11-Segment Routing Command Reference

HomeSupportReference GuidesCommand ReferencesH3C MSR1000[2600][3600] Routers Command Reference(V9)-R9119-6W10011-Segment Routing Command Reference
02-SRv6 commands
Title Size Download
02-SRv6 commands 284.19 KB

Contents

SRv6 commands· 1

advertise srv6 locator 1

anycast enable· 2

diffserv-mode· 2

display bgp egress-engineering ipv6· 4

display bgp egress-engineering srv6 peer-set 6

display ipv6 segment-routing sid-list 7

display isis segment-routing ipv6 capability· 8

display isis segment-routing ipv6 locator 9

display isis srv6 tunnel 11

display ospfv3 segment-routing ipv6 capability· 13

display ospfv3 segment-routing ipv6 locator 13

display ospfv3 srv6 tunnel 15

display segment-routing ipv6 forwarding· 16

display segment-routing ipv6 local-sid· 17

display segment-routing ipv6 locator 26

egress-engineering srv6 peer-set 27

encapsulation source-address· 29

fast-reroute microloop-avoidance enable· 30

fast-reroute microloop-avoidance rib-update-delay· 30

fast-reroute ti-lfa· 31

ipv6 segment-routing sid-list 33

isis ipv6 fast-reroute ti-lfa disable· 33

locator 34

opcode· 36

ospfv3 fast-reroute ti-lfa disable· 38

path-mtu· 39

path-mtu reserved· 40

peer egress-engineering srv6· 40

peer peer-set 42

router-id· 43

segment-routing ipv6 (system view) 43

segment-routing ipv6 egress-engineering locator 44

segment-routing ipv6 end-x delete-delay· 45

segment-routing ipv6 locator (IS-IS IPv6 address family view) 46

segment-routing ipv6 locator (OSPFv3 process view) 47

segment-routing microloop-avoidance enable· 48

segment-routing microloop-avoidance rib-update-delay· 49

service-class· 50

sid· 51

srv6 compress enable (IS-IS IPv6 address family view) 51

srv6 compress enable (SRv6 view) 52

srv6 igp metric· 53

srv6 igp shortcut 54

tunnel bfd enable echo· 54

tunnel sid-list 55

 


SRv6 commands

advertise srv6 locator

Use advertise srv6 locator to enable the device to generate routes for a locator in the BGP IPv6 unicast routing table and advertise the routes to BGP peers.

Use undo advertise srv6 locator to delete routes for a locator from the BGP IPv6 unicast routing table.

Syntax

advertise srv6 locator locator-name [ route-policy route-policy-name ]

undo advertise srv6 locator locator-name

Default

The device does not generate routes for a locator in the BGP IPv6 unicast routing table.

Views

BGP IPv6 unicast address family view

Predefined user roles

network-admin

Parameters

locator-name: Specifies a locator by its name, a case-sensitive string of 1 to 31 characters.

route-policy route-policy-name: Specifies a routing policy by its name, a case-sensitive string of 1 to 63 characters. Only routes that match the routing policy can be generated in the BGP IPv6 unicast routing table for the locator. All routes for the locator can be generated in the BGP IPv6 unicast routing table in the following situations:

·     You do not specify a routing policy when using this command.

·     The specified routing policy does not exist.

·     The specified routing policy does not contain if-match clauses.

Usage guidelines

Use this command in an inter-AS BGP network. This command enables the device to use BGP to advertise routes for a locator.

Repeat this command to enable the device to use BGP to advertise routes for multiple locators.

Examples

# Enable the device to generate routes for locator abc in the BGP IPv6 unicast routing table and advertise the routes to BGP peers.

<Sysname> system-view

[Sysname] bgp 100

[Sysname-bgp-default] address-family ipv6

[Sysname-bgp-default-ipv6] advertise srv6 locator abc

Related commands

display segment-routing ipv6 locator

locator

anycast enable

Use anycast enable to enable anycast for an SRv6 locator.

Use undo anycast enable to disable anycast for an SRv6 locator.

Syntax

anycast enable

undo anycast enable

Default

Anycast is disabled for an SRv6 locator.

Views

SRv6 locator view

Predefined user roles

network-admin

Usage guidelines

After you apply a locator to a routing protocol. The routing protocol will advertise the SRv6 SIDs in the locator. By default, the N-bit is set in the Flags field of the Locator TLV in routing protocol packets. The locator belongs to one SRv6 node. If you enable anycast for a locator, the A-bit is set in the Flags field of the Locator TLV in routing protocol packets. The locator is shared by a group of SRv6 nodes.

Examples

# Enable anycast for locator test1.

<Sysname> system-view

[Sysname] segment-routing ipv6

[Sysname-segment-routing-ipv6] locator test1 ipv6-prefix 100:: 64 static 32

[Sysname-segment-routing-ipv6-locator-test1] anycast enable

Related commands

locator

diffserv-mode

Use diffserv-mode to configure the SRv6 DiffServ mode.

Use undo diffserv-mode to restore the default.

Syntax

diffserv-mode { ingress { pipe service-class | short-pipe service-class | uniform } egress { pipe | short-pipe | uniform } | { pipe service-class | short-pipe service-class | uniform } }

undo diffserv-mode

Default

The SRv6 DiffServ mode is uniform.

Views

SRv6 view

Predefined user roles

network-admin

Parameters

ingress: Specifies the inbound direction.

egress: Specifies the outbound direction.

pipe: Specifies the pipe mode.

short-pipe: Specifies the short-pipe mode.

uniform: Specifies the uniform mode.

service-class: Specifies a traffic class for packets that enters the SRv6 network from the IP network. The value range for the traffic class is 0 to 7.

Usage guidelines

The following SRv6 DiffServ modes are available:

·     Pipe mode—When a packet enters the SRv6 network, the ingress node adds a new IPv6 header to the original packet. The ingress node ignores the IP precedence or DSCP value in the original packet and uses the value specified by using the service-class argument as the traffic class in the new IPv6 header. In the SRv6 network, SRv6 nodes perform QoS scheduling for the packet based on the specified traffic class. When the packet leaves the SRv6 network, the egress node removes the outer IPv6 header from the packet without modifying the IP precedence or DSCP value in the original packet.

·     Short-pipe mode—When a packet enters and leaves the SRv6 network, all SRv6 nodes process the packet in the same way as in pipe mode except for the egress node. After the egress node removes the outer IPv6 header from the packet, it performs QoS scheduling as follows:

¡     If no priority trust mode is configured, the egress node performs QoS scheduling for the packet based on the IP precedence or DSCP value in the original packet.

¡     If a priority trust mode is configured, the egress node performs QoS scheduling for the packet based on the trusted