRv6 TE-ODN dynamic view) 63

policy· 63

policy-group· 64

preference· 65

reset segment-routing ipv6 te forwarding statistics· 65

restrict 66

router-id filter 66

sbfd· 67

segment-list 68

service-class· 69

shutdown· 70

snmp-agent trap enable srv6-policy· 71

sr-policy steering· 71

srv6-policy alarm-threshold· 72

srv6-policy autoroute enable· 73

srv6-policy backup hot-standby enable· 74

srv6-policy bfd echo· 75

srv6-policy drop-upon-invalid enable· 76

srv6-policy encapsulation-mode encaps include local-end.x· 77

srv6-policy encapsulation-mode encaps reduced· 78

srv6-policy forwarding statistics enable· 79

srv6-policy forwarding statistics interval 80

srv6-policy locator 80

srv6-policy log enable· 81

srv6-policy pce delegation enable· 82

srv6-policy pce passive-delegate report-only enable· 82

srv6-policy sbfd· 83

srv6-policy switch-delay delete-delay· 84

traffic-engineering· 85

ttl-mode· 86

 


SRv6 TE policy commands

address-family ipv6 sr-policy

Use address-family ipv6 sr-policy to create the BGP IPv6 SR policy address family and enter its view, or enter the view of the existing BGP IPv6 SR policy address family.

Use undo address-family ipv6 sr-policy to delete the BGP IPv6 SR policy address family and all the configuration in the BGP IPv6 SR policy address family.

Syntax

address-family ipv6 sr-policy

undo address-family ipv6 sr-policy

Default

The BGP IPv6 SR policy address family does not exist.

Views

BGP instance view

Predefined user roles

network-admin

Usage guidelines

The configuration in BGP IPv6 SR policy address family view applies only to routes and peers in the BGP IPv6 SR policy address family.

Examples

# In BGP instance view, create the BGP IPv6 SR policy address family and enter its view.

<Sysname> system-view

[Sysname] bgp 100

[Sysname-bgp-default] address-family ipv6 sr-policy

[Sysname-bgp-default-srpolicy-ipv6]

advertise ebgp enable

Use advertise ebgp enable to enable advertising BGP IPv6 SR policy routes to EBGP peers.

Use undo advertise ebgp enable to restore the default.

Syntax

advertise ebgp enable

undo advertise ebgp enable

Default

BGP IPv6 SR policy routes are not advertised to EBGP peers.

Views

BGP IPv6 SR policy address family

Predefined user roles

network-admin

Usage guidelines

By default, BGP IPv6 SR policy routes are advertised among IBGP peers. To advertise BGP IPv6 SR policy routes to EBGP peers, you must execute this command to enable the advertisement capability.

Examples

# Enable advertising BGP IPv6 SR policy routes to EBGP peers.

<Sysname> system-view

[Sysname] bgp 100

[Sysname-bgp-default] address-family ipv6 sr-policy

[Sysname-bgp-default-srpolicy-ipv6] advertise ebgp enable

autoroute enable

Use autoroute enable to enable automatic route advertisement for an SRv6 TE policy.

Use undo autoroute enable to disable automatic route advertisement for an SRv6 TE policy.

Syntax

autoroute enable [ isis | ospfv3 ]

undo autoroute enable

Default

Automatic route advertisement is disabled for an SRv6 TE policy.

Views

SRv6 TE policy view

Predefined user roles

network-admin

Parameters

isis: Enables automatic route advertisement for IPv6 IS-IS.

ospfv3: Enables automatic route advertisement for OSPFv3.

Usage guidelines

The automatic route advertisement feature advertises an SRv6 TE policy to IGP (IPv6 IS-IS or OSPFv3) for route computation.

An SRv6 TE policy supports only automatic route advertisement in IGP shortcut mode, which is also called autoroute announce. Autoroute announce regards the SRv6 TE policy tunnel as a link that connects the tunnel ingress and egress. The tunnel ingress includes the SRv6 TE policy tunnel in IGP route computation.

If you do not specify the isis or ospfv3 keyword, both OSPFv3 and IPv6 IS-IS will include the SRv6 TE policy tunnel in route computation.

Examples

# Enable automatic route advertisement for an SRv6 TE policy.

<Sysname> system-view

[Sysname] segment-routing ipv6

[Sysname-segment-routing-ipv6] traffic-engineering

[Sysname-srv6-te] policy srv6policy

[Sysname-srv6-te-policy-srv6policy] autoroute enable

Related commands

autoroute metric

autoroute metric

Use autoroute metric to configure an autoroute metric for an SRv6 TE policy.

Use undo autoroute metric to restore the default.

Syntax

autoroute metric { absolute value | relative value }

undo autoroute metric

Default

The autoroute metric of an SRv6 TE policy equals its IGP metric.

Views

SRv6 TE policy view

Predefined user roles

network-admin

Parameters

absolute value: Specifies an absolute metric, an integer in the range of 1 to 65535.

relative value: Specifies a relative metric, an integer in the range of –10 to +10. The specified relative metric plus the IGP metric is the actual metric of the SRv6 TE policy.

Usage guidelines

After automatic route advertisement is enabled for an SRv6 TE policy, the policy is included in IGP route computation as a link. You can use this command to configure the metric of this link used for IGP route computation.

Examples

# Set an absolute metric of 15 for SRv6 TE policy srv6policy.

<Sysname> system-view

[Sysname] segment-routing ipv6

[Sysname-segment-routing-ipv6] traffic-engineering

[Sysname-srv6-te] policy srv6policy

[Sysname-srv6-te-policy-srv6policy] autoroute metric absolute 15

Related commands

autoroute enable

backup hot-standby

Use backup hot-standby to configure hot standby for an SRv6 TE policy.

Use undo backup hot-standby to restore the default.

Syntax

backup hot-standby { disable | enable }

undo backup hot-standby

Default

Hot standby is not configured for an SRv6 TE policy.

Views

SRv6 TE policy view

Predefined user roles

network-admin

Parameters

disable: Disables hot standby for the SRv6 TE policy.

enable: Enables hot standby for the SRv6 TE policy.

Usage guidelines

The hot standby feature takes the candidate path with the greatest preference value in the SRv6 TE policy as the primary path and that with the second greatest preference value as the standby path. When the forwarding paths corresponding to all SID lists of the primary path fails, the standby path immediately takes over to minimize service interruption.

You can enable hot standby for all SRv6 TE policies globally in SRv6 TE view or for a specific SRv6 TE policy in SRv6 TE policy view. The policy-specific configuration takes precedence over the global configuration. An SRv6 TE policy uses the global configuration only when it has no policy-specific configuration.

Examples

# Enable hot standby for SRv6 TE policy 1.

<Sysname> system-view

[Sysname] segment-routing ipv6

[Sysname-segment-routing-ipv6] traffic-engineering

[Sysname-srv6-te] policy 1

[Sysname-srv6-te-policy-1] backup hot-standby enable

Related commands

srv6-policy backup hot-standby enable

bestroute encap-type

Use bestroute encap-type to specify the packet encapsulation type preferred in optimal route selection.

Use undo bestroute encap-type to restore the default.

Syntax

bestroute encap-type { mpls | srv6 }

undo bestroute encap-type

Default

The device does not select optimal routes according to the packet encapsulation type.

Views

BGP-VPN instance view.

Predefined user roles

network-admin

Parameters

mpls: Prefers to use MPLS-encapsulated routes during optimal route selection.

srv6: Prefers to use SRv6-encapsulated routes during optimal route selection.

Usage guidelines

After this command is executed, BGP selects the optimal route in the VPN instance by using the following procedure:

1.     Selects the route according to the NEXT_HOP, Preferred-value, and LOCAL_PREF attributes in turn.

2.     Selects the route according to the encapsulation type specified by the bestroute encap-type command.

3.     Proceeds the subsequent steps in the original BGP route select procedure.

For more information about BGP route selection, see BGP overview in Layer 3—IP Routing Configuration Guide.

If you execute this command multiple times, the most recent configuration takes effect.

Examples

# Configure BGP to prefer SRv6-encapsulated routes during optimal route selection.

<Sysname> system-view

[Sysname] bgp 100

[Sysname-bgp-default] ip vpn-instance vpn1

[Sysname-bgp-default-vpn1] bestroute encap-type srv6

bfd echo

Use bfd echo to configure the echo packet mode BFD for an SRv6 TE policy.

Use undo bfd echo to restore the default.

Syntax

bfd echo { disable | enable [ source-ipv6 ipv6-address ] [ template template-name ] [ backup-template backup-template-name ] [ oam-sid sid ] }

undo bfd echo

Default

The echo packet mode BFD is not configured for an SRv6 TE policy. An SRv6 TE policy uses the echo BFD settings configured in SRv6 TE view.

Views

SRv6 TE policy view

Predefined user roles

network-admin

Parameters

disable: Disables the echo packet mode BFD for the SRv6 TE policy.

enable: Enables the echo packet mode BFD for the SRv6 TE policy.

source-ipv6 ipv6-address: Specifies the source IPv6 address of the BFD session. If you do not specify this option, the configuration in SRv6-TE view applies.

template template-name: Specifies a BFD session parameter template by its name, a case-sensitive string of 1 to 63 characters. If you do not specify this option, the template specified in SRv6 TE view applies.

backup-template backup-template-name e: Specifies a BFD session parameter template for the backup SID list. The backup-template-name argument indicates the template name, a case-sensitive string of 1 to 63 characters. If you do not specify this option, the backup template specified in SRv6 TE view applies.

oam-sid sid: Adds an OAM SID to BFD packets to identify the destination node. The sid argument represents the SRv6 SID of the destination node. If you do not specify this option, no OAM SID will be added to BFD packets. At present, the OAM SID must be set to the End.OP SID of the destination node.

Usage guidelines

You can configure the echo packet mode BFD for all SRv6 TE policies globally in SRv6 TE view or for a specific SRv6 TE policy in SRv6 TE policy view. The policy-specific configuration takes precedence over the global configuration. An SRv6 TE policy uses the global configuration only when it has no policy-specific configuration.

If you do not specify the source-ipv6 ipv6-address option in this command for an SRv6 TE policy, you must enable the echo packet mode BFD globally in SRv6 TE view. Otherwise, the device cannot establish a BFD session for the SRv6 TE policy.

The device supports the echo packet mode BFD and the SBFD for an SRv6 TE policy. If both modes are configured for the same SRv6 TE policy, the SBFD takes effect.

Before you execute this command, execute the bfd echo-source-ipv6 command on the local device to specify the source IPv6 address for echo packets.

Examples

# Enable the echo packet mode BFD for SRv6 TE policy 1, and specify the source IPv6 address of the BFD session as 11::11.

<Sysname> system-view

[Sysname] segment-routing ipv6

[Sysname-segment-routing-ipv6] traffic-engineering

[Sysname-srv6-te] policy 1

[Sysname-srv6-te-policy-1] bfd echo enable source-ipv6 11::11

Related commands

bfd echo-source-ipv6 (High Availability Command Reference)

display segment-routing ipv6 te bfd

srv6-policy bfd echo

bfd trigger path-down enable

Use bfd trigger path-down enable to enable BFD session down events to trigger SRv6 TE policy down.

Use undo bfd trigger path-down enable to disable BFD session down events from triggering SRv6 TE policy down.

Syntax

bfd trigger path-down enable

undo bfd trigger path-down enable

Default

A BFD session down event cannot trigger SRv6 TE policy down.

Views

SRv6 TE policy view

Predefined user roles

network-admin

Usage guidelines

By default, when the SRv6 TE policy has multiple valid candidate paths, the following conditions exist:

·     If the hot standby feature is disabled, BFD or SBFD detects all SID lists for only the optimal valid candidate path of the SRv6 TE policy. The device establishes a BFD or SBFD session for each SID list. When all BFD or SBFD sessions go down, the SRv6 TE policy will not select other valid candidate paths, and the device will not forward packets through the SRv6 TE policy.

·     If the hot standby feature is enabled, BFD or SBFD detects all SID lists for the primary and backup paths of the SRv6 TE policy. The device establishes a BFD or SBFD session for each SID list.

¡     If all BFD or SBFD sessions for the primary path go down, the SRv6 TE policy will use the backup path to forward packets without reselecting other valid candidate paths.

¡     If all BFD or SBFD sessions for the primary and backup paths go down, the SRv6 TE policy will not select other valid candidate paths, and the device will not forward packets through the SRv6 TE policy.

If you enable BFD session down events to trigger SRv6 TE policy down, the following conditions exist when the SRv6 TE policy has multiple valid candidate paths:

·     If the hot standby feature is disabled, BFD or SBFD detects all SID lists for only the optimal valid candidate path of the SRv6 TE policy. The device establishes a BFD or SBFD session for each SID list. When all BFD or SBFD sessions go down, the SRv6 TE policy will reselect other valid candidate paths for packet forwarding. If no valid candidate paths are available for the SRv6 TE policy, the device cannot forward packets through the SRv6 TE policy.

·     If the hot standby feature is enabled, BFD or SBFD detects all SID lists for the primary and backup paths of the SRv6 TE policy. The device establishes a BFD or SBFD session for each SID list.

¡     If all BFD or SBFD sessions for the primary path go down, the SRv6 TE policy will use the backup path to forward packets, and reselect the primary and backup paths.

¡     If all BFD or SBFD sessions for the primary and backup paths go down, the SRv6 TE policy will reselect other valid candidate paths as the primary and backup paths. The device will forward packets through the new primary path of the SRv6 TE policy.

·     During optimal path reselection, if no valid candidate paths are available for the SRv6 TE policy, the device cannot forward packets through the SRv6 TE policy.

Before you enable this feature for an SRv6 TE policy, create a BFD or SBFD session for the policy first.

Examples

# Enable BFD session down events to trigger SRv6 TE policy a1 to go down.

<Sysname> system-view

[Sysname] segment-routing ipv6

[Sysname-segment-routing-ipv6] traffic-engineering

[Sysname-srv6-te] policy a1

[Sysname-srv6-te-policy-a1] bfd trigger path-down enable

Related commands

bfd echo

sbfd

srv6-policy bfd echo

srv6-policy sbfd

 

binding-sid

Use binding-sid to configure a BSID for an SRv6 TE policy.

Use undo binding-sid to delete the BSID.

Syntax

binding-sid ipv6 ipv6-address

undo binding-sid

Default

No BSID is configured for an SRv6 TE policy.

Views

SRv6 TE policy view

Predefined user roles

network-admin

Parameters

ipv6 ipv6-address: Specifies the BSID value, which is an IPv6 address.

Usage guidelines

You can use this command to manually configure a BSID for an SRv6 TE policy or leave the SRv6 TE policy to obtain a BSID automatically. If an SRv6 TE policy has only color and endpoint configuration, the SRv6 TE policy will automatically request a BSID.

The manually configured BSID has a higher priority over the automatically obtained BSID.

The BSID configured by this command must be on the locator specified for SRv6 TE policies in SRv6 TE view. Otherwise, the SRv6 TE policy cannot forward packets.

If you execute this command multiple times, the most recent configuration takes effect.

Examples

# Set the BSID of SRv6 TE policy srv6policy to 1000::1.

<Sysname> system-view

[Sysname] segment-routing ipv6

[Sysname-segment-routing-ipv6] traffic engineering

[Sysname-srv6-te] policy srv6policy

[Sysname-srv6-te-policy-srv6policy] binding-sid ipv6 1000::1

candidate-paths

Use candidate-paths to create and enter the candidate path view for an SRv6 TE policy, or enter the existing SRv6 TE policy candidate path view.

Use undo candidate-paths to delete the SRv6 TE policy candidate path view and all the configurations in the view.

Syntax

candidate-paths

undo candidate-paths

Default

The candidate path view for an SRv6 TE policy does not exist.

Views

SRv6 TE policy view

Predefined user roles

network-admin

Examples

# Create the SRv6 TE policy candidate paths instance and enter its view.

<Sysname> system-view

[Sysname] segment-routing ipv6

[Sysname-segment-routing-ipv6] traffic-engineering

[Sysname-srv6-te] policy srv6policy

[Sysname-srv6-te-policy-srv6policy] candidate-paths

[Sysname-srv6-te-policy-srv6policy-path]

color end-point

Use color end-point to configure the color and endpoint attributes of an SRv6 TE policy.

Use undo color to delete the color and endpoint settings of an SRv6 TE policy.

Syntax

color color-value end-point ipv6 ipv6-address

undo color

Default

The color and endpoint attributes of an SRv6 TE policy are not configured.

Views

SRv6 TE policy view

Predefined user roles

network-admin

Parameters

color-value: Specifies the color attribute value, in the range of 0 to 4294967295.

Ipv6-address: Specifies the endpoint IPv6 address.

Usage guidelines

If you execute this command multiple times, the most recent configuration takes effect.

Different SRv6 TE policies cannot have the same color or endpoint IP address.

Examples

# Configure the color as 20 and endpoint IPv6 address as 1000::1 for SRv6 TE policy srv6policy.

<Sysname> system-view

[Sysname] segment-routing ipv6

[Sysname-segment-routing-ipv6] traffic-engineering

[Sysname-srv6-te] policy srv6policy

[Sysname-srv6-te-policy-srv6policy] color 20 end-point ipv6 1000::1

color match dscp

Use color match dscp to create color-to-DSCP mappings for an SRv6 TE policy group.

Use undo color match dscp to delete color-to-DSCP mappings for the SRv6 TE policy group.

Syntax

color color-value match dscp { ipv4 | ipv6 } dscp-value-list

undo color color-value match dscp { ipv4 | ipv6 } dscp-value-list

color color-value match dscp { ipv4 | ipv6 } default

undo color color-value match dscp { ipv4 | ipv6 } [ default ]

Default

No color-to-DSCP mappings are created for an SRv6 TE policy group.

Views

SRv6 TE policy group view

Predefined user roles

network-admin

Parameters

color-value: Specifies the color attribute value of an SRv6 TE policy, in the range of 0 to 4294967295.

ipv4: Specifies DSCP values of IPv4 packets.

ipv6: Specifies DSCP values of IPv6 packets.

dscp-value-list: Specifies a space-separated list of up to 32 DSCP value items. Each item specifies a DSCP value in the range of 0 to 63 or a range of DSCP values in the form of dscp-value1 to dscp-value2. The value for the dscp-value2 argument must be greater than or equal to the value for the dscp-value1 argument.

default: Configures a default color-to-DSCP mapping. Packets that do not match any mappings are steered to the default SRv6 TE policy (the policy specified in the default mapping).

Usage guidelines

You can map the color values of only valid SRv6 TE policies to DSCP values.

You can configure color-to-DSCP mappings separately for the IPv4 address family and IPv6 address family. For a specific address family, a DSCP value can be mapped to only one color value.

Use the color match dscp default command to specify the default SRv6 TE policy for an address family. If no SRv6 TE policy in an SRv6 TE policy group matches a specific DSCP value, the default SRv6 TE policy is used to forward packets containing the DSCP value. Only one default SRv6 TE policy can be specified for an address family.

When the device receives an IPv4 or IPv6 packet that does not match any color-to-DSCP mapping, the device selects a valid SRv6 TE policy for the packet in the following order:

1.     The default SRv6 TE policy specified for the same address family as the packet.

2.     The default SRv6 TE policy specified for the other address family.

3.     The SRv6 TE policy mapped to the smallest DSCP value in the same address family as the packet.

4.     The SRv6 TE policy mapped to the smallest DSCP value in the other address family.

Examples

# In SRv6 TE policy group 10, map DSCP value 30 to color value 20 for IPv4 packets, so that IPv4 packets with a matching DSCP value are steered to the associated SRv6 TE policy.

<Sysname> system-view

[Sysname] segment-routing ipv6

[Sysname-segment-routing-ipv6] traffic-engineering

[Sysname-srv6-te] policy-group 10

[Sysname-srv6-te-policy-group-10] color 20 match dscp ipv4 30

delete-delay

Use delete-delay to configure the deletion delay time for SRv6 TE policies generated by ODN templates.

Use undo delete-delay to restore the default.

Syntax

delete-delay delay-time

undo delete-delay

Default

The deletion delay time for SRv6 TE policies generated by ODN templates is 180000 milliseconds.

Views

SRv6 TE-ODN view

Predefined user roles

network-admin

Parameters

delay-time: Specifies the deletion delay time, in the range of 0 to 600000 milliseconds.

Usage guidelines

ODN automatically creates an SRv6 TE policy based on the specified BGP route. The SRv6 TE policy is deleted immediately when the BGP route is deleted. To avoid packet loss before the new forwarding path is computed, you can use this command to configure a proper deletion delay time for the SRv6 TE policy.

Examples

# Set the deletion delay time to 300000 milliseconds for SRv6 TE policies generated by ODN templates.

<Sysname> system-view

[Sysname] segment-routing ipv6

[Sysname-segment-routing-ipv6] traffic-engineering

[Sysname-srv6-te] on-demand color 1

[Sysname-srv6-te-odn-1] delete-delay 300000

display bgp mirror remote-sid

Use display bgp mirror remote-sid to display remote SRv6 SIDs protected by mirror SIDs.

Syntax

display bgp [ instance instance-name ] mirror remote-sid [ end-dt4 | end-dt46 | end-dt6 ] [ sid ]

Views

Any view

Predefined user roles

network-admin

network-operator

Parameters

instance instance-name: Specifies a BGP instance by its name, a case-sensitive string of 1 to 31 characters. If you do not specify a BGP instance, this command displays information about the default instance.

end-dt4: Specifies remote SRv6 SIDs of the End.DT4 type.

end-dt46: Specifies remote SRv6 SIDs of the End.DT46 type.

end-dt6: Specifies remote SRv6 SIDs of the End.DT6 type.

sid: Specifies a remote SRv6 SID.

Usage guidelines

This command can display information about remote SRv6 SIDs protected by mirror SIDs on MPLS L3VPN over SRv6 or EVPN L3VPN over SRv6 networks.

If you do not specify any parameters, this command displays all remote SRv6 SIDs protected by mirror SIDs.

Examples

# Display remote SRv6 SIDs protected by mirror SIDs on L3VPN over SRv6 networks.

<Sysname> display bgp mirror remote-sid

 

Remote SID: 3001::1:0:0

Remote SID type: End.DT4

Mirror locator: 3001::1/64

VPN instance name: vrf1

 

Remote SID: 3001::1:0:1

Remote SID type: End.DT6

Mirror locator: 3001::1/64

VPN instance name: vrf2

 

Remote SID: 1111:2222:3333:4444::1

Remote SID type: End.DT6

Mirror locator: 1111:2222:3333:4444:5555:6666:7777:8888/64

VPN instance name: vrf1

Table 1 Command output

Field

Description

Remote SID

Remote SRv6 SID.

Remote SID type

Type of the remote SRv6 SID:

·     End.DT4.

·     End.DT6.

·     End.DT46.

Mirror locator

IPv6 prefix and prefix length of the locator for the remote SRv6 SID.

VPN instance name

Name of the VPN instance associated with the remote SRv6 SID.

 

display bgp routing-table ipv6 sr-policy

Use display bgp routing-table ipv6 sr-policy to display route information of a BGP IPv6 SR policy.

Syntax

display bgp [ instance instance-name ] routing-table ipv6 sr-policy [ sr-policy-prefix [ advertise-info ] | { color color-value | end-point ipv6 ipv6-address } * | peer ipv6-address { advertised-routes | received-routes } [ statistics ] | statistics ]

Views

Any view

Predefined user roles

network-admin

network-operator

Parameters

instance instance-name: Specifies a BGP instance by its name, a case-sensitive string of 1 to 31 characters. If you do not specify a BGP instance, this command displays information about the default instance.

sr-policy-prefix: Specifies a BGP IPv6 SR policy route prefix, which is a case-insensitive string of 1 to 512 characters in the format of BGP IPv6 SR policy route/prefix length.

color color-value: Specifies the color attribute value of a BGP IPv6 SR policy, in the range of 0 to 4294967295.

end-point ipv6 ipv6-address: Specifies the endpoint IPv6 address of a BGP IPv6 SR policy.

advertise-info: Displays advertisement information about BGP IPv6 SR policy routes.

peer ipv6-address: Specifies a peer by its IPv6 address.

advertised-routes: Displays detailed information about the BGP IPv6 SR policy routes advertised to the specified peer.

received-routes: Displays detailed information about the BGP IPv6 SR policy routes received from the specified peer.

statistics: Displays route statistics.

Usage guidelines

If you do not specify any parameters, this command displays brief information about all BGP IPv6 SR policy routes.

Examples

# Display brief information about all BGP IPv6 SR policy routes.

<Sysname> display bgp routing-table ipv6 sr-policy

 

 Total number of routes: 1

 

 BGP local router ID is 2.2.2.2

 Status codes: * - valid, > - best, d - dampened, h - history

               s - suppressed, S - stale, i - internal, e - external

               a – additional-path

       Origin: i - IGP, e - EGP, ? - incomplete

 

>i Network : [46][46][8::8]/192

   NextHop : 1::2                                  LocPrf    : 100

   PrefVal : 0                                     MED       : 0

   Path/Ogn: i

Table 2 Command output

Field

Description

Status codes

Status codes of the route.

Origin

Origin of the route:

·     i – IGP—Originated in the AS.

·     e – EGP—Learned through an EGP.

·     ? – incomplete—Unknown origin.

Network

BGP IPv6 SR policy route, comprised of the following elements:

·     SRv6 TE policy candidate path preference.

·     SRv6 TE policy color attribute value.

·     Endpoint IPv6 address.

NextHop

Next hop IP address.

LocPrf

Local preference value.

PrefVal

Preferred value of the route.

MED

Multi-Exit Discriminator attribute value.

Path/Ogn

AS_PATH and ORIGIN attributes of the route:

·     AS_PATH—Records the ASs the route has passed.

·     ORIGIN—Identifies the origin of the route.

# Display detailed information about BGP IPv6 SR policy route [46][46][8::8]/192.

<Sysname> display bgp routing-table ipv6 sr-policy [46][46][8::8]/192

 

BGP local router ID: 5.5.5.1

Local AS number: 100

 

Paths: 1 available, 1 best

 

 BGP routing table information of [46][46][8::8]/192

 Imported route.

 Original nexthop: ::

 Output interface: p1

 Route age       : 19h45m02s

 OutLabel        : NULL

 RxPathID        : 0x0

 TxPathID        : 0x0

 AS-path         : (null)

 Origin          : igp

 Attribute value : MED 0, localpref 100, pref-val 32768

 State           : valid, local, best

 IP precedence   : N/A

 QoS local ID    : N/A

 Traffic index   : N/A

 Tunnel encapsulation info:

    Type: 15 (SR policy)

     Policy name: p1

     Binding SID: 2::6

     Preference: 100

     Path: 1

      Weight: 1

      SIDs: {2::2}

Table 3 Command output

Field

Description

Paths

Route information:

·     available—Number of valid routes.

·     best—Number of optimal routes.

BGP routing table information of [46][46][8::8]/192

Information of the BGP IPv6 SR policy route [46][46][8::8]/192, where:

·     [46] is the SRv6 TE policy candidate path preference

·     [46] is the SRv6 TE policy color attribute value.

·     [8::8] is the endpoint IPv6 address.

From

IP address of the BGP peer that advertised the route.

Rely Nexthop

Recursive nexthop IP address. If no next hop is found by route recursion, this field displays not resolved.

Original nexthop

Original nexthop IP address. If the route was obtained from a BGP update message, the original next hop is the nexthop IP address in the message.

Output interface

Output interface information, which displays the name of the SRv6 TE policy of the forwarding tunnel.

Route age

Time elapsed since the last update for the route.

OutLabel

Outgoing label of the route.

RxPathID

Received Add-Path ID of the route.

TxPathID

Advertised Add-Path ID of the route.

AS-path

AS_PATH attribute of the route.

Origin

Origin of the route:

·     igp—Originated in the AS.

·     egp—Learned through an EGP.

·     incomplete—Unknown origin.

Attribute value

BGP path attributes:

·     MED—MED value.

·     localprefLocal preference value.

·     pref-val—Preferred value.

·     pre—Protocol preference.

State

Current state of the route. Options include:

·     valid—Valid route.

·     internal—Internal route.

·     external—External route.

·     local—Locally generated route.

·     synchronize—Synchronized route.

·     best—Optimal route.

·     delay—Delayed route. The route will be delayed for optimal route selection. This value is available only in detailed information of the route.

·     not preferred for reason—Reason why the route is not selected as the optimal route. For more information, see Table 4.

IP precedence

IP precedence of the route, in the range of 0 to 7. N/A indicates that the route does not support this field.

QoS local ID

QoS local ID of the route, in the range of 1 to 4095. N/A indicates that the route does not support this field.

Traffic index

Traffic index in the range of 1 to 64. N/A indicates that the route does not support this field.

Type: 15 (SR Policy)

The tunnel encryption type is 15, which represents SR policy.

Preference

Candidate path preference.

Binding SID

BSID value

Path

Candidate path.

Weight

Weight of the SID list.

SIDs

List of SIDs. A G-SID is displayed in the format of {sid-value, coc32, prefix-length}, where sid-value is the SID value and prefix-length is the common prefix length.

Table 4 Reason why the route is not selected as the optimal route

Reason

Description

preferred-value

Routes with larger preferred values exist.

local-preference

Routes with larger local preference values exist.

as-path

Routes with smaller AS_PATH attribute values exist.

origin

There are routes whose origin has a higher priority. The route origins are IGP, EGP, and INCOMPLETE in descending order of priority.

med

Routes with smaller MED values exist.

remote-route

There are routes whose remote-route attribute has a higher priority.

BGP selects the optimal route from remote routes in this order:

·     Route learned from an EBGP peer.

·     Route learned from a confederation EBGP peer.

·     Route learned from a confederation IBGP peer.

·     Route learned from an IBGP peer.

igp-cost

Routes with smaller IGP metrics exist.

relydepth

Routes with smaller recursion depth values exist.

rfc5004

A route received from an EBGP peer is the current optimal route. BGP does not change the optimal route when it receives routes from other EBGP peers.

router-id

Routes with smaller router IDs exist.

If one of the routes is advertised by a route reflector, BGP compares the ORIGINATOR_ID of the route with the router IDs of other routes. Then, BGP selects the route with the smallest ID as the optimal route.

cluster-list

Routes with smaller CLUSTER_LIST attribute values exist.

peer-address

Routes advertised by peers with lower IP addresses exist.

received

Earlier learned routes exist.

# Displays advertisement information about the BGP IPv6 SR policy route [46][46][8::8]/192.

<Sysname> display bgp routing-table ipv6 sr-policy [46][46][8::8]/192 advertise-info

 

 

 BGP local router ID: 2.2.2.2

 Local AS number: 1

 

 Paths:   1 best

 

 BGP routing table information of [46][46][8::8]/192(TxPathID:0):

 Advertised to peers (2 in total):

    1::1

    3::3

Table 5 Command output

Field

Description

Paths

Number of optimal paths to reach the destination network.

BGP routing table information of [46][46][8::8]/192(TxPathID:0)

Advertisement information about the BGP IPv6 SR policy route [46][46][8::8]/192. TxPathID represents the advertised Add-Path ID of the route.

Advertised to peers (2 in total)

Indicates the peers to which the route has been advertised. The number in the parentheses indicates the total number of the peers.

# Display statistics about the BGP IPv6 SR policy routes advertised to peer 2::2.

<Sysname> display bgp routing-table ipv6 sr-policy peer 2::2 advertised-routes statistics

 

 Advertised routes total: 2

# Display statistics about the BGP IPv6 SR policy routes received from peer 2::2.

<Sysname> display bgp routing-table ipv6 sr-policy peer 2::2 received-routes statistics

 

 Received routes total: 1

Table 6 Command output

Field

Description

Advertised routes total

Total number of routes advertised to the specified peer.

Received routes total

Total number of routes received from the specified peer.

# Display statistics about BGP IPv6 SR policy routes.

<Sysname> display bgp routing-table ipv6 sr-policy statistics

 

 Total number of routes: 3

display evpn srv6 mirror remote-sid

Use display evpn srv6 mirror remote-sid to display remote SRv6 SIDs protected by mirror SIDs on EVPN VPWS/VPLS over SRv6 networks.

Syntax

display evpn srv6 mirror remote-sid [ sid | type { end-dt2u | end-dx2 } ]

Views

Any view

Predefined user roles

network-admin

network-operator

Parameters

sid: Specifies a remote SRv6 SID.

type: Specifies a type of remote SRv6 SIDs.

end-dt2u: Specifies the End.DT2U type.

end-dx2: Specifies the End.DX2 type.

Usage guidelines

If you do not specify any parameters, this command displays all remote SRv6 SIDs protected by mirror SIDs on EVPN VPWS/VPLS over SRv6 networks.

Examples

# Display all remote SRv6 SIDs protected by mirror SIDs on EVPN VPWS/VPLS over SRv6 networks.

<Sysname> display evpn srv6 mirror remote-sid

Total number of SIDs: 2

 

End.DT2U SID        : 111::100

Mirror locator      : 111::/64

VSI name            : svpls

 

End.DX2 SID         : 111::200

Mirror locator      : 111::/64

Xconnect group name : svpws

Connection name     : pw1

Table 7 Command output

Field

Description

End.DT2U SID

Remote End.DT2U SID.

End.DX2 SID

Remote End.DX2 SID.

Mirror locator

IPv6 prefix and prefix length of the locator for the remote SRv6 SID.

VSI name

Name of the VSI associated with the remote SRv6 SID.

Xconnect group name

Name of the cross-connect group associated with the remote SRv6 SID.

Connection name

Name of the cross-connect associated with the remote SRv6 SID.

display segment-routing ipv6 te database

Use display segment-routing ipv6 te database to display SRv6 TE policy database information.

Syntax

display segment-routing ipv6 te database [ link | node | prefix | srv6-sid ]

Views

Any view

Predefined user roles

network-admin

network-operator

Parameters

link: Displays the link information reported by the IGP to the SRv6 TE policy database.

node: Displays the node information reported by the IGP to the SRv6 TE policy database.

prefix: Displays the prefix information reported by the IGP to the SRv6 TE policy database.

srv6-sid: Displays the SRv6 SID information reported by the IGP to the SRv6 TE policy database.

Usage guidelines

If you do not specify any parameters, this command displays all information reported by the IGP to the SRv6 TE policy database.

Examples

# Display link information reported by the IGP to the SRv6 TE policy database.

<Sysname> display segment-routing ipv6 te database link

 

Link-state information: Link, count: 2

    IS-IS P2P:

    Local node: System ID 0000.0000.0011.00, IS level: 1

    Remote node: System ID 0000.0000.0012.00, IS level: 1

    IPv6 local address: 100::1

    IPv6 remote address: 100::2

    Topology ID: 2

      Link source: ProcID 1, TLV type: MT-IS-reach, FragID: 0x0

        TE local router ID: 1.1.1.1

        TE remote router ID: 2.2.2.2

        TE administrative group: 0x80000000

        TE maximum bandwidth (kbits/sec): 1000

        TE maximum reservable bandwidth (kbits/sec): 1000

        TE class  0 unreserved bandwidth (kbits/sec): 1000

        TE class  1 unreserved bandwidth (kbits/sec): 1000

        TE class  2 unreserved bandwidth (kbits/sec): 1000

        TE class  3 unreserved bandwidth (kbits/sec): 1000

        TE class  4 unreserved bandwidth (kbits/sec): 1000

        TE class  5 unreserved bandwidth (kbits/sec): 1000

        TE class  6 unreserved bandwidth (kbits/sec): 1000

        TE class  7 unreserved bandwidth (kbits/sec): 1000

        TE class  8 unreserved bandwidth (kbits/sec): 0

        TE class  9 unreserved bandwidth (kbits/sec): 0

        TE class 10 unreserved bandwidth (kbits/sec): 0

        TE class 11 unreserved bandwidth (kbits/sec): 0

        TE class 12 unreserved bandwidth (kbits/sec): 0

        TE class 13 unreserved bandwidth (kbits/sec): 0

        TE class 14 unreserved bandwidth (kbits/sec): 0

        TE class 15 unreserved bandwidth (kbits/sec): 0

        TE metric: 10

        IGP metric: 10

        SRLG:11

        Flag: 0, Average delay(us): 1000

        Flag: 0, Min delay(us): 500, Max delay(us): 1500

        Delay variation(us): 400

        Remaining Bandwidth (bytes/sec): 0

        Available Bandwidth (bytes/sec): 0

        Utilized Bandwidth (bytes/sec): 0

        SR/SRv6 link maximum SID depths:

          MPLS MSD    : 5

          MPLS MSD    : 5

        Application Specific Link Attributes

          SA-Length: 1, UDA-Length: 1

          Standard Applications: 0x10 Flex-Algo

          User Defined Applications: 0x10 Flex-Algo

            Ext Admin Group:

              0x00000004  0x00000000  0x00000000  0x00000000

              0x00000000  0x00000000  0x00000000  0x80000000

            TE metric: 10

            TE administrative group: 0x80000000

            TE maximum bandwidth (kbits/sec): 1000

            TE maximum reservable bandwidth (kbits/sec): 1000

            TE class  0 unreserved bandwidth (kbits/sec): 1000

            TE class  1 unreserved bandwidth (kbits/sec): 1000

            TE class  2 unreserved bandwidth (kbits/sec): 1000

            TE class  3 unreserved bandwidth (kbits/sec): 1000

            TE class  4 unreserved bandwidth (kbits/sec): 1000

            TE class  5 unreserved bandwidth (kbits/sec): 1000

            TE class  6 unreserved bandwidth (kbits/sec): 1000

            TE class  7 unreserved bandwidth (kbits/sec): 1000

            Flag: 0, Average delay(us): 1000

            Flag: 0, Min delay(us): 500, Max delay(us): 1500

            Delay variation(us): 400

            Remaining bandwidth (bytes/sec): 0

            Utilized bandwidth (bytes/sec): 0

          SRLG: 11

        SRv6 End.X SID

          SID            : 1111::104

          Function type  : End.X (no PSP, no USP)

          Algorithm      : 0

          Weight         : 0

          Flags (B/S/P/C): 0/0/0/0

        SRv6 End.X SID

          SID            : 1111::105

          Function type  : End.X with PSP

          Algorithm      : 0

          Weight         : 0

          Flags (B/S/P/C): 0/0/0/0

Table 8 Command output

Field

Description

Link-state information: Link

Link information.

count

Number of links reported by the IGP to the SRv6 TE policy database.

Public instance

Public network instance.

MT-ID

Topology information:

·     0—Standard topology.

·     2—IPv6 unicast topology.

Link count

Number of links in the IS-IS instance.

IS-IS P2P

IS-IS P2P link.

IS-IS to DIS

IS-IS link to the pseudonode.

IS-IS from DIS

IS-IS link from the pseudonode.

Local node

Local node of the link.

Remote node

Remote node of the link.

System ID

System ID of the node.

IS level

IS-IS level of the node.

Topology ID

Topology ID:

·     0—IPv4 topology.

·     2—IPv6 topology.

Link source

Advertisement source of the link.

ProcID

IS-IS process ID.

TLV type

TLV type:

·     none—Invalid TLV.

·     nbr—Neighbor TLV.

·     wide-nbr—Wide neighbor TLV.

·     ip-internal—IP internal reachability TLV.

·     ip-external—IP external reachability TLV.

·     router-id—Router ID TLV.

·     ip-extended—Extended IP reachability TLV.

·     ipv6-reach—IPv6 reachability TLV.

·     ipv6 router-id—IPv6 router ID TLV.

·     MT-IS-reach—Multi-topology IS reachability TLV.

·     MT-IP-reach—Multi-topology IP reachability TLV.

·     MT-ipv6-reach—Multi-topology IPv6 reachability TLV.

·     srlg—SRLG TLV.

·     locator—Locator TLV.

·     rtr-cap—Routing capability TLV.

·     unknown—Unknown TLV.

FragID

Fragment ID of the packet.

TE class  XX unreserved bandwidth (kbits/sec)

Reservable bandwidth for the specified TE class.

SR/SRv6 link maximum SID depths

Maximum SID Depths (MSD) information for the SR-MPLS or SRv6 link.

MPLS MSD

Maximum number of SIDs that SR-MPLS can encapsulate into a packet.

SRv6 LAN End.X SID

IPv6 SR End.X SID sub TLV information about the LAN adjacency link.

SRv6 End.X SID

IPv6 SR End.X SID sub TLV information about the P2P adjacency link.

SID

SRv6 SID.

Flags (B/S/P/C)

IPv6 SR flag information:

·     B—Backup flag. If set, it indicates link protection.

·     S—Collection flag. If set, it indicates a collection of neighbor devices. The SID can be assigned to multiple neighbors.

·     P—Permanent flag. If set, it indicates that the SID can be permanently assigned to the neighbor even if the neighbor relationship is reestablished.

·     C—SRv6 SID compression flag. If set, it indicates that the SID is compressed.

Common prefix length

Common prefix length of the compressed SID.

Node length

Node length of the compressed SID.

Function length

Function length of the compressed SID.

Args length

Args length of the compressed SID.

# Display node information reported by the IGP to the SRv6 TE policy database.

<Sysname> display segment-routing ipv6 te database node

 

Link-state information: Node, count: 2

  Public instance, MT-ID: 2, IS-IS instance ID: 0, Node count: 2

    IS-IS node: System ID 0000.0000.0011.00, IS level: 1

      Node source: ProcID 1, TLV type: none, FragID: 0x0

        Node topology ID: 0 2

        Node flag: 0x1

        Node name: isis1

        IS-IS area: 00.0000

        TE local router ID: 1.1.1.1

        SRv6 capability flag (O/C): 0/0

        SR/SRv6 node maximum SID depths:

          MPLS MSD    : 5

          Segment Left: 11

          End Pop MSD : 11

          H.Encaps MSD: 11

          End D MSD   : 11

        Flex-Algo: 128

          Priority: 254

          MetricType: 1

          MFlag: 0

          SRPLS_NODE_ATTR_FLEXALGO ExAny

            0x00000002

          SRPLS_NODE_ATTR_FLEXALGO InAll

            0x00000004

          SRPLS_NODE_ATTR_FLEXALGO InAny

            0x00000000  0x00000000  0x00000000  0x00000000

            0x00000000  0x00000000  0x00000000  0x80000000

          SRLGInfo: 1

Table 9 Command output

Field

Description

Link-state information: Node

Node information.

count

Number of nodes reported by the IGP to the SRv6 TE policy database.

Public instance

Public network instance.

MT-ID

Topology information:

·     0—Standard topology.

·     2—IPv6 unicast topology.

Node count

Number of nodes in the IS-IS instance.

System ID

System ID of the node.

IS level

IS-IS level of the node.

Node source

Advertisement source of the node.

ProcID

IS-IS process ID.

TLV type

TLV type:

·     none—Invalid TLV.

·     nbr—Neighbor TLV.

·     wide-nbr—Wide neighbor TLV.

·     ip-internal—IP internal reachability TLV.

·     ip-external—IP external reachability TLV.

·     router-id—Router ID TLV.

·     ip-extended—Extended IP reachability TLV.

·     ipv6-reach—IPv6 reachability TLV.

·     ipv6 router-id—IPv6 router ID TLV.

·     MT-IS-reach—Multi-topology IS reachability TLV.

·     MT-IP-reach—Multi-topology IP reachability TLV.

·     MT-ipv6-reach—Multi-topology IPv6 reachability TLV.

·     srlg—SRLG TLV.

·     locator—Locator TLV.

·     rtr-cap—Routing capability TLV.

·     unknown—Unknown TLV.

FragID

Fragment ID of the packet.

Node flag

Flag of the node. 0x01 indicates root node.

SRv6 capability flag

SRv6 capability flag:

·     O—O flag in the SRH. If set, it indicates that the node supports OAM.

·     C—SRv6 SID compression flag. If set, it indicates that the SID is compressed.

SR/SRv6 link maximum SID depths

MSD information for the SR-MPLS or SRv6 link.

MPLS MSD

Maximum number of SIDs that SR-MPLS can encapsulate into a packet.

Segment Left

Maximum value of the Segments Left field in the SRH.

End Pop MSD

Maximum number of SIDs in the SRH to which the node can apply PSP or USP behavior.

For a packet destined to the local SID on the device, the device is the endpoint of the packet.

H.Encaps MSD

Maximum number of SIDs that can be included as part of the H.Encaps behavior.

End D MSD

Maximum number of SIDs in the SRH when performing decapsulation associated with End.Dx behaviors.

# Display prefix information reported by the IGP to the SRv6 TE policy database.

<Sysname> display segment-routing ipv6 te database prefix

 

Link-state information: Prefix, count: 11

  Public instance, MT-ID: 2, IS-IS instance ID: 0, Prefix count: 10

    IS-IS IPv6 prefix:

    Local node: System ID 0000.0000.0011.00, IS level: 1

    Prefix: 1111::/64, Topology ID: 2

      Prefix source: ProcID 1, TLV type: ipv6-reach, FragID: 0x0

        Route tag: 100

        Prefix metric: 0

        Locator information

          Metric     : 0

          Algorithm  : 0

          Flags (D/A): 0/0

    IS-IS IPv6 prefix:

    Local node: System ID 0000.0000.0011.00, IS level: 1

    Prefix: 1112::/64, Topology ID: 2

      Prefix source: ProcID 1, TLV type: locator, FragID: 0x0

        Locator information

          Metric     : 0

          Algorithm  : 128

          Flags (D/A): 0/0

Table 10 Command output

Field

Description

Link-state information: Prefix

Prefix information.

count

Number of prefixes reported by the IGP to the SRv6 TE policy database.

Public instance

Public network instance.

MT-ID

Topology information:

·     0—Standard topology.

·     2—IPv6 unicast topology.

Prefix count

Number of prefixes in the IS-IS instance.

Local node

Local node information of the link.

System ID

System ID of the node.

IS level

IS-IS level of the node.

Prefix

Prefix address.

Topology ID

Topology ID:

·     0—IPv4 topology.

·     2—IPv6 topology.

Prefix source

Advertisement source of the prefix.

ProcID

IS-IS process ID.

TLV type

TLV type:

·     none—Invalid TLV.

·     nbr—Neighbor TLV.

·     wide-nbr—Wide neighbor TLV.

·     ip-internal—IP internal reachability TLV.

·     ip-external—IP external reachability TLV.

·     router-id—Router ID TLV.

·     ip-extended—Extended IP reachability TLV.

·     ipv6-reach—IPv6 reachability TLV.

·     ipv6 router-id—IPv6 router ID TLV.

·     MT-IS-reach—Multi-topology IS reachability TLV.

·     MT-IP-reach—Multi-topology IP reachability TLV.

·     MT-ipv6-reach—Multi-topology IPv6 reachability TLV.

·     srlg—SRLG TLV.

·     locator—Locator TLV.

·     rtr-cap—Routing capability TLV.

·     unknown—Unknown TLV.

FragID

Fragment ID of the packet.

Route tag

Tag value of the interface associated with the prefix.

Locator information

Locator sub-TLV information carried in the prefix.

Algorithm

ID of the algorithm associated with the locator:

·     0—SPF algorithm.

·     128 to 288—Flex-Algo algorithm.

Flags (D/A)

Locator flag:

·     D—Leakage flag, set when the Locator TLV cannot be leaked from Level-1 to Level-2.

·     A—Anycast locator flag, set when the locator is an Anycast Locator.

# Display SRv6 SID information reported by the IGP to the SRv6 TE policy database.

<Sysname> display segment-routing ipv6 te database srv6-sid

 

Link-state information: SRv6 SID, count: 6

  Public instance, MT-ID: 2, IS-IS instance ID: 0, SRv6 SID count: 5

    IS-IS SRv6 SID:

    Local node: System ID 0000.0000.0011.00, IS level: 1

    SID: 1111::1, Topology ID: 2

      SID source: ProcID 1, TLV type: locator, FragID: 0x0

        SRv6 endpoint function

          Function type: End with PSP

          Algorithm    : 0

          Flags        : 0x0

Table 11 Command output

Field

Description

Link-state information: SRv6 SID

SRv6 SID information.

count

Number of SRv6 SIDs reported by the IGP to the SRv6 TE policy database.

Public instance

Public network instance.

MT-ID

Topology information:

·     0—Standard topology.

·     2—IPv6 unicast topology.

SRv6 SID count

Number of SRv6 SIDs in the IS-IS instance.

IS-IS SRv6 SID

SRv6 SID advertised by IS-IS.

Local node

Local node information of the link.

System ID

System ID of the node.

IS level

IS-IS level of the node.

SID

SRv6 SID.

Topology ID

Topology ID:

·     0—IPv4 topology.

·     2—IPv6 topology.

SID source

Advertisement source of the SID.

ProcID

IS-IS process ID.

TLV type

TLV type:

·     none—Invalid TLV.

·     nbr—Neighbor TLV.

·     wide-nbr—Wide neighbor TLV.

·     ip-internal—IP internal reachability TLV.

·     ip-external—IP external reachability TLV.

·     router-id—Router ID TLV.

·     ip-extended—Extended IP reachability TLV.

·     ipv6-reach—IPv6 reachability TLV.

·     ipv6 router-id—IPv6 router ID TLV.

·     MT-IS-reach—Multi-topology IS reachability TLV.

·     MT-IP-reach—Multi-topology IP reachability TLV.

·     MT-ipv6-reach—Multi-topology IPv6 reachability TLV.

·     srlg—SRLG TLV.

·     locator—Locator TLV.

·     rtr-cap—Routing capability TLV.

·     unknown—Unknown TLV.

FragID

Fragment ID of the packet.

SRv6 endpoint function

SRv6 SID function.

Algorithm

Algorithm value.

Flags

Compression flag:

·     0x01—End SID compression flag.

·     0x10—End.X SID compression flag.

display segment-routing ipv6 te bfd

Use display segment-routing ipv6 te bfd to display BFD information for SRv6 TE policies.

Syntax

display segment-routing ipv6 te bfd [ down | policy { { color color-value | end-point ipv6 ipv6-address } * | name policy-name } | up ]

Views

Any view

Predefined user roles

network-admin

network-operator

Parameters

down: Displays BFD information for SRv6 TE policies in down state.

policy: Displays BFD information for the specified SRv6 TE policy.

color color-value: Specifies the color attribute value of an SRv6 TE policy, in the range of 0 to 4294967295.

end-point ipv6 ipv6-address: Specifies the IPv6 address of the endpoint of an SRv6 TE policy.

name policy-name: Specifies the name of an SRv6 TE policy, a case-sensitive string of 1 to 59 characters.

up: Displays BFD information for SRv6 TE policies in up state.

Usage guidelines

If you do not specify any parameters, this command displays BFD information for all SRv6 TE policies.

Examples

# Display BFD information for all SRv6 TE policies.

<Sysname> display segment-routing ipv6 te policy bfd

 Color: 10

 Endpoint: 4::4

 Policy name: p1

 State: Up

   Nid: 2149580801

   BFD type: ECHO

   Source IPv6: 1::1

   State: Up

   Timer: 37

   VPN index: 1

   Template name: abc

Table 12 Command output

Field

Description

Color

Color attribute value of an SRv6 TE policy.

Endpoint

Endpoint IP address of the SRv6 TE policy.

Policy name

Name of the SRv6 TE policy.

State

SBFD session state:

·     Up

·     Down

·     Delete

Nid

Forwarding entry index for an SID list.

BFD type

The current software version supports only the BFD echo mode.

Source IPv6

Source IPv6 address of the BFD session.

Timer

BFD session timer, in seconds.

VPN index

Index of the VPN instance.

Template name

Name of the echo mode BFD template.

display segment-routing ipv6 te forwarding

Use display segment-routing ipv6 te forwarding to display SRv6 TE forwarding information.

Syntax

display segment-routing ipv6 te forwarding [ policy { name policy-name | { color color-value | end-point ipv6 ipv6-address } * } ] [ verbose ]

Views

Any view

Predefined user roles

network-admin

network-operator

Parameters

policy: Displays forwarding information of the specified SRv6 TE policy. If you do not specify an SRv6 TE policy, this command displays forwarding information of all SRv6 TE policies.

name policy-name: Specifies the name of an SRv6 TE policy, a case-sensitive string of 1 to 59 characters.

color color-value: Specifies the color of an SRv6 TE policy, in the range of 0 to 4294967295.

end-point ipv6 ip-address: Specifies the endpoint IPv6 address of an SRv6 TE policy.

verbose: Displays detailed SRv6 TE forwarding information. If you do not specify this keyword, the command displays brief SRv6 TE forwarding information.

Examples

# Display brief information about all SRv6 TE policies.

<Sysname> display segment-routing ipv6 te forwarding

Total forwarding entries: 1

 

Policy name/ID: p1/0

 Binding SID: 8000::1

 Forwarding index: 2150629377

 Main path:

   Seglist Name/ID: 1

     Seglist forwarding index: 2149580801

     Weight: 1

     Outgoing forwarding index: 2148532225

       Interface: GE0/0/1

       Nexthop: FE80::6CCE:CBFF:FE91:206

 Backup path:

   Seglist Name/ID: 2

     Seglist forwarding index: 2149580802

       Weight: 1

       Outgoing forwarding index: 2148532226

         Interface: GE0/0/2

         Nexthop: FE80::6CCE:CBFF:FE91:207

# Display detailed information about all SRv6 TE policies.

<Sysname> display segment-routing ipv6 te forwarding verbose

 

Total forwarding entries: 1

 

Policy name/ID: p1/0

 Binding SID: 8000::1

 Forwarding index: 2150629377

 Inbound statistics:

   Total octets: 525

   Total packets: 1

   Erroneous packets: 0

   Dropped packets: 0

   Input rate in last 300 seconds:

     0 bits/sec, 0 pkts/sec

   Input rate in last statistical period (20 sec):

     0 bits/sec, 0 pkts/sec

 Outbound statistics:

   Total octets: 750

   Total packets: 1

   Erroneous packets: 0

   Dropped packets: 0

   Output rate in last 300 seconds:

     0 bits/sec, 0 pkts/sec

   Output rate in last statistical period (20 sec):

     0 bits/sec, 0 pkts/sec

 Main path:

   Seglist Name/ID: 1

     Seglist forwarding index: 2149580801

     Weight: 1

     Outbound statistics:

       Total octets: 750

       Total packets: 1

       Erroneous packets: 0

       Dropped packets: 0

       Output rate in last 300 seconds:

         0 bits/sec, 0 pkts/sec

       Output rate in last statistical period (20 sec):

         0 bits/sec, 0 pkts/sec

       Output service-class 4:

         416 octets, 4 packets,

         0 errors, 0 dropped packets

     Outgoing forwarding index: 2148532225

       Interface: GE0/0/1

       Nexthop: FE80::6CCE:CBFF:FE91:206

         Path ID: 1

         SID list: {44::44, 45::45}

       Outbound statistics:

         Total octets: 750

         Total packets: 1

         Erroneous packets: 0

         Dropped packets: 0

         Output rate in last 300 seconds:

           0 bits/sec, 0 pkts/sec

         Output rate in last statistical period (20 sec):

           0 bits/sec, 0 pkts/sec

         Output service-class 4:

           416 octets, 4 packets,

           0 errors, 0 dropped packets

 

Backup path:

   Seglist Name/ID: 2

     Seglist forwarding index: 2149580802

     Weight: 1

       Outgoing forwarding index: 2148532226

         Interface: GE0/0/2

         Nexthop: FE80::6CCE:CBFF:FE91:207

           Path ID: 2

           SID list: {44::44, 45::47}

Table 13 Command output

Field

Description

Total forwarding entries

Total number of SRv6 TE forwarding entries.

Policy name/ID

Name/ID of an SRv6 TE policy.

Binding SID

SID value of the ingress node.

Forwarding index

Index of the SRv6 TE policy forwarding entry.

Inbound statistics

Statistics on inbound traffic (the traffic received by the BSID).

Total octets

Total number of octets forwarded.

Total packets

Total number of packets forwarded.

Erroneous packets

Number of erroneous packets.

Dropped packets

Number of dropped packets.

Outbound statistics

Statistics on outbound traffic.

Output service-class

Statistics on outbound traffic with a specific service class.

Service class 255 means that the SRv6 TE policy is not configured with a service class and thus has the lowest forwarding priority.

Main path

Main path for traffic forwarding.

Backup path

Backup path for traffic forwarding.

Seglist Name/ID

Name or ID of the SID list.

Seglist forwarding index

Forwarding entry index of the SID list.

Weight

Weight of the SID list.

Outgoing forwarding index

The nexthop forwarding entry index of the first address in the SID list.

Interface

Brief name of the outgoing interface.

Nexthop

Next hop IPv6 address.

Path ID

ID of the SRv6 TE policy candidate path.

SID list

List of SIDs.

SID

SID of the node, which is an IPv6 address.

Common prefix length

Common prefix length of the G-SID.

G-SID length

Length of the G-SID.

display segment-routing ipv6 te policy

Use display segment-routing ipv6 te policy to display SRv6 TE policy information.

Syntax

display segment-routing ipv6 te policy [ odn | pce ] [ name policy-name | down | up | { color color-value | end-point ipv6 ipv6-address } * ]

Views

Any view

Predefined user roles

network-admin

network-operator

Parameters

odn: Specifies SRv6 TE policies created by ODN.

pce: Specifies SRv6 TE policies whose SID lists are computed by a PCE.

name policy-name: Specifies an SRv6 TE policy by its name, a case-sensitive string of 1 to 59 characters.

down: Specifies the SRv6 TE policies in down state.

up: Specifies the SRv6 TE policies in up state.

color color-value: Specifies the color of an SRv6 TE policy, in the range of 0 to 4294967295.

end-point ipv6 ipv6-address: Specifies the endpoint IPv6 address of an SRv6 TE policy.

Usage guidelines

If you do not specify any parameters, this command displays information about all SRv6 TE policies.

Examples

# Display information about all SRv6 TE policies.

<Sysname> display segment-routing ipv6 te policy

 

Name/ID: p1/0

 Color: 10

 Endpoint: 1000::1

 Name from BGP:

 BSID:

  Mode: Dynamic              Type: Type 2              Request state: Succeeded

  Current BSID: 8000::1      Explicit BSID: -          Dynamic BSID: 8000::1

 Reference counts: 3

 Flags: A/BS/NC

 Status: Up

 AdminStatus: Not configured

 Up time: 2020-03-09 16:09:40

 Down time: 2020-03-09 16:09:13

 Hot backup: Enabled

 Statistics: Enabled

  Statistics by service class: Enabled

 Drop-upon-invalid: Enabled

 BFD trigger path-down: Enabled

 SBFD: Enabled

  Remote: 1000

  SBFD template name: abc

  SBFD backup-template name: -

  OAM SID: -

 BFD Echo: Not configured

 Forwarding index: 2150629377

 Association ID: 1

 Service-class: -

 Rate-limit: 15000 kbps

 PCE delegation: Not configured

 PCE delegate report-only: Enabled

 Encaps reduced: Not configured

 Encaps include local End.X: Not configured

 Candidate paths state: Configured

 Candidate paths statistics:

  CLI paths: 1          BGP paths: 0          PCEP paths: 0          ODN paths: 0

 Candidate paths:

  Preference : 20

   CpathName:

   ProtoOrigin: CLI        Discriminator: 30

   Instance ID: 0          Node address: 0.0.0.0

   Originator:  0, ::

   Optimal: Y                   Flags: V/A

   Dynamic: Not configured

     PCEP: Not configured

   Explicit SID list:

    ID: 1                      Name: Sl1

    Weight: 1                  Forwarding index: 2149580801

    State: Up                  State(Echo BFD): Down

    Active path MTU: 1600 bytes

Table 14 Command output

Field

Description

Name/ID

SRv6 TE policy name/ID.

Color

Color attribute of the SRv6 TE policy.

Endpoint

Endpoint IPv6 address of the SRv6 TE policy. If the endpoint is not configured, this field displays None.

Name from BGP

Name of the SRv6 TE policy obtained from BGP. If no SRv6 TE policy was obtained from BGP, this field is empty.

BSID

SID value of the ingress node.

Mode

BSID configuration mode:

·     Explicit—Manually configured.

·     Dynamic—Dynamically requested.

·     None—Not configured.

Type

BSID type:

·     None—Not configured.

·     Type 2—IPv6 address.

Request state

BSID request state:

·     Failed.

·     Succeeded.

Explicit BSID

Manually configured BSID.

Dynamic BSID

Dynamically requested BSID.

Reference counts

Number of times that the SRv6 TE policy has been referenced.

Flags

SRv6 TE policy flags:

·     A—Active SRv6 TE policy.

·     C—Optimal SRv6 TE policy.

·     N—In optimal SRv6 TE policy selection progress.

·     BA—Requesting BSID.

·     BS—Optimal BSID.

·     D—Deleted SRv6 TE policy.

·     CF—Conflicted with an existing BSID.

·     NC—Manually configured SRv6 TE policy.

·     NB—SRv6 TE policy obtained from a BGP route.

Status

SRv6 TE policy state:

·     Up

·     Down

AdminStatus

Administrative state of the SRv6 TE policy:

·     Configured—The policy is not shut down by the shutdown command.

·     Not configured—The policy is shut down by the shutdown command.

Up time

Date and time when the SRv6 TE policy became up.

Down time

Date and time when the SRv6 TE policy became down.

Hot backup

Hot standby status for the SRv6 TE policy:

·     Enabled.

·     Disabled.

·     Not configured.

Statistics

Traffic statistics status for the SRv6 TE policy:

·     Disabled.

·     Enabled.

·     Not configured.

Statistics by service class

Service class based traffic statistics status for the SRv6 TE policy:

·     Enabled.

·     Not configured.

Drop-upon-invalid

Drops traffic when the SRv6 TE policy becomes invalid:

·     Disabled.

·     Enabled.

BFD trigger path-down

Places the SRv6 TE policy to down state when the BFD session for the SRv6 TE policy goes down:

·     Disabled.

·     Enabled.

SBFD

SBFD status for the SRv6 TE policy:

·     Enabled.

·     Disabled.

·     Not configured.

Remote

Remote discriminator of the SBFD session.

SBFD template name

Name of the SBFD template for the main path.

SBFD backup-template name

Name of the SBFD template for the backup SID list.

OAM SID

OAM SID added to SBFD packets or Echo BFD packets.

BFD Echo

Echo packet mode BFD status for the SRv6 TE policy:

·     Enabled.

·     Disabled.

·     Not configured.

Source IPv6 address

Source IPv6 address of the echo packet mode BFD session.

Echo template name

Name of the echo BFD template.

Echo backup-template name

Name of the echo BFD template for the backup SID list.

Forwarding index

Forwarding entry index of the SRv6 TE policy.

Service-class

Service class value of the SRv6 TE policy. If the default service class is used, this field displays a hyphen (-).

Rate-limit

Rate limit for the SRv6 TE policy. If no rate limit is configured, this field displays a hyphen (-).

PCE delegation

PCE delegation state for the SRv6 TE policy:

·     Disabled.

·     Enabled.

·     Not configured.

PCE delegate report-only

Only reports SRv6 TE policy information without delegating the SRv6 TE policy to the PCE:

·     Disabled.

·     Enabled.

·     Not configured.

Encaps reduced

Encaps.Red encapsulation mode for the SRv6 TE policy:

·     Disabled.

·     Enabled.

·     Not configured.

Encaps include local End.X

Local End.X SID encapsulation for the SRv6 TE policy:

·     Disabled.

·     Enabled.

·     Not configured.

Candidate paths state

Whether candidate paths are configured:

·     Configured.

·     Not configured.

Candidate paths statistics

Candidate paths statistics by path origin.

CLI paths

Number of manually configured candidate paths.

BGP paths

Number of candidate paths obtained from BGP SRv6 Policy routes.

PCEP paths

This field is not supported in the current software version.

Number of candidate paths obtained from PCEP.

ODN paths

Number of candidate paths created by ODN.

Candidate paths

SRv6 TE policy candidate path information.

Preference

SRv6 TE policy candidate path preference.

CPathName

Name of the candidate path obtained from a BGP route. If no path name was obtained, this field is empty.

ProtoOrigin

Protocol that obtained the SRv6 TE policy:

·     PCEP—The SRv6 TE policy was obtained through PCEP. (This value is not supported in the current software version.)

·     BGP—The SRv6 TE policy was obtained through BGP.

·     CLI—The SRv6 TE policy was locally configured.

·     Unknown—The SRv6 TE policy origin is unknown.

Discriminator

Discriminator of the SRv6 TE policy.

Instance ID

BGP instance ID. A value of 0 indicates that the device does not obtain SRv6 TE policy information from BGP peers.

Node address

BGP node address.

For an SRv6 TE policy obtained from a BGP peer, the node address is the Router ID of the BGP peer.

For an SRv6 TE policy obtained in other methods, the node address is 0.0.0.0.

Originator: ASN, Peer-address

The SRv6 TE policy was obtained through BGP.

·     ASN—AS number. A value of 0 indicates that the device does not obtain SRv6 TE policy information from BGP peers.

·     Peer-address—BGP peer address, which is the router ID of the BGP peer for an SRv6 TE policy obtained from a BGP peer. For a manually configured SRv6 TE policy, the peer address is ::.

Optimal

Whether the path is the optimal path:

·     Y—Yes.

·     N—No.

Flags

Flags of the SRv6 TE policy candidate path:

·     V—Valid candidate path.

·     A—Active candidate path.

·     None—No candidate path.

Dynamic

Dynamic SID list computation: Configured or Not configured.

PCEP

Configuration state of PCEP: Configured or Not configured.

Explicit SID list

Explicit SID list in the candidate path of the SRv6 TE policy.

ID

SID list ID.

Name

SID list name.

Weight

Weight of the SID list in the candidate path.

Forwarding index

Forwarding entry index of the SID list.

Association ID

Group ID of the SRv6 TE policy candidate path. An SRv6 TE policy can be identified by its group ID.

State

SID list state:

·     UP.

·     DOWN.

State(type)

SBFD or echo BFD session state for the SID list:

·     Up.

·     Down.

·     Path Inactive—The candidate path contains no available SID list.

·     Unknown—The SBFD or echo BFD result is unknown.

If SBFD or echo BFD is not configured, this field displays a hyphen (-).

Active path MTU

Active path MTU of the SID list, which equals the SRv6 path MTU minus the reserved path MTU.

display segment-routing ipv6 te policy last-down-reason

Use display segment-routing ipv6 te policy last-down-reason to display information about the most recent down event for SRv6 TE policies.

Syntax

display segment-routing ipv6 te policy last-down-reason [ binding-sid bsid | color color-value endpoint ipv6 ipv6-address | policy-name policy-name ]

Views

Any view

Predefined user roles

network-admin

network-operator

Parameters

binding-sid bsid: Specifies an SRv6 TE policy by its BSID, which is an IPv6 address.

color color-value endpoint ipv6 ipv6-address: Specifies an SRv6 TE policy by its color attribute value and endpoint IPv6 address. The value range for the color attribute value is 0 to 4294967295.

policy-name policy-name: Specifies an SRv6 TE policy by its name, a case-sensitive string of 1 to 59 characters.

Usage guidelines

If you do not specify any parameters, this command displays information about the most recent down event for all SRv6 TE policies.

Examples

# Display information about the most recent down event for SRv6 TE policy abc.

<Sysname> display segment-routing ipv6 te policy last-down-reason name abc

Name/ID: p1/1

  Color: 10

  Endpoint: 4::4

  BSID: 5000::2

  Up time: 2020-06-23 15:42:14

  Down time: 2020-06-23 15:41:15

  Down reason: Candidate path invalid segment list

  Candidate paths:

    Preference : 10

      CPathName:

      Explicit SID list:

        ID: 1                     Name: s1

        Up time: 2020-06-23 15:42:14

        Down time: 2020-06-23 15:41:15

        Down reason: No SRv6 SID Out

Table 15 Command output

Field

Description

Name/ID

Name/ID of an SRv6 TE policy.

Color

Color attribute value of the SRv6 TE policy.

Endpoint

Endpoint address of the SRv6 TE policy. If the endpoint address is not configured, this field displays None.

BSID

SID value of the ingress node.

Up time

Time when the SRv6 TE policy came up.

Down time

Time when the SRv6 TE policy went down.

Down reason

Reason for the down event of the SRv6 TE policy:

·     Admin down—The SRv6 TE policy has been shut down by the shutdown command.

·     No Endpoint.

·     No candidate path.

·     No valid candidate path.

·     Candidate path invalid segment list—All SID lists in the candidate path are down.

·     Policy unconfigured—The SRv6 TE policy is being deleted.

·     Internal error.

Candidate paths

Candidate path information of the SRv6 TE policy.

Preference

Preference of the candidate path.

CPathName

Name of the candidate path. If no candidate path name is obtained from BGP, this field is empty.

Explicit SID List

SID list in the candidate path of the SRv6 TE policy.

ID

SID list index.

Name

SID list name.

Up time

Time when the SID list came up.

Down time

Time when the SID list went down.

Down reason

Reason for the down event of the SID list:

·     No SID list—The SID list does not exist.

·     No SRv6 SID Out—The first SID in the SID list has no outgoing interface.

·     Internal error.

display segment-routing ipv6 te policy statistics

Use display segment-routing ipv6 te policy statistics to display SRv6 TE policy statistics.

Syntax

display segment-routing ipv6 te policy statistics

Views

Any view

Predefined user roles

network-admin

network-operator

Examples

# Display SRv6 TE policy statistics.

<Sysname> display segment-routing ipv6 te policy statistics

 

         IPv6 TE Policy Database Statistics

Total policies: 1 (1 up 0 down)

    Configured: 1 (1 up 0 down)

    From BGP: 0 (Added 0 deleted 0   0 up 0 down)

    From ODN: 0 (Added 0 deleted 0   0 up 0 down)

    From PCE: 0 (Added 0 deleted 0   0 up 0 down)

 

Total candidate paths: 1

    Configured: 1

    From BGP: 0 (Added 0 deleted 0)

Total SID lists: 1 (1 up 0 down)

    Configured: 1 (1 up 0 down)

    From BGP: 0 (0 up 0 down)

    From ODN: 0 (Added 0 deleted 0   0 up 0 down)

    From PCE: 0 (Added 0 deleted 0   0 up 0 down)

SRv6 TE policy group resource information:

  Max resources: 1024

  Used resources: 0

  Upper threshold: 717 (70%)

  Lower threshold: 102 (10%)

SRv6 TE policy resource information:

  Max resources: 1024

  Used resources: 1

  Upper threshold: 512 (50%)

  Lower threshold: 102 (10%)

SID list resource information:

  Max resources: 4096

  Used resources: 1

  Upper threshold: 3277 (80%)

  Lower threshold: 1638 (40%)

Forwarding path resource information:

  Max resources: 65535

  Used resources: 1

  Upper threshold: 26214 (40%)

  Lower threshold: 13107 (20%)

Table 16 Command output

Field

Description

Total policies

Total number of SRv6 TE policies:

·     up—Number of SRv6 TE policies in up state.

·     down—Number of SRv6 TE policies in down state.

Configured

Number of manually configured SR policies.

·     up—Number of SRv6 TE policies in up state.

·     down—Number of SRv6 TE policies in down state.

From BGP

Number of SR policies learned through BGP.

·     Added—Number of BGP-added SRv6 TE policies.

·     deleted—Number of BGP-deleted SRv6 TE policies.

·     up—Number of SRv6 TE policies in up state.

·     down—Number of SRv6 TE policies in down state.

From ODN

Number of SRv6 TE policies created by ODN.

·     Added—Number of ODN-added SRv6 TE policies.

·     deleted—Number of ODN-deleted SRv6 TE policies.

·     up—Number of SRv6 TE policies in up state.

·     down—Number of SRv6 TE policies in down state.

From PCE

Number of SRv6 TE policies created by PCE.

·     Added—Number of PCE-added SRv6 TE policies.

·     deleted—Number of PCE-deleted SRv6 TE policies.

·     up—Number of SRv6 TE policies in up state.

·     down—Number of SRv6 TE policies in down state.

Total candidate paths

Total number of SRv6 TE policy candidate paths.

Total SID lists

Total number of SID lists.

Max resources

Total number of resources.

Upper threshold

Upper resource threshold.

Lower threshold

Lower resource threshold.

display segment-routing ipv6 te policy status

Use display segment-routing ipv6 te policy status to display status information about SRv6 TE policies.

Syntax

display segment-routing ipv6 te policy status [ policy-name policy-name ]

Views

Any view

Predefined user roles

network-admin

network-operator

Parameters

policy-name policy-name: Specifies an SRv6 TE policy by its name, a case-sensitive string of 1 to 59 characters. If you do not specify this option, the command displays status information about all SRv6 TE policies.

Usage guidelines

The device executes the check items for an SRv6 TE policy one by one.

If the result for a check item is Passed, it means that the SRv6 TE policy passed the check for this item and the next item check starts.

If the result for a check item is Failed, the subsequent items will not be checked and the check result for those items is displayed as a hyphen (-).

Examples

# Display status information about all SRv6 TE policies.

<Sysname> display segment-routing ipv6 te policy status

Name/ID: p1/0

Status: Up

  Check admin status                  : Passed

  Check for endpoint & color          : Passed

  Check for segment list              : Passed

  Check valid candidate paths         : Passed

  Check for BSIDs                     : Passed

Table 17 Command output

Field

Description

Name/ID

Name/ID of an SRv6 TE policy.

Status

State of the SRv6 TE policy:

·     Up.

·     Down.

Check admin status

Check the administrative status of the SRv6 TE policy:

·     Passed—The SRv6 TE policy is administratively up.

·     Failed—The SRv6 TE policy is administratively shut down by using the shutdown command.

Check for endpoint & color

Check for the endpoint and color configuration for the SRv6 TE policy:

·     Passed—The endpoint address and color are configured.

·     Failed—The endpoint address or color is not configured.

Check for segment lists

Check for valid SID lists in the candidate paths of the SRv6 TE policy:

·     Passed—A valid SID list exists.

·     Failed—No valid SID list exists.

Check valid candidate paths

Check for an up candidate path in the SRv6 TE policy:

·     Passed—An up candidate path exists.

·     Failed—No up candidate path exists.

Check for BSIDs

Check for the binding SID configuration for the SRv6 TE policy:

·     Passed—A BSID is specified for the SRv6 TE policy.

·     Failed—No BSID is specified for the SRv6 TE policy.

display segment-routing ipv6 te policy-group

Use display segment-routing ipv6 te policy-group to display information about SRv6 TE policy groups.

Syntax

display segment-routing ipv6 te policy-group [ group-id ] [ verbose ]

Views

Any view

Predefined user roles

network-admin

network-operator

Parameters

group-id: Specifies an SRv6 TE policy group by its ID in the range of 1 to 4294967295. If you do not specify this argument, the command displays information about all SRv6 TE policy groups.

verbose: Displays detailed SRv6 TE policy information. If you do not specify this keyword, the command displays brief SRv6 TE policy information.

Examples

# Display brief information about all SRv6 TE policy groups.

<Sysname> display segment-routing ipv6 te policy-group

Total number of policy groups: 1

 

GroupID      GroupState    UPMappings     TotalMappings

10           Up            26             26

# Display detailed information about all SRv6 TE policy groups.

<Sysname> display segment-routing ipv6 te policy-group verbose

Total number of policy groups: 1

 

GroupID: 10                        GroupState: Up

GroupNID: 2151677953               Referenced: 1

Flags: A

Endpoint: 4::4

UP/Total Mappings: 26/26

  Color       Type       DSCP

  10          IPv4       10, 12, 14, 16, 18, 20

Table 18 Command output

Field

Description

UPMappings

Number of up (valid) color-to-DSCP mappings in the SRv6 TE policy group.

TotalMappings

Total number of color-to-DSCP mappings in the SRv6 TE policy group.

GroupNID

Index of the forwarding entry for the SRv6 TE policy group.

Referenced

Number of times that the SRv6 TE policy group has been used.

Flags

Flags of the SRv6 TE policy group:

·     A—Assign the forwarding entry index of the SRv6 TE policy group.

·     F—Issue the forwarding entry of the SRv6 TE policy group.

·     W—Waiting for assigning the forwarding entry index of the SRv6 TE policy group.

·     D—Delete the SRv6 TE policy group.

·     None—The SRv6 TE policy group is in initialized or stable state.

Endpoint

Destination node IP address of the SRv6 TE policy group. None indicates that the endpoint is not configured.

UP/Total Mappings

Number of valid color-to-DSCP mappings/total number of configured color-to-DSCP mappings in the SRv6 TE policy group.

Color

Color value

Type

Packet type: IPv4 or IPv6.

DSCP

DSCP value.

display segment-routing ipv6 te sbfd

Use display segment-routing ipv6 te sbfd to display SBFD information for SRv6 TE policies.

Syntax

display segment-routing ipv6 te sbfd [ down | policy { { color color-value | end-point ipv6 ipv6-address } * | name policy-name } | up ]

Views

Any view

Predefined user roles

network-admin

network-operator

Parameters

down: Displays SBFD information for SRv6 TE policies in down state.

policy: Displays SBFD information for the specified SRv6 TE policy.

color color-value: Specifies the color attribute value of an SRv6 TE policy, in the range of 0 to 4294967295.

end-point ipv6 ipv6-address: Specifies the IPv6 address of the endpoint of an SRv6 TE policy.

name policy-name: Specifies the name of an SRv6 TE policy, a case-sensitive string of 1 to 59 characters.

up: Displays SBFD information for SRv6 TE policies in up state.

Usage guidelines

If you do not specify any parameters, this command displays SBFD information for all SRv6 TE policies.

Examples

# Display SBFD information for all SRv6 TE policies.

<Sysname> display segment-routing ipv6 te policy sbfd

 Color: 10

 Endpoint: 4::4

 Policy name: p1

 State: Down

 

   Nid: 2149580801

   BFD type: SBFD

   Remote Discr: 100

   State: Down

   Timer: 30

   VPN index: 0

   Template name: abc

Table 19 Command output

Field

Description

Color

Color attribute value of an SRv6 TE policy.

Endpoint

Endpoint IP address of the SRv6 TE policy.

Policy name

Name of the SRv6 TE policy.

State

SBFD session state:

·     Up.

·     Down.

·     Delete.

Nid

Forwarding entry index for an SID list.

BFD type

The current software version supports only the SBFD type.

Remote Discr

Remote discriminator.

Timer

SBFD session timer, in seconds.

display segment-routing ipv6 te segment-list

Use display segment-routing ipv6 te segment-list to display SRv6-TE SID list information.

Syntax

display segment-routing ipv6 te segment-list [ name seglist-name | id id-value ]

Views

Any view

Predefined user roles

network-admin

network-operator

Parameters

name segment-list-name: Specifies a SID list by its name, a case-sensitive string of 1 to 128 characters.

id id-value: Specifies a SID list by its ID. The value range for the SID list ID is 1 to 4294967295.

Usage guidelines

If you do not specify a SID list name or ID, this command displays information about all SRv6-TE SID lists.

To view SID list ID information, execute the display segment-routing ipv6 te policy command.

Examples

# Display information about all SRv6-TE SID lists.

<Sysname> display segment-routing ipv6 te segment-list

 

Total Segment lists: 1

 

Name/ID: A/1

 Origin: CLI

 Status: Up

 Nodes: 1

 

  Index    : 1                            SID: 1::2

  Type     : Type 2                     Flags: None

  Coc Type : -           Common prefix length: 0

Table 20 Command output

Field

Description

Total Segment lists

Number of SID lists.

Name/ID

SID list name/ID.

Origin

Origin of the SID list. Options include:

·     CLI—Locally configured in the CLI.

·     BGP—Issued by BGP.

·     PCE—Issued by a PCE.

If the SID list does not have a valid origin, this field displays a hyphen (-).

Status

SID list status, Down or Up.

Nodes

Number of nodes in the SID list.

Index

Node index.

SID

SID value (IPv6 address) of the node.

Type

SID type of the node:

·     None—Not configured.

·     Type 2—IPv6 address.

Flags

Node flags, which are not defined and displayed as None.

COC type

Compression type of the SID, which is COC32, representing the 32-bit compression.

If the SID is not compressed, this field displays a hyphen (-).

Common prefix length

Common prefix length of the G-SID.

display segment-routing ipv6 te source-sid

Use display segment-routing ipv6 te source-sid to display information about SRv6 SIDs collected from the LS database.

Syntax

display segment-routing ipv6 te source-sid [ end | end-x | sid ]

Views

Any view

Predefined user roles

network-admin

network-operator

Parameters

end: Displays End SID information.

end-x: Displays End.X SID information.

sid: Displays SRv6 SID information.

Usage guidelines

If you do not specify any parameters, this command displays information about all SRv6 SIDs collected from the LS database.

Examples

# Display information about all SRv6 SIDs collected from the LS database.

<Sysname> display segment-routing ipv6 te source-sid

 

  SID         : 11::1:0:8, Count: 1

   Type       : End.X(LAN), Topology ID: 0

   Instance ID: 0

    Source    : IS-IS, ProcID 100, IS-Level-1

    Node      : 0000.0000.0019.00

    Local     : 0000.0000.0019.00

    Peer      : 0000.0000.0022.01

 

  SID         : 12:1:2:3:0:1::, Count: 2

   Type       : End, Topology ID: 0

   Instance ID: 0

    Source    : IS-IS, ProcID 100, IS-Level-1

    Node      : 0000.0000.0019.00

   Type       : End, Topology ID: 2

   Instance ID: 0

    Source    : IS-IS, ProcID 100, IS-Level-1

    Node      : 0000.0000.0019.00

 

  SID         : 12:1:2:3:0:6::, Count: 2

   Type       : End.X, Topology ID: 0

   Instance ID: 0

    Source    : IS-IS, ProcID 100, IS-Level-1

    Node      : 0000.0000.0019.00

    Local     : 2001:1::2

    Peer      : 2001:1::16

   Type       : End.X, Topology ID: 2

   Instance ID: 0

    Source    : IS-IS, ProcID 100, IS-Level-1

    Node      : 0000.0000.0019.00

    Local     : 2001:1::2

    Peer      : 2001:1::16

Table 21 Command output

Field

Description

SID

SRv6 SID.

Count

Number of advertising sources for the SID.

Type

SID type:

·     End.

·     End.X.

·     End.X (LAN).

ProcID

Process ID.

IS-Level-X

IS level on the node: IS-Level-1 or IS-Level-2.

Node

Node where the SID advertising source resides.

Local

For an End.X SID, this field displays the system ID of the IS-IS process to which the SID-associated local interface belongs.

If the link type is P2P and the IPv6 link attribute is enabled for the IS-IS process, this field displays the IPv6 address of the SID-associated local interface.

Peer

For an End.X SID, this field displays the system ID of the IS-IS process to which the SID-associated neighbor interface belongs.

If the link type is P2P and the IPv6 link attribute is enabled for the IS-IS process, this field displays the IPv6 address of the SID-associated neighbor interface.

distribute bgp-ls

Use distribute bgp-ls to enable the device to distribute SRv6 TE policy candidate path information to BGP-LS.

Use undo distribute bgp-ls to restore the default.

Syntax

distribute bgp-ls

undo distribute bgp-ls

Default

The device does not distribute SRv6 TE policy candidate path information to BGP-LS.

Views

SRv6 TE view

Predefined user roles

network-admin

Usage guidelines

After this command is executed, the device distributes SRv6 TE policy candidate path information to BGP-LS. BGP-LS advertises the SRv6 TE policy candidate path information in routes to meet application requirements.

Examples

# Enable the device to distribute SRv6 TE policy candidate path information to BGP-LS.

<Sysname> system-view

[Sysname] segment-routing-ipv6

[Sysname-segment-routing-ipv6] traffic-engineering

[Sysname-srv6-te] distribute bgp-ls

drop-upon-invalid

Use drop-upon-invalid to configure the device to drop traffic when an SRv6 TE policy becomes invalid.

Use undo drop-upon-invalid to restore the default.

Syntax

drop-upon-invalid enable

undo drop-upon-invalid enable

Default

The drop-upon-invalid feature is not configured for an SRv6 TE policy. The configuration in SRv6 TE view applies.

Views

SRv6 TE policy view

Predefined user roles

network-admin

Parameters

enable: Enables dropping traffic when the SRv6 TE policy becomes invalid.

Usage guidelines

Enable this feature for an SRv6 TE policy if you want to use only the SRv6 TE policy to forward traffic.

By default, if all forwarding paths of an SRv6 TE policy become invalid, the device forwards the packets through IPv6 routing table lookup based on the packet destination IPv6 addresses.

After you execute the drop-upon-invalid enable command, the device drops the packets if all forwarding paths of the SRv6 TE policy become invalid.

The drop-upon-invalid enable command does not take effect in the following cases:

·     BSID request failed or BSID conflicted for the SRv6 TE policy. To view the BSID request state, see the Request state field in the display segment-routing ipv6 te policy command output.

·     The SRv6 TE policy is invalid. To check the SRv6 TE policy validity, see the Forwarding index field in the display segment-routing ipv6 te policy command output. If the value is 0, the SRv6 TE policy is invalid.

The drop-upon-invalid command configured on the remote device does not affect an SRv6 TE policy generated based on a BGP SRv6 TE policy route. The SRv6 TE policy is controlled by only the drop-upon-invalid command configured on the local device.

Examples

# Enable the device to drop traffic when SRv6 TE policy a1 becomes invalid.

<Sysname> system-view

[Sysname] segment-routing ipv6

[Sysname-segment-routing-ipv6] traffic-engineering

[Sysname-srv6-te] policy a1

[Sysname-srv6-te-policy-a1] drop-upon-invalid enable

dynamic (SRv6 TE policy path preference view)

Use dynamic to create and enter SRv6 TE policy path preference dynamic view, or enter the existing SRv6 TE policy path preference dynamic view.

Use undo dynamic to delete the SRv6 TE policy path preference dynamic view and all the configuration in the view.

Syntax

dynamic

undo dynamic

Default

The SRv6 TE policy path preference dynamic view does not exist.

Views

SRv6 TE policy path preference view

Predefined user roles

network-admin

Usage guidelines

In SRv6 TE policy path preference dynamic view, you can enable the device to dynamically create SID lists for an SRv6 TE policy candidate path.

Examples

# Create and enter SRv6 TE policy path preference dynamic view.

<Sysname> system-view

[Sysname] segment-routing ipv6

[Sysname-segment-routing-ipv6] traffic-engineering

[Sysname-srv6-te] policy 1

[Sysname-srv6-te-policy-1] candidate-paths

[Sysname-srv6-te-policy-1-path] preference 20

[Sysname-srv6-te-policy-1-path-pref-20] dynamic

[Sysname-srv6-te-policy-1-path-pref-20-dyna]

dynamic (SRv6 TE-ODN view)

Use dynamic to create and enter SRv6 TE-ODN dynamic view, or enter the existing SRv6 TE-ODN dynamic view.

Use undo dynamic to delete the SRv6 TE-ODN dynamic view and all the configuration in the view.

Syntax

dynamic

undo dynamic

Default

The SRv6 TE-ODN dynamic view does not exist.

Views

SRv6 TE-ODN view

Predefined user roles

network-admin

Usage guidelines

In SRv6 TE-ODN dynamic view, you can enable dynamic generation of SRv6 TE policies and dynamic generation of SID lists for SRv6 TE policy candidate paths.

Examples

# Create and enter SRv6 TE-ODN dynamic view.

<Sysname> system-view

[Sysname] segment-routing ipv6

[Sysname-segment-routing-ipv6] traffic-engineering

[Sysname-srv6-te] on-demand color 1

[Sysname-srv6-te-odn-1] dynamic

[Sysname-srv6-te-odn-1-dynamic]

encapsulation-mode encaps include local-end.x

Use encapsulation-mode encaps include local-end.x to configure local End.X SID encapsulation in the SRH of the packets forwarded by an SRv6 TE policy.

Use undo encapsulation-mode encaps include local-end.x to restore the default.

Syntax

encapsulation-mode encaps include local-end.x [ disable ]

undo encapsulation-mode encaps include local-end.x

Default

The local End.X SID encapsulation is not configured for an SRv6 TE policy, and the local End.X SID encapsulation setting configured in SRv6 TE view applies.

Views

SRv6 TE policy view

Predefined user roles

network-admin

Parameters

disable: Disables encapsulating the local End.X SID into the SRH header of packets forwarded by an SRv6 TE policy. If you do not specify this keyword, the local End.X SID will be encapsulated into the SRH of the packets.

Usage guidelines

If the traffic steering mode is BSID and the SRv6 SID of the ingress node is an End.X SID, the device does not encapsulate the End.X SID into the SRH by default.

To obtain complete SRv6 forwarding path information from the SRH of packets, use this command to configure the device to encapsulate the local End.X SID in the SRH.

You can configure the local End.X SID encapsulation for all SRv6 TE policies globally in SRv6 TE view or for a specific SRv6 TE policy in SRv6 TE policy view. The policy-specific configuration takes precedence over the global configuration. An SRv6 TE policy uses the global configuration only when it has no policy-specific configuration.

Examples

# Include the End.X SID in the SRH of the packets forwarded by an SRv6 TE policy.

<Sysname> system-view

[Sysname] segment-routing ipv6

[Sysname-segment-routing-ipv6] traffic-engineering

[Sysname-srv6-te] policy 1

[Sysname-srv6-te-policy-1] encapsulation-mode encaps include local-end.x

Related commands

srv6-policy encapsulation-mode encaps include local-end.x

encapsulation-mode encaps reduced

Use encapsulation-mode encaps reduced to configure the encapsulation mode for an SRv6 TE policy.

Use undo encapsulation-mode encaps reduced to restore the default.

Syntax

encapsulation-mode encaps reduced [ disable ]

undo encapsulation-mode encaps reduced

Default

The encapsulation mode is not configured for an SRv6 TE policy, and the encapsulation mode configured in SRv6 TE view applies.

Views

SRv6 TE policy view

Predefined user roles

network-admin

Parameters

disable: Uses the Encaps encapsulation mode. If you do not specify this keyword, the SRv6 TE policy uses the Encaps.Red encapsulation mode.

Usage guidelines

If the traffic steering mode is BSID, packets whose destination IPv6 address is the same as the BSID of an SRv6 TE policy will be forwarded by the SRv6 TE policy. In this case, the device needs to encapsulate the SID list of the SRv6 TE policy for the packets. The following encapsulation modes are available:

·     Encaps—Normal encapsulation mode. It adds an IPv6 header and SRH to the original packets. All SIDs in the SID list of the SRv6 TE policy are encapsulated in the SRH.

·     Encaps.Red—Reduced encapsulation mode. It adds an IPv6 header and SRH to the original packets. The first SID in the SID list of the SRv6 TE policy is not encapsulated in the SRH to reduce the SRH length. All other SIDs in the SID list are encapsulated in the SRH.

In Encaps or Encaps.Red encapsulation mode, the destination IPv6 address in the IPv6 header is the first SID in the SID list of the SRv6 TE policy. The source IPv6 address is the IPv6 address specified by using the encapsulation source-address command.

You can configure the encapsulation mode for all SRv6 TE policies globally in SRv6 TE view or for a specific SRv6 TE policy in SRv6 TE policy view. The policy-specific configuration takes precedence over the global configuration. An SRv6 TE policy uses the global configuration only when it has no policy-specific configuration.

Examples

# Configure SRv6 TE policy 1 to use the Encaps.Red encapsulation.

<Sysname> system-view

[Sysname] segment-routing ipv6

[Sysname-segment-routing-ipv6] traffic-engineering

[Sysname-srv6-te] policy 1

[Sysname-srv6-te-policy-1] encapsulation-mode encaps reduced

Related commands

encapsulation source-address

srv6-policy encapsulation-mode encaps reduced

end-point

Use end-point to configure the endpoint IP address for the SRv6 TE policy group.

Use undo end-point to restore the default.

Syntax

end-point ipv6 ipv6-address

undo end-point ipv6

Default

No endpoint address is configured for the SRv6 TE policy group.

Views

SRv6 TE policy group view

Predefined user roles

network-admin

Parameters

ipv6 ipv6-address: Specifies the endpoint IPv6 address for the SRv6 TE policy group.

Usage guidelines

The SRv6 TE policies added to the SRv6 TE policy group must use the same endpoint IPv6 address as the SRv6 TE policy group.

If you execute this command multiple times, the most recent configuration takes effect.

Examples

# Configure the endpoint address as 100::2 for SRv6 TE policy group 10.

<Sysname> system-view

[Sysname] segment-routing ipv6

[Sysname-segment-routing-ipv6] traffic-engineering

[Sysname-srv6-te] policy-group 10

[Sysname-srv6-te-policy-group-10] end-point ipv6 100::2

explicit segment-list

Use explicit segment-list to specify a SID list for a candidate path.

Use undo explicit segment-list to delete a SID list of a candidate path or restore the default weight and global path MTU of a SID list.

Syntax

explicit segment-list segment-list-name [ path-mtu mtu-value | weight weight-value ]

undo explicit segment-list segment-list-name [ path-mtu | weight ]

Default

No SID lists are specified for an SRv6 TE policy candidate path.

Views

SRv6 TE policy path preference view

Predefined user roles

network-admin

Parameters

segment-list-name: Specifies an SID list name, a case-sensitive string of 1 to 128 characters.

path-mtu mtu-value: Specifies the path MTU (in bytes) for the SID list. The value range for the mtu-value argument is 1280 to 1500. If you do not specify this option, the global path MTU set in SRv6 view applies to the SID list.

weight weight-value: Specifies a weight for the SID list, in the range of 1 to 4294967295. The default weight is 1.

Usage guidelines

An SRv6 TE policy uses the SID list specified for the highest-preference candidate path as a traffic forwarding subpath.

An SRv6 TE policy candidate path can have multiple SID lists. All the SID lists can be used to forward traffic for load sharing based on their weights. Assume SID lists a, b, and c are assigned weights x, y, z, respectively. The load of SID list a is x/(x+y+z) of the total traffic.

If you assign weight values for the same SID list multiple times, the most recent configuration takes effect.

You can configure the path MTU for all SRv6-TE candidate paths globally in SRv6 view or for a specific forwarding path in SRv6 TE policy path preference view. The path-specific configuration takes precedence over the global configuration. A forwarding path identified by a SID list of an SRv6 TE policy uses the global configuration only when it has no path-specific configuration.

The path MTU of a SID list minus the global reserved path MTU is the active MTU of the SID list. The source node uses the active MTU of the SID list or the IPv6 MTU of the physical interface, whichever is smaller, as the actual MTU to send packets. The active MTU of a SID list must be greater than or equal to 1280 bytes.

Examples

# Configure SID list abc for the SRv6 TE policy candidate path with preference 20, and the set the SID list weight to 20.

<Sysname> system-view

[Sysname] segment-routing ipv6

[Sysname-segment-routing-ipv6] traffic-engineering

[Sysname-srv6-te] policy a1

[Sysname-srv6-te-policy-a1] candidate-paths

[Sysname-srv6-te-policy-a1-path] preference 20

[Sysname-srv6-te-policy-a1-path-pref20] explicit segment-list abc weight 20

Related commands

path-mtu

segment-list

fast-reroute mirror delete-delay

Use fast-reroute mirror delete-delay to configure the mirror FRR deletion delay time.

Use undo fast-reroute mirror delete-delay to restore the default.

Syntax

fast-reroute mirror delete-delay delete-delay-time

undo fast-reroute mirror delete-delay

Default

The mirror FRR deletion delay time is 60 seconds.

Views

IS-IS IPv6 unicast address family view

OSPFv3 view

Predefined user roles

network-admin

Parameters

delete-delay-time: Specifies the deletion delay time, in the range of 1 to 21845 seconds.

Usage guidelines

In an egress protection scenario, the transit node deletes the mirror FRR path after completing route convergence. If the deletion occurs before the ingress node switches traffic back from the mirror FRR path, the traffic will be dropped because of no mirror FRR path.

To resolve this issue, you can configure a proper mirror FRR deletion delay time on the transit node to delay the deletion of the mirror FRR route. So, packets can be forwarded over the mirror FRR path before the ingress finishes the path switchover.

Examples

# In IS-IS process 1, set the mirror FRR deletion delay time to 100 seconds.

<Sysname> system-view

[Sysname] isis 1

[Sysname-isis-1] address-family ipv6

[Sysname-isis-1-ipv6] fast-reroute mirror delete-delay 100

# In OSPFv3 process 1, set the mirror FRR deletion delay time to 100 seconds.

<Sysname> system-view

[Sysname] ospfv3 1

[Sysname-ospfv3-1] fast-reroute mirror delete-delay 100

Related commands

fast-reroute mirror enable

fast-reroute mirror enable

Use fast-reroute mirror enable to enable egress protection.

Use undo fast-reroute mirror enable to disable egress protection.

Syntax

fast-reroute mirror enable

undo fast-reroute mirror enable

Default

Egress protection is disabled.

Views

IS-IS IPv6 unicast address family view

OSPFv3 view

Predefined user roles

network-admin

Usage guidelines

Egress protection enables an SRv6 node to compute a backup path (mirror FRR path) for the egress node based on the End.M SID carried in a received IPv6 IS-IS route or OSPFv3 route. When the egress node fails, the transit node can forward traffic to the node that protects the egress node according to the End.M SID.

Examples

# Enable IS-IS egress protection.

<Sysname> system-view

[Sysname] isis 1

[Sysname-isis-1] address-family ipv6

[Sysname-isis-1-ipv6] fast-reroute mirror enable

# Enable OSPFv3 egress protection.

<Sysname> system-view

[Sysname] ospfv3 1

[Sysname-ospfv3-1] fast-reroute mirror enable

forwarding statistics

Use forwarding statistics to configure traffic forwarding statistics for an SRv6 TE policy.

Use undo forwarding statistics to restore the default.

Syntax

forwarding statistics { disable | [ service-class ] enable }

undo forwarding statistics

Default

An SRv6 TE policy uses the traffic forwarding statistics configuration in SRv6 TE view.

Views

SRv6 TE policy view

Predefined user roles

network-admin

Parameters

disable: Disables the SRv6 TE policy forwarding statistics.

enable: Enables the SRv6 TE policy forwarding statistics.

service-class: Enables the SRv6 TE policy forwarding statistics by service class. This feature collects statistics on the total traffic as well as the traffic of each service class that are forwarded by the SRv6 TE policy tunnel. If you do not specify this keyword, the device only collects statistics on the total traffic forwarded by the SRv6 TE policy tunnel.

Usage guidelines

You can configure traffic forwarding statistics for all SRv6 TE policies globally in SRv6 TE view or for a specific SRv6 TE policy in SRv6 TE policy view. The policy-specific configuration takes precedence over the global configuration. An SRv6 TE policy uses the global configuration only when it has no policy-specific configuration.

If you execute this command multiple times, the most recent configuration takes effect.

Examples

# Enable traffic forwarding statistics for SRv6 TE policy 1.

<Sysname> system-view

[Sysname] segment-routing ipv6

[Sysname-segment-routing-ipv6] traffic-engineering

[Sysname-srv6-te] policy 1

[Sysname-srv6-te-policy-1] forwarding statistics enable

Related commands

display segment-routing ipv6 te forwarding

reset segment-routing ipv6 te forwarding statistics

srv6-policy forwarding statistic enable

srv6-policy forwarding statistic interval

import-route sr-policy

Use import-route sr-policy to enable BGP to redistribute routes from the BGP IPv6 SR policy.

Use undo import-route sr-policy to restore the default.

Syntax

import-route sr-policy

undo import-route sr-policy

Default

BGP does not redistribute BGP IPv6 SR policy routes.

Views

BGP IPv6 SR policy address family

Predefined user roles

network-admin

Usage guidelines

After you execute this command, the system will redistribute the local BGP IPv6 SR policy routes to the BGP routing table and advertise the routes to IBGP peers. Then, the peers can forward traffic based on the SRv6 TE policy.

Examples

# In BGP IPv6 SR policy address family view, enable BGP to redistribute routes from the BGP IPv6 SR policy.

<Sysname> system-view

[Sysname] bgp 100

[Sysname-bgp-default] address-family ipv6 sr-policy

[Sysname-bgp-default-srpolicy-ipv6] import-route sr-policy

index

Use index to add a node to a SID list.

Use undo index to delete a node from a SID list.

Syntax

index index-number ipv6 ipv6-address

index index-number coc32 ipv6 ipv6-address common-prefix-length

undo index index-number

Default

No nodes exist in a SID list.

Views

SID list view

Predefined user roles

network-admin

Parameters

index-number: Specifies the node index, in the range of 1 to 65535.

ipv6 ipv6-address: Specifies the IPv6 address of the node.

coc32: Adds the COC flavor. It indicates that the next node of the current node is a 32-bit G-SID.

common-prefix-length: Specifies the length of the common prefix of the next G-SID. The value range for this argument is 1 to 94.

Usage guidelines

When you add G-SIDs to a SID list, the common prefix length configured by this command must be the same as that of the locator where the next node belongs.

When you add G-SIDs to a SID list, make sure the following conditions are met:

·     The SRv6 SID for the previous node of the G-SID must be End(COC32) SID or End.X(COC32) SID.

·     The SRv6 SID for the last node does not contain the COC flavor. That is, you cannot use the index index-number coc32 ipv6 command to specify the SRv6 SID for the penultimate node.

Examples

# Add a node to SID list abc, and set the node index to 1 and IPv6 address to 1000::1.

<Sysname> system-view

[Sysname] segment-routing ipv6

[Sysname-segment-routing-ipv6] traffic-engineering

[Sysname-srv6-te] segment-list abc

[Sysname-srv6-te-sl-abc] index 1 ipv6 1000::1

# Add nodes to SID list text as follows:

·     Add a node whose index is 10, IPv6 address is 100::1, next node as 32-bit G-SID, and the common prefix length of the G-SID is 64.

·     Add a node whose index is 20, IPv6 address is 200::1:0:0, next node as 32-bit G-SID, and the common prefix length of the G-SID is 64.

·     Add a node whose index is 30, IPv6 address is 200::2:0:0, next node as 32-bit G-SID, and the common prefix length of the G-SID is 64.

·     Add a node whose index is 40, IPv6 address is 200::3:0:0, next node as 32-bit G-SID, and the common prefix length of the G-SID is 64.

·     Add a node whose index is 50 and IPv6 address is 200::4:0:0.

·     Add a node whose index is 60 and IPv6 address is 300::3.

<Sysname> system-view

[Sysname] segment-routing ipv6

[Sysname-segment-routing-ipv6] traffic-engineering

[Sysname-srv6-te] segment-list text

[Sysname-srv6-te-sl-abc] index 10 coc32 ipv6 100::1 64

[Sysname-srv6-te-sl-abc] index 20 coc32 ipv6 200::1:0:0 64

[Sysname-srv6-te-sl-abc] index 30 coc32 ipv6 200::2:0:0 64

[Sysname-srv6-te-sl-abc] index 40 coc32 ipv6 200::3:0:0:0 64

[Sysname-srv6-te-sl-abc] index 50 ipv6 200::4:0:0

[Sysname-srv6-te-sl-abc] index 60 ipv6 300::3

Related commands

locator

srv6 compress enable

mirror remote-sid delete-delay

Use mirror remote-sid delete-delay to configure the deletion delay time for remote SRv6 SID mappings with VPN instances/cross-connects/VSIs.

Use undo mirror remote-sid delete-delay to restore the default.

Syntax

mirror remote-sid delete-delay delete-delay-time

undo mirror remote-sid delete-delay

Default

The deletion delay time for remote SRv6 SID and VPN instance/cross-connect/VSI mappings is 60 seconds.

Views

SRv6 view

Predefined user roles

network-admin

Parameters

delete-delay-time: Specifies the deletion delay time, in the range of 1 to 21845 seconds.

Usage guidelines

In an egress protection scenario, if the egress node and the egress node's protection node are disconnected, the protection node will delete the BGP routes received from the egress node. The remote SRv6 SID and VPN instance/cross-connect/VSI mappings will then be deleted as a result. To avoid this issue, you can configure the mappings deletion delay time on the protection node. This ensures that traffic is forwarded through the protection node before the ingress detects the egress failure and computes a new forwarding path.

Examples

# Set the deletion delay time for remote SRv6 SID and VPN instance/cross-connect/VSI mappings to 100 seconds.

<Sysname> system-view

[Sysname] segment-routing ipv6

[Sysname-segment-routing-ipv6] mirror remote-sid delete-delay 100

on-demand

Use on-demand to create an on-demand next-hop (ODN) template for creating SRv6 TE policies and enter SRv6 TE-ODN view, or enter the SRv6 TE-ODN view of an existing ODN template.

Use undo on-demand to delete an ODN template and all the configuration in the view.

Syntax

on-demand color color-value

undo on-demand color color-value

Default

No SRv6 TE policy ODN templates exist.

Views

SRv6 TE view

Predefined user roles

network-admin

Parameters

color color-value: Specifies the color value for the ODN template, in the range of 0 to 4294967295.

Usage guidelines

When the device receives a BGP route, it compares the color extended attribute value of the BGP route with the color value of the ODN template. If the color values match, the device automatically generates an SRv6 TE policy and two candidate paths for the policy.

·     The policy uses the BGP route's next hop address as the end-point address and the ODN template's color value as the color attribute value of the policy.

·     The candidate paths use preferences 100 and 200. You need to manually configure the SID lists for the candidate path with preference 200, and use PCE to compute the SID lists for the candidate path with preference 100.

You can also manually create candidate paths for an ODN-created SRv6 TE policy.

Examples

# Create an SRv6 TE policy ODN template with color value 1 and enter SRv6 TE-ODN view.

<Sysname> system-view

[Sysname] segment-routing ipv6

[Sysname-segment-routing-ipv6] traffic-engineering

[Sysname-srv6-te] on-demand color 1

[Sysname-srv6-te-odn-1]

pce delegation

Use pce delegation to enable PCE delegation for an SRv6 TE policy.

Use undo pce delegation to restore the default.

Syntax

pce delegation { enable | disable }

undo pce delegation

Default

An SRv6 TE policy uses the PCE delegation configuration in SRv6 TE view.

Views

SRv6 TE policy view

Predefined user roles

network-admin

Parameters

enable: Enables PCE delegation for the SRv6 TE policy.

disable: Disables PCE delegation for the SRv6 TE policy.

Usage guidelines

After PCE delegation for an SRv6 TE policy is enabled, the PCC delegates the policy's candidate paths to a PCE. The PCC creates or updates candidate paths according to the creation or update requests received from the PCE.

You can configure PCE delegation for all SRv6 TE policies globally in SRv6 TE view or for a specific SRv6 TE policy in SRv6 TE policy view. The policy-specific configuration takes precedence over the global configuration. An SRv6 TE policy uses the global configuration only when it has no policy-specific configuration.

If you execute both the pce delegation command and the pce passive-delegate report-only command for an SRv6 TE policy, the pce passive-delegate report-only command takes effect.

Examples

# Enable PCE delegation for an SRv6 TE policy.

<Sysname> system-view

[Sysname] segment-routing ipv6

[Sysname-segment-routing-ipv6] traffic-engineering

[Sysname-srv6-te] policy 1

[Sysname-srv6-te-policy-1] pce delegation enable

Related commands

pce passive-delegate report-only

srv6-policy pce delegation enable

pce passive-delegate report-only

Use pce passive-delegate report-only to enable the device to report candidate path information of an SRv6 TE policy to the PCE without delegating the policy to the PCE.

Use undo pce passive-delegate report-only to restore the default.

Syntax

pce passive-delegate report-only { enable | disable }

undo pce passive-delegate report-only

Default

An SRv6 TE policy uses the passive delegation report only setting configured in SRv6 TE view.

Views

SRv6 TE policy view

Predefined user roles

network-admin

Parameters

enable: Enables the passive delegation report only feature for the SRv6 TE policy.

disable: Disables the passive delegation report only feature for the SRv6 TE policy.

Usage guidelines

When the device delegates only part of its SRv6 TE policies to a PCE, the PCE does not have complete SRv6 TE policy candidate path information to calculate global bandwidth information. You can enable the device to report information about the undelegated SRv6 TE policies to the PCE without using the PCE to compute candidate paths for the policies.

You can configure the passive delegation report only feature for all SRv6 TE policies globally in SRv6 TE view or for a specific SRv6 TE policy in SRv6 TE policy view. The policy-specific configuration takes precedence over the global configuration. An SRv6 TE policy uses the global configuration only when it has no policy-specific configuration.

If you execute both the pce delegation command and the pce passive-delegate report-only command for an SRv6 TE policy, the pce passive-delegate report-only command takes effect.

Examples

# Enable the device to report an SRv6 TE policy's candidate path information to the PCE without delegating the policy to the PCE.

<Sysname> system-view

[Sysname] segment-routing ipv6

[Sysname-segment-routing-ipv6] traffic-engineering

[Sysname-srv6-te] policy 1

[Sysname-srv6-te-policy-1] pce passive-delegate report-only enable

Related commands

pce delegation

srv6-policy pce passive-delegate report-only enable

pcep (SRv6 TE policy path preference dynamic view)

Use pcep to enable an SRv6 TE policy candidate path to use PCE to compute the SID lists.

Use undo pcep to restore the default.

Syntax

pcep

undo pcep

Default

An SRv6 TE policy candidate path does not use PCE to compute SID lists. You need to manually configure the SID lists for the candidate path.

Views

SRv6 TE policy path preference dynamic view

Predefined user roles

network-admin

Usage guidelines

The device uses PCE to compute SID lists for a manually created SRv6 TE policy candidate path in the following procedure:

1.     The device that acts as a PCC sends a path computation request to the PCE.

2.     The PCE computes paths after it receives the request.

3.     The PCE replies the PCC with the computed path information.

4.     The PCC creates SID lists for the SRv6 TE policy candidate path according to the path information computed by PCE.

Examples

# Enable an SRv6 TE policy candidate path to use PCE to compute the SID lists.

<Sysname> system-view

[Sysname] segment-routing ipv6

[Sysname-segment-routing-ipv6] traffic-engineering

[Sysname-srv6-te] policy 1

[Sysname-srv6-te-policy-1] candidate-paths

[Sysname-srv6-te-policy-1-path] preference 20

[Sysname-srv6-te-policy-1-path-pref-20] dynamic

[Sysname-srv6-te-policy-1-path-pref-20-dyna] pcep

pcep (SRv6 TE-ODN dynamic view)

Use pcep to enable path computation using PCE.

Use undo pcep to disable path computation using PCE.

Syntax

pcep

undo pcep

Default

Dynamic path computation using PCE is disabled.

Views

SRv6 TE-ODN dynamic view

Predefined user roles

network-admin

Usage guidelines

The SID lists for ODN-created SRv6 TE policy candidate path 100 can only be computed by PCE. For this candidate path, you must execute this command to enable path computation using PCE. The path computation procedure is as follows:

1.     The device that acts as a PCC sends a path computation request to the PCE.

2.     The PCE computes paths after it receives the request.

3.     The PCE replies the PCC with the computed path information.

4.     The PCC creates SID lists for candidate path 100 according to the path information computed by PCE.

Examples

# Enable dynamic path computation using PCE.

<Sysname> system-view

[Sysname] segment-routing ipv6

[Sysname-segment-routing-ipv6] traffic-engineering

[Sysname-srv6-te] on-demand color 1

[Sysname-srv6-te-odn-1] dynamic

[Sysname-srv6-te-odn-1-dynamic] pcep

policy

Use policy to create an SRv6 TE policy and enter its view, or enter the view of an existing SRv6 TE policy.

Use undo policy to delete an SRv6 TE policy and all the configuration in the SRv6 TE policy.

Syntax

policy policy-name

undo policy policy-name

Default

No SRv6 TE policies exist.

Views

SRv6 TE view

Predefined user roles

network-admin

Parameters

policy-name: Specifies an SRv6 TE policy name, a case-sensitive string of 1 to 59 characters.

Examples

# Create an SRv6 TE policy named srv6policy and enter its view.

<Sysname> system-view

[Sysname] segment-routing ipv6

[Sysname-segment-routing-ipv6] traffic-engineering

[Sysname-srv6-te] policy p1

[Sysname-srv6-te-policy-p1]

policy-group

Use policy-group to create an SRv6 TE policy group and enter its view, or enter the view of an existing SRv6 TE policy group.

Use undo policy-group to delete an SRv6 TE policy group and all the configuration in the SRv6 TE policy group.

Syntax

policy-group group-id

undo policy-group group-id

Default

No SRv6 TE policy groups exist.

Views

SRv6 TE view

Predefined user roles

network-admin

Parameters

group-name: Specifies an SRv6 TE policy group by its ID in the range of 1 to 4294967295.

Usage guidelines

You can add SRv6 TE policies to an SRv6 TE policy group to implement SRv6 TE policy based forwarding according to DSCP values of packets.

Examples

# Create SRv6 TE policy group 1 and enter its view.

<Sysname> system-view

[Sysname] segment-routing ipv6

[Sysname-segment-routing-ipv6] traffic-engineering

[Sysname-srv6-te] policy-group 1

[Sysname-srv6-te-policy-group-1]

preference

Use preference to set the preference for an SRv6 TE policy candidate path and enter SRv6 TE policy path preference view, or enter an existing SRv6 TE policy path preference view.

Use undo preference to delete an SRv6 TE policy candidate path preference and all the configuration in the SRv6 TE policy path preference view.

Syntax

preference preference-value

undo preference preference-value

Views

SRv6 TE policy candidate path view

Predefined user roles

network-admin

Parameters

preference-value: Specifies a candidate path preference in the range of 1 to 65535. A bigger value represents a higher preference.

Usage guidelines

A preference represents a candidate path of an SRv6 TE policy.

Examples

# Set the preference of an SRv6 TE policy candidate path to 20, and enter SRv6 TE policy path preference view.

<Sysname> system-view

[Sysname] segment-routing ipv6

[Sysname-segment-routing-ipv6] traffic-engineering

[Sysname-srv6-te] policy a1

[Sysname-srv6-te-policy-a1] candidate-paths

[Sysname-srv6-te-policy-a1-path] preference 20

[Sysname-srv6-te-policy-a1-path-pref20]

reset segment-routing ipv6 te forwarding statistics

Use reset segment-routing ipv6 te forwarding statistics to clear forwarding statistics for all SRv6 TE policies.

Syntax

reset segment-routing ipv6 te forwarding statistics

Views

User view

Predefined user roles

network-admin

Examples

# Clear SRv6 TE policy forwarding statistics.

<Sysname> reset segment-routing ipv6 te forwarding statistics

Related commands

display segment-routing ipv6 te forwarding

forwarding statistics

srv6-policy forwarding statistics enable

srv6-policy forwarding statistics interval

restrict

Use restrict to configure the ODN SRv6 TE policy generation policy.

Use undo restrict to restore the default.

Syntax

restrict prefix-list-name

undo restrict

Default

A BGP route can trigger ODN to create an SRv6 TE policy when the route's color attribute value is the same as the ODN color value.

Views

SRv6-TE-ODN view

Predefined user roles

network-admin

Parameters

prefix-list-name: Specifies an IPv6 prefix list by its name, a case-sensitive string of 1 to 63 characters.

Usage guidelines

You can specify an IPv6 prefix list to filter BGP routes. The BGP routes permitted by the specified IPv6 prefix list can trigger ODN to create SRv6 TE policies. The BGP routes denied by the specified IPv6 prefix list cannot trigger ODN to create SRv6 TE policies.

Examples

# Permit the BGP routes in subnet 1000::/96 to trigger ODN to create SRv6 TE policies.

<Sysname> system-view

[Sysname] ipv6 prefix-list policy permit 1000:: 96

[Sysname] segment-routing ipv6

[Sysname-segment-routing-ipv6] traffic-engineering

[Sysname-srv6-te] on-demand color 1

[Sysname-srv6-te-odn-1] restrict policy

Related commands

ipv6 prefix-list (Layer 3—IP Routing Command Reference)

router-id filter

Use router-id filter to enable Router ID filtering.

Use undo router-id filter to disable Router ID filtering.

Syntax

router-id filter

undo router-id filter

Default

Router ID filtering is disabled.

Views

BGP IPv6 SR policy address family.

Predefined user roles

network-admin

Usage guidelines

For the device to process only part of the received BGP IPv6 SR policy routes, you can execute this command to enable filtering the routes by Router ID.

This command enables the device to check the Route Target attribute of a received BGP IPv6 SR policy route. The device accepts the route only if the Route Target attribute contains the Router ID of the local device.

To use Router ID filtering, make sure you add Route Target attributes to BGP IPv6 SR policy routes properly by using routing policy or other methods. Otherwise, Router ID filtering might learn or drop BGP IPv6 SR policy routes incorrectly.

Examples

# Enable Router ID filtering.

<Sysname> system-view

[Sysname] bgp 100

[Sysname-bgp-default] address-family ipv6 sr-policy

[Sysname-bgp-default-srpolicy-ipv6] router-id filter

sbfd

Use sbfd to configure SBFD for an SRv6 TE policy.

Use undo sbfd to restore the default.

Syntax

sbfd { disable | enable [ remote remote-id ] [ template template-name ] [ backup-template backup-template-name ] [ oam-sid sid ] }

undo sbfd

Default

SBFD is disabled for an SRv6 TE policy. An SRv6 TE policy uses the SBFD configuration in SRv6 TE view.

Views

SRv6 TE policy view

Predefined user roles

network-admin

Parameters

disable: Disables SBFD for the SRv6 TE policy.

enable: Enables SBFD for the SRv6 TE policy.

remote remote-id: Specifies the remote discriminator of the SBFD session, in the range of 1 to 4294967295. If you do not specify this option, the configuration in SRv6 TE view applies.

template template-name: Specifies an SBFD session parameter template by its name, a case-sensitive string of 1 to 63 characters. If you do not specify this option, the template specified in SRv6 TE view applies.

backup-template backup-template-name: Specifies as SBFD session parameter template for the backup SID list. The backup-template-name argument indicates the template name, a case-sensitive string of 1 to 63 characters. If you do not specify this option, the backup template specified in SRv6 TE view applies.

oam-sid sid: Adds an OAM SID to SBFD packets to identify the destination node. The sid argument represents the SRv6 SID of the endpoint destination node. If you do not specify this option, no OAM SID will be added to BFD packets. At present, the OAM SID must be set to the End.OP SID of the destination node.

Usage guidelines

You can configure SBFD for all SRv6 TE policies globally in SRv6 TE view or for a specific SRv6 TE policy in SRv6 TE policy view. The policy-specific configuration takes precedence over the global configuration. An SRv6 TE policy uses the global configuration only when it has no policy-specific configuration.

The remote discriminator specified in this command must be the same as that specified in the sbfd local-discriminator command on the reflector. Otherwise, the reflector will not send responses to the initiator.

The device supports the echo packet mode BFD and the SBFD for an SRv6 TE policy. If both modes are configured for the same SRv6 TE policy, the SBFD takes effect.

Examples

# Enable SBFD for SRv6 TE policy 1.

<Sysname> system-view

[Sysname] segment-routing ipv6

[Sysname-segment-routing-ipv6] traffic-engineering

[Sysname-srv6-te] policy 1

[Sysname-srv6-te-policy-1] sbfd enable

Related commands

display segment-routing ipv6 te sbfd

sbfd local-discriminator (High Availability Command Reference)

srv6-policy sbfd

segment-list

Use segment-list to create a SID list and enter its view, or enter the view of an existing SID list.

Use undo segment-list to delete a SID list and all the configuration in the SID list.

Syntax

segment-list segment-list-name

undo segment-list segment-list-name

Default

No SID lists exist.

Views

SRv6 TE view

Predefined user roles

network-admin

Parameters

segment-list-name: Specifies the SID list name, a case-sensitive string of 1 to 128 characters.

Examples

# Create a SID list named abc and enter its view.

<Sysname> system-view

[Sysname] segment-routing ipv6

[Sysname-segment-routing-ipv6] traffic-engineering

[Sysname-srv6-te] segment-list abc

[Sysname-srv6-te-sl-abc]

service-class

Use service-class to set a service class value for an SRv6 TE policy.

Use undo service-class to restore the default.

Syntax

service-class service-class-value

undo service-class

Default

No service class value is set for an SRv6 TE policy.

Views

SRv6 TE policy view

Predefined user roles

network-admin

Parameters

service-class-value: Specifies a service class value. The value range for this argument is 0 to 127. The smaller the service class value, the lower the SRv6 TE policy priority. An SRv6 TE policy that is not assigned a service class value has the lowest priority.

Usage guidelines

The device compares the service class value of the traffic with the service class values of SRv6 TE policies and forwards the traffic to a matching tunnel. The device uses the following rules to select an SRv6 TE policy to forward the traffic:

·     If the traffic matches only one SRv6 TE policy, the device uses this SRv6 TE policy.

·     If the traffic matches multiple SRv6 TE policies, the device selects an SRv6 TE policy based on the flow forwarding mode:

¡     If there is only one flow and flow-based load sharing is used, the device randomly selects a matching SRv6 TE policy for packets of the flow.

¡     If there are multiple flows or if there is one flow but packet-based load sharing is used, the device uses all matching SRv6 TE policies to load share the packets.

For more information about the flow identification and load sharing mode, see the ip load-sharing mode command.

·     If the traffic does not match any SRv6 TE policy, the device randomly selects an SRv6 TE policy from all SRv6 TE policies with the lowest forwarding priority.

To set a service class value for traffic, use the remark service-class command in traffic behavior view.

Examples

# Set the service class value to 5 for SRv6 TE policy.

<Sysname> system-view

[Sysname] segment-routing ipv6

[Sysname-segment-routing-ipv6] traffic-engineering

[Sysname-srv6-te] policy 1

[Sysname-srv6-te-policy-1] service-class 5

Related commands

ip load-sharing mode (Layer 3IP Services Command Reference)

remark service-class (ACL and QoS Command Reference)

shutdown

Use shutdown to shut down an SRv6 TE policy.

Use undo shutdown to bring up an SRv6 TE policy.

Syntax

shutdown

undo shutdown

Default

An SRv6 TE policy is not administratively shut down.

Views

SRv6 TE policy view

Predefined user roles

network-admin

Usage guidelines

If multiple SRv6 TE policies exist on the device, you can shut down unnecessary SRv6 TE policies to prevent them from affecting traffic forwarding.

Examples

# Shut down SRv6 TE policy 1.

<Sysname> system-view

[Sysname] segment-routing ipv6

[Sysname-segment-routing-ipv6] traffic-engineering

[Sysname-srv6-te] policy 1

[Sysname-srv6-te-policy-1] shutdown

snmp-agent trap enable srv6-policy

Use snmp-agent trap enable srv6-policy to enable SNMP notifications for SRv6 TE policies.

Use undo snmp-agent trap enable srv6-policy to disable SNMP notifications for SRv6 TE policies.

Syntax

snmp-agent trap enable srv6-policy

undo snmp-agent trap enable srv6-policy

Default

SNMP notifications for SRv6 TE policies are disabled.

Views

System view

Predefined user roles

network-admin

Usage guidelines

This command enables the device to send SNMP notifications about state changes and resource usage anomalies of SRv6 TE policies. For SNMP notifications to be sent correctly, you must also configure SNMP on the device. For more information about SNMP configuration, see the network management and monitoring configuration guide for the device.

SRv6 TE policy resources include the following:

·     Number of SRv6 TE policy forwarding paths.

·     Number of forwarding entry IDs of SRv6 TE policy groups.

·     Number of forwarding entry IDs of SRv6 TE policies.

·     Number of forwarding entry IDs of SID lists.

Examples

# Enable SNMP notifications for SRv6 TE policies.

<Sysname> system-view

[Sysname] snmp-agent trap enable srv6-policy

sr-policy steering

Use sr-policy steering to configure the traffic steering mode for SRv6 TE policies.

Use undo sr-policy steering to restore the default.

Syntax

sr-policy steering { disable | policy-based }

undo sr-policy steering

Default

The device steering data packets to SRv6 TE policies based on colors of the packets.

Views

BGP instance view

Predefined user roles

network-admin

Parameters

disable: Disables color-based traffic steering to an SRv6 TE policy.

policy-based: Steers traffic to an SRv6 TE policy based on a tunnel policy. If you specify this keyword, the device steers traffic based on the bound policy, color, and tunnel load sharing policy in a descending order of priority.

Usage guidelines

The following traffic steering modes are available for SRv6 TE policies:

·     Based on color—The device searches for an SRv6 TE policy that has the same color and endpoint address as the color and nexthop address of a BGP route. If a matching SRv6 TE policy exists, the device recurse the BGP route to that SRv6 TE policy. Then, when the device receives packets that match the BGP route, it forwards the packets through the SRv6 TE policy.

·     Based on tunnel policy—On an IP L3VPN over SRv6 or EVPN L3VPN over SRv6 network, configure a tunnel policy that uses the SRv6 TE policy as the public tunnel to carry the packets of a VPN instance. For more information about the tunnel policy configuration, see MPLS Configuration Guide.

This command does not take effect on L2VPN networks.

Examples

# Configure the SRv6 TE traffic steering mode as tunnel policy.

<Sysname> system-view

[Sysname] bgp 100

[Sysname-bgp-default] sr-policy steering policy-based

srv6-policy alarm-threshold

Use srv6-policy alarm-threshold to configure the alarm thresholds for resource usage of SRv6 TE policies.

Use undo srv6-policy alarm-threshold to restore the default.

Syntax

srv6-policy { forwarding-path | policy | policy-group | segment-list } alarm-threshold upper-limit upper-limit-value lower-limit lower-limit-value

undo srv6-policy { forwarding-path | policy | policy-group | segment-list } alarm-threshold

Default

The upper and lower alarm thresholds are 80% and 75% for all resources of SRv6 TE policies.

Views

SRv6 TE view

Predefined user roles

network-admin

Parameters

forwarding-path: Specifies the number of SRv6 TE policy forwarding paths.

policy: Specifies the number of forwarding entry IDs assigned to SRv6 TE policies.

policy-group: Specifies the number of forwarding entry IDs assigned to SRv6 TE policy groups.

segment-list: Specifies the number of forwarding entry IDs assigned to SID lists.

upper-limit upper-limit-value: Specifies the upper threshold in percentage for SRv6 TE policy resources. The value range for the upper-limit-value argument is 1 to 100.

lower-limit lower-limit-value: Specifies the lower threshold in percentage for SRv6 TE policy resources. The value range for the upper-limit-value argument is 1 to 100.

Usage guidelines

When the number of SRv6 TE policy resources exceeds the upper threshold or drops below the lower threshold, the device generates log and alarm information. The administrator can then obtain the resource usage status of SRv6 TE policies.

Before configuring this command, enable the logging and SNMP notifications features for SRv6 TE policies.

To view resource usage for the current SRv6 TE policy, use the display segment-routing ipv6 te policy statistics command.

Examples

# Configure the upper and lower thresholds as 90% and 60% for the number of forwarding entry IDs assigned to SID lists.

<Sysname> system-view

[Sysname] segment-routing ipv6

[Sysname-segment-routing-ipv6] traffic-engineering

[Sysname-srv6-te] srv6-policy segment-list alarm-threshold upper-limit 90 lower-limit 60

Related commands

display segment-routing ipv6 te policy statistics

srv6-policy log enable

srv6-policy autoroute enable

Use srv6-policy autoroute enable to enable automatic route advertisement for SRv6 TE policies.

Use undo srv6-policy autoroute enable to disable automatic route advertisement for SRv6 TE policies.

Syntax

In IS-IS IPv6 address family view:

srv6-policy autoroute enable [ level-1 | level-2 ]

undo srv6-policy autoroute enable

In OSPFv3 view:

srv6-policy autoroute enable

undo srv6-policy autoroute enable

Default

Automatic route advertisement for SRv6 TE policies is disabled.

Views

IS-IS IPv6 address family view

OSPFv3 view

Predefined user roles

network-admin

Parameters

level-1: Enables automatic route advertisement for Level-1 IS-IS SRv6 TE policies.

level-2: Enables automatic route advertisement for Level-2 IS-IS SRv6 TE policies.

Usage guidelines

This command advertises SRv6 TE policies to IGP (IPv6 IS-IS or OSPFv3) for route computation.

If you do not specify the level-1 or level-2 keyword in IS-IS IPv6 address family view, this command enables automatic route advertisement for all levels of IS-IS SRv6 TE policies.

If you do not specify the isis or ospfv3 keyword, both OSPFv3 and IPv6 IS-IS will include the SRv6 TE policy tunnel in route computation.

For this command to take effect on an SRv6 TE policy, you must also execute the autoroute enable command in the view of the SRv6 TE policy.

Examples

# Enable automatic route advertisement for SRv6 TE policies of IS-IS process 1.

<Sysname> system-view

[Sysname] isis 1

[Sysname-isis-1] address-family ipv6

[Sysname-isis-1-ipv6] srv6-policy autoroute enable

# Enable automatic route advertisement for SRv6 TE policies of OSPFv3 process 1.

<Sysname> system-view

[Sysname] ospfv3 1

[Sysname-ospfv3-1] srv6-policy autoroute enable

Related commands

autoroute enable

srv6-policy backup hot-standby enable

Use srv6-policy backup hot-standby enable to enable hot standby for all SRv6 TE policies.

Use undo srv6-policy backup hot-standby enable to disable hot standby for all SRv6 TE policies.

Syntax

srv6-policy backup hot-standby enable

undo srv6-policy backup hot-standby enable

Default

Hot standby is disabled for all SRv6 TE policies.

Views

SRv6 TE view

Predefined user roles

network-admin

Usage guidelines

The hot standby feature takes the candidate path with the greatest preference value in the SRv6 TE policy as the primary path and that with the second greatest preference value as the standby path. When the forwarding paths corresponding to all SID lists of the primary path fails, the standby path immediately takes over to minimize service interruption.

You can enable hot standby for all SRv6 TE policies globally in SRv6 TE view or for a specific SRv6 TE policy in SRv6 TE policy view. The policy-specific configuration takes precedence over the global configuration. An SRv6 TE policy uses the global configuration only when it has no policy-specific configuration.

Examples

# Enable hot standby for all SRv6 TE policies.

<Sysname> system-view

[Sysname] segment-routing ipv6

[Sysname-segment-routing-ipv6] traffic-engineering

[Sysname-srv6-te] srv6-policy backup hot-standby enable

Related commands

backup hot-standby

srv6-policy bfd echo

Use srv6-policy bfd echo to enable the echo packet mode BFD for all SRv6 TE policies.

Use undo srv6-policy bfd echo to disable the echo packet mode BFD for all SRv6 TE policies.

Syntax

srv6-policy bfd echo source-ipv6 ipv6-address [ template template-name ] [ backup-template backup-template-name ]

undo srv6-policy bfd echo

Default

The echo packet mode BFD is disabled for all SRv6 TE policies.

Views

SRv6 TE view

Predefined user roles

network-admin

Parameters

source-ipv6 ipv6-address: Specifies the source IPv6 address of the BFD session.

template template-name: Specifies a BFD session parameter template by its name, a case-sensitive string of 1 to 63 characters. If you do not specify this option, the BFD session uses multihop BFD session settings configured in system view.

backup-template backup-template-name e: Specifies a BFD session parameter template for the backup SID list. The backup-template-name argument indicates the template name, a case-sensitive string of 1 to 63 characters. If you do not specify this option, the BFD session uses multihop BFD session settings configured in system view.

Usage guidelines

You can configure the echo packet mode BFD for all SRv6 TE policies globally in SRv6 TE view or for a specific SRv6 TE policy in SRv6 TE policy view. The policy-specific configuration takes precedence over the global configuration. An SRv6 TE policy uses the global configuration only when it has no policy-specific configuration.

If you do not specify the source-ipv6 ipv6-address option in the bfd echo command for an SRv6 TE policy, you must enable the echo packet mode BFD globally in SRv6 TE view. Otherwise, the device cannot establish a BFD session for the SRv6 TE policy.

The device supports the echo packet mode BFD and the SBFD for an SRv6 TE policy. If both modes are configured for the same SRv6 TE policy, the SBFD takes effect.

Before you execute this command, execute the bfd echo-source-ipv6 command on the local device to specify the source IPv6 address for echo packets.

Examples

# Enable the echo packet mode BFD for all SRv6 TE policies, and specify the source IPv6 address of the BFD session as 11::11.

<Sysname> system-view

[Sysname] segment-routing ipv6

[Sysname-segment-routing-ipv6] traffic-engineering

[Sysname-srv6-te] srv6-policy bfd echo source-ipv6 11::11

Related commands

bfd echo

bfd echo-source-ipv6 (High Availability Command Reference)

display segment-routing ipv6 te bfd

srv6-policy drop-upon-invalid enable

Use srv6-policy drop-upon-invalid enable to globally enable the feature of dropping traffic when SRv6 TE policies become invalid.

Use undo srv6-policy drop-upon-invalid enable to globally disable the drop-upon-invalid feature.

Syntax

srv6-policy drop-upon-invalid enable

undo srv6-policy drop-upon-invalid enable

Default

The drop-upon-invalid feature is disabled globally.

Views

SRv6 TE view

Predefined user roles

network-admin

Usage guidelines

Enable this feature for an SRv6 TE policy if you want to use only the SRv6 TE policy to forward traffic.

By default, if all forwarding paths of an SRv6 TE policy become invalid, the device forwards the packets through IPv6 routing table lookup based on the packet destination IPv6 addresses.

After you execute the drop-upon-invalid enable command, the device drops the packets if all forwarding paths of the SRv6 TE policy become invalid.

The command does not take effect in the following cases:

·     BSID request failed or BSID conflicted for the SRv6 TE policy. To view the BSID request state, see the Request state field in the display segment-routing ipv6 te policy command output.

·     The SRv6 TE policy is invalid. To check the SRv6 TE policy validity, see the Forwarding index field in the display segment-routing ipv6 te policy command output. If the value is 0, the SRv6 TE policy is invalid.

The drop-upon-invalid command configured on the remote device does not affect an SRv6 TE policy generated based on a BGP IPv6 SR-TE policy route. The SRv6 TE policy is controlled by only the drop-upon-invalid command configured on the local device.

You can configure the drop-upon-invalid feature globally in SRv6 TE view or for a specific SRv6 TE policy in SRv6 TE policy view. The policy-specific configuration takes precedence over the global configuration. An SRv6 TE policy uses the global configuration only when it has no policy-specific configuration.

Examples

# Globally enable the feature of dropping traffic when SRv6 TE policies become invalid.

<Sysname> system-view

[Sysname] segment-routing ipv6

[Sysname-segment-routing-ipv6] traffic-engineering

[Sysname-srv6-te] srv6-policy drop-upon-invalid enable

Related commands

drop-upon-invalid

srv6-policy encapsulation-mode encaps include local-end.x

Use srv6-policy encapsulation-mode encaps include local-end.x to configure local End.X SID encapsulation for all SRv6 TE policies globally.

Use undo srv6-policy encapsulation-mode encaps include local-end.x to restore the default.

Syntax

srv6-policy encapsulation-mode encaps include local-end.x

undo srv6-policy encapsulation-mode encaps include local-end.x

Default

The device does not encapsulate the local End.X SID into the SRH of the packets forwarded by an SRv6 TE policy.

Views

SRv6 TE view

Predefined user roles

network-admin

Usage guidelines

If the traffic steering mode is BSID and the SRv6 SID of the ingress node is an End.X SID, the device does not encapsulate the End.X SID into the SRH by default.

To obtain complete SRv6 forwarding path information from the SRH of packets, use this command to configure the device to encapsulate the local End.X SID into the SRH.

You can configure the local End.X SID encapsulation for all SRv6 TE policies globally in SRv6 TE view or for a specific SRv6 TE policy in SRv6 TE policy view. The policy-specific configuration takes precedence over the global configuration. An SRv6 TE policy uses the global configuration only when it has no policy-specific configuration.

Examples

# Configure the device to include the local End.X SID in the SRH of the packets forwarded by SRv6 TE policies.

<Sysname> system-view

[Sysname] segment-routing ipv6

[Sysname-segment-routing-ipv6] traffic-engineering

[Sysname-srv6-te] srv6-policy encapsulation-mode encaps include local-end.x

Related commands

encapsulation-mode encaps include local-end.x

srv6-policy encapsulation-mode encaps reduced

Use srv6-policy encapsulation-mode encaps reduced to enable the reduced encapsulation mode for all SRv6 TE policies globally.

Use undo srv6-policy encapsulation-mode encaps reduced to restore the default.

Syntax

srv6-policy encapsulation-mode encaps reduced

undo srv6-policy encapsulation-mode encaps reduced

Default

An SRv6 TE policy uses the Encaps encapsulation.

Views

SRv6 TE view

Predefined user roles

network-admin

Usage guidelines

If the traffic steering mode is BSID, packets whose destination IPv6 address is the same as the BSID of an SRv6 TE policy will be forwarded by the SRv6 TE policy. In this case, the device needs to encapsulate the SID list of the SRv6 TE policy for the packets. The following encapsulation modes are available:

·     Encaps—Normal encapsulation mode. It adds an IPv6 header and SRH to the original packets. All SIDs in the SID list of the SRv6 TE policy are encapsulated in the SRH.

·     Encaps.Red—Reduced encapsulation mode. It adds an IPv6 header and SRH to the original packets. The first SID in the SID list of the SRv6 TE policy is not encapsulated in the SRH to reduce the SRH length. All other SIDs in the SID list are encapsulated in the SRH.

In Encaps or Encaps.Red encapsulation mode, the destination IPv6 address in the IPv6 header is the first SID in the SID list of the SRv6 TE policy. The source IPv6 address is the IPv6 address specified by using the encapsulation source-address command.

You can configure the encapsulation mode for all SRv6 TE policies globally in SRv6 TE view or for a specific SRv6 TE policy in SRv6 TE policy view. The policy-specific configuration takes precedence over the global configuration. An SRv6 TE policy uses the global configuration only when it has no policy-specific configuration.

Examples

# Configure the Encaps.Red mode for all SRv6 TE policies globally.

<Sysname> system-view

[Sysname] segment-routing ipv6

[Sysname-segment-routing-ipv6] traffic-engineering

[Sysname-srv6-te] srv6-policy encapsulation-mode encaps reduced

Related commands

encapsulation source-address

encapsulation-mode encaps reduced

srv6-policy forwarding statistics enable

Use srv6-policy forwarding statistics enable to enable traffic forwarding statistics for all SRv6 TE policies.

Use undo srv6-policy forwarding statistics enable to disable traffic forwarding statistics for all SRv6 TE policies.

Syntax

srv6-policy forwarding statistics [ service-class ] enable

undo srv6-policy forwarding statistics enable

Default

Traffic forwarding statistics is disabled for all SRv6 TE policies.

Views

SRv6 TE view

Predefined user roles

network-admin

Parameters

service-class: Enables the SRv6 TE policy forwarding statistics by service class. This feature collects statistics on the total traffic as well as the traffic of each service class that are forwarded by SRv6 TE policies. If you do not specify this keyword, the device only collects statistics on the total traffic forwarded by SRv6 TE policies.

Usage guidelines

You can configure traffic forwarding statistics for all SRv6 TE policies globally in SRv6 TE view or for a specific SRv6 TE policy in SRv6 TE policy view. The policy-specific configuration takes precedence over the global configuration. An SRv6 TE policy uses the global configuration only when it has no policy-specific configuration.

If you execute this command multiple times, the most recent configuration takes effect.

Examples

# Enable traffic forwarding statistics for all SRv6 TE policies.

<Sysname> system-view

[Sysname] segment-routing ipv6

[Sysname-segment-routing-ipv6] traffic-engineering

[Sysname-srv6-te] srv6-policy forwarding statistics enable

Related commands

display segment-routing ipv6 te forwarding

forwarding statistic

reset segment-routing ipv6 te forwarding statistics

srv6-policy forwarding statistics interval

srv6-policy forwarding statistics interval

Use srv6-policy forwarding statistics interval to configure the traffic forwarding statistics interval for all SRv6 TE policies.

Use undo srv6-policy forwarding statistics interval to restore the default.

Syntax

srv6-policy forwarding statistics interval interval

undo srv6-policy forwarding statistics interval

Default

The SRv6 TE policies forwarding statistics interval is 30 seconds.

Views

SRv6 TE view

Predefined user roles

network-admin

Parameters

interval: Specifies the SRv6 TE policy traffic forwarding statistics interval in the range of 5 to 65535, in seconds.

Predefined user roles

This command takes effect only all SRv6 TE policies.

Examples

# Set the SRv6 TE policy traffic forwarding statistics interval to 90 seconds.

<Sysname> system-view

[Sysname] segment-routing ipv6

[Sysname-segment-routing-ipv6] traffic-engineering

[Sysname-srv6-te] srv6-policy forwarding statistics interval 90

Related commands

display segment-routing ipv6 te forwarding

forwarding statistic

reset segment-routing ipv6 te forwarding statistics

srv6-policy forwarding statistics enable

srv6-policy locator

Use srv6-policy locator to specify a locator for SRv6 TE.

Use undo srv6-policy locator to cancel the locator configuration.

Syntax

srv6-policy locator locator-name

undo srv6-policy locator

Default

No locator is specified for SRv6 TE.

Views

SRv6 TE view

Predefined user roles

network-admin

Parameters

locator-name: Specifies a locator by its name, a case-sensitive string of 1 to 31 characters.

Usage guidelines

The locator specified in SRv6 TE view restricts the BSID range. Only BSIDs within the range of the locator can take effect.

You cannot change the locator for SRv6 TE by repeatedly executing this command. To change the locator, first execute the undo srv6-policy locator command to remove the specified locator and then execute the srv6-policy locator command to specify a new locator.

Examples

# Specify locator test1 in SRv6 TE view.

<Sysname> system-view

[Sysname] segment-routing ipv6

[Sysname-segment-routing-ipv6] traffic-engineering

[Sysname-srv6-te] srv6-policy locator test1

srv6-policy log enable

Use srv6-policy log enable to enable SRv6 TE policy logging.

Use undo srv6-policy log enable to disable SRv6 TE policy logging.

Syntax

srv6-policy log enable

undo srv6-policy log enable

Default

SRv6 TE policy logging is disabled.

Views

SRv6 TE view

Predefined user roles

network-admin

Predefined user roles

This command enables the device to generate logs for SRv6 TE policy state changes and resource usage anomalies. The administrator can use the logging information to audit SRv6 TE policies. The device delivers logs to its information center. The information center processes the logs according to user-defined output rules (whether to output logs and where to output). For more information about the information center, see the network management and monitoring configuration guide for the device.

Examples

# Enable SRv6 TE policy logging.

<Sysname> system-view

[Sysname] segment-routing ipv6

[Sysname-segment-routing-ipv6] traffic-engineering

[Sysname-srv6-te] srv6-policy log enable

srv6-policy pce delegation enable

Use srv6-policy pce delegation enable to enable PCE delegation for SRv6 TE policies globally.

Use undo srv6-policy pce delegation enable to disable PCE delegation for SRv6 TE policies globally.

Syntax

srv6-policy pce delegation enable

undo srv6-policy pce delegation enable

Default

PCE delegation for SRv6 TE policies is disabled globally.

Views

SRv6 TE view

Predefined user roles

network-admin

Usage guidelines

After PCE delegation for an SRv6 TE policy is enabled, the PCC delegates the policy's candidate paths to a PCE. The PCC creates or updates candidate paths according to the creation or update requests received from the PCE.

You can configure PCE delegation for all SRv6 TE policies globally in SRv6 TE view or for a specific SRv6 TE policy in SRv6 TE policy view. The policy-specific configuration takes precedence over the global configuration. An SRv6 TE policy uses the global configuration only when it has no policy-specific configuration.

If you execute both the srv6-policy pce delegation enable command and the srv6-policy pce passive-delegate report-only enable command in SRv6 TE view, the srv6-policy pce passive-delegate report-only enable command takes effect.

Examples

# Enable PCE delegation for SRv6 TE policies globally.

<Sysname> system-view

[Sysname] segment-routing ipv6

[Sysname-segment-routing-ipv6] traffic-engineering

[Sysname-srv6-te] srv6-policy pce delegation enable

Related commands

pce delegation

srv6-policy pce passive-delegate report-only enable

srv6-policy pce passive-delegate report-only enable

Use srv6-policy pce passive-delegate report-only enable to enable the passive delegation report only feature globally.

Use undo srv6-policy pce passive-delegate report-only enable to disable the passive delegation report only feature globally.

Syntax

srv6-policy pce passive-delegate report-only enable

undo srv6-policy pce passive-delegate report-only enable

Default

The passive delegation report only feature is disabled globally.

Views

SRv6 TE view

Predefined user roles

network-admin

Usage guidelines

The passive delegation report only feature enables the device to report candidate path information of an SRv6 TE policy to the PCE without delegating the policy to the PCE.

When the device delegates only part of its SRv6 TE policies to a PCE, the PCE does not have complete SRv6 TE policy candidate path information to calculate global bandwidth information. You can enable the device to report information about the undelegated SRv6 TE policies to the PCE without using the PCE to compute candidate paths for the policies.

You can configure the passive delegation report only feature for all SRv6 TE policies globally in SRv6 TE view or for a specific SRv6 TE policy in SRv6 TE policy view. The policy-specific configuration takes precedence over the global configuration. An SRv6 TE policy uses the global configuration only when it has no policy-specific configuration.

If you execute both the srv6-policy pce delegation enable command and the srv6-policy pce passive-delegate report-only enable command in SRv6 TE view, the srv6-policy pce passive-delegate report-only enable command takes effect.

Examples

# Enable the passive delegation report only feature globally for all SRv6 TE policies.

<Sysname> system-view

[Sysname] segment-routing ipv6

[Sysname-segment-routing-ipv6] traffic-engineering

[Sysname-srv6-te] srv6-policy pce passive-delegate report-only enable

Related commands

pce passive-delegate report-only

srv6-policy pce delegation enable

srv6-policy sbfd

Use srv6-policy sbfd to enable SBFD for all SRv6 TE policies and configure the SBFD session parameters.

Use undo srv6-policy sbfd to disable SBFD for all SRv6 TE policies.

Syntax

srv6-policy sbfd remote remote-id [ template template-name ] [ backup-template backup-template-name ]

undo srv6-policy sbfd

Default

SBFD for all SRv6 TE policies is disabled.

Views

SRv6 TE view

Predefined user roles

network-admin

Parameters

remote remote-id: Specifies the remote discriminator of the SBFD session, in the range of 1 to 4294967295.

template template-name: Specifies an SBFD session parameter template by its name, a case-sensitive string of 1 to 63 characters. If you do not specify this option, the SBFD uses the multihop SBFD session settings configured in system view.

backup-template backup-template-name: Specifies an SBFD session parameter template for the backup SID list. The backup-template-name argument indicates the template name, a case-sensitive string of 1 to 63 characters. If you do not specify this option, the SBFD uses the multihop SBFD session settings configured in system view.

Predefined user roles

You can configure SBFD for all SRv6 TE policies globally in SRv6 TE view or for a specific SRv6 TE policy in SRv6 TE policy view. The policy-specific configuration takes precedence over the global configuration. An SRv6 TE policy uses the global configuration only when it has no policy-specific configuration.

The remote discriminator specified in this command must be the same as that specified in the sbfd local-discriminator command on the reflector. Otherwise, the reflector will not send responses to the initiator.

The device supports the echo packet mode BFD and the SBFD for an SRv6 TE policy. If both modes are configured for the same SRv6 TE policy, the SBFD takes effect.

Examples

# Enable SBFD for all SRv6 TE policies, and specify the SBFD session remote discriminator as 1000001.

<Sysname> system-view

[Sysname] segment-routing ipv6

[Sysname-segment-routing-ipv6] traffic-engineering

[Sysname-srv6-te] srv6-policy sbfd remote 1000001

Related commands

display segment-routing ipv6 te sbfd

sbfd

sbfd local-discriminator (High Availability Command Reference)

srv6-policy switch-delay delete-delay

Use srv6-policy switch-delay delete-delay to configure the switchover delay time and deletion delay time for the SRv6 TE policy forwarding path.

Use undo srv6-policy switch-delay to restore the default.

Syntax

srv6-policy switch-delay switch-delay-time delete-delay delete-delay-time

undo srv6-policy switch-delay

Default

The switchover delay time and deletion delay time for the SRv6 TE policy forwarding path is 5000 milliseconds and 20000 milliseconds, respectively.

Views

SRv6 TE view

Predefined user roles

network-admin

Parameters

switch-delay-time: Sets the forwarding path switchover delay time in the range of 0 to 600000 milliseconds.

delete-delay-time: Sets the forwarding path deletion delay time in the range of 0 to 600000 milliseconds.

Predefined user roles

The switchover delay and deletion delay mechanism is used to avoid traffic forwarding interruption during a forwarding path switchover.

When updating an SRv6 TE policy forwarding path, the device first establishes the new forwarding path before it deletes the old one. During the new path setup process, the device uses the old path to forward traffic until the switchover delay timer expires. When the switchover delay timer expires, the device switches traffic to the new path. The old path is deleted when the deletion delay timer expires.

Examples

# Set the SRv6 TE policy forwarding path switchover delay time to 8000 milliseconds and the deletion delay time to 15000 milliseconds.

<Sysname> system-view

[Sysname] segment-routing ipv6

[Sysname-segment-routing-ipv6] traffic-engineering

[Sysname-srv6-te] srv6-policy switch-delay 8000 delete-delay 15000

traffic-engineering

Use traffic-engineering to create and enter the SRv6 TE view, or enter the existing SR TE view.

Use undo traffic-engineering to delete the SRv6 TE view and all the configuration in the view.

Syntax

traffic-engineering

undo traffic-engineering

Default

The SRv6 TE view does not exist.

Views

SRv6 view

Predefined user roles

network-admin

Examples

# Create and enter the SRv6 TE view.

<Sysname> system-view

[Sysname] segment-routing ipv6

[Sysname-segment-routing-ipv6] traffic-engineering

[Sysname-srv6-te]

ttl-mode

Use ttl-mode to configure the TTL processing mode of SRv6 TE policies.

Use undo ttl-mode to restore the default.

Syntax

ttl-mode { pipe | uniform }

undo ttl-mode

Default

The TTL processing mode of SRv6 TE policies is pipe.

Views

SRv6 view

Predefined user roles

network-admin

Parameters

pipe: Specifies the pipe TTL processing mode.

uniform: Specifies the uniform TTL processing mode.

Predefined user roles

An SRv6 TE policy used as a public tunnel supports the following TTL processing modes:

·     Uniform—When the ingress node adds a new IPv6 header to an IP packet, it copies the TTL value of the original IP packet to the TTL field of the new IPv6 header. Each node on the SRv6 TE policy forwarding path decreases the TTL value in the new IPv6 header by 1. The node that de-encapsulates the packet copies the remaining TTL value back to the original IP packet when it removes the new IPv6 header. The TTL value can reflect how many hops the packet has traversed in the public network. The tracert facility can show the real path along which the packet has traveled.

·     Pipe—When the ingress node adds a new IPv6 header to an IP packet, it does not copy the TTL value of the original IP packet to the TTL field of the new IPv6 header. It sets the TTL value in the new IPv6 header to 255. Each node on the SRv6 TE policy forwarding path decreases the TTL value in the new IPv6 header by 1. The node that de-encapsulates the packet does not change the IPv6 TTL value according to the remaining TTL value in the new IPv6 header. Therefore, the public network nodes are invisible to user networks, and the tracert facility cannot show the real path in the public network.

Examples

# Configure the TTL processing mode of SRv6 TE policies to uniform.

<Sysname> system-view

[Sysname] segment-routing ipv6

[Sysname-segment-routing-ipv6] ttl-mode uniform

 

  • Cloud & AI
  • InterConnect
  • Intelligent Computing
  • Security
  • SMB Products
  • Intelligent Terminal Products
  • Product Support Services
  • Technical Service Solutions
All Services
  • Resource Center
  • Policy
  • Online Help
All Support
  • Become a Partner
  • Partner Resources
  • Partner Business Management
All Partners
  • Profile
  • News & Events
  • Online Exhibition Center
  • Contact Us
All About Us
新华三官网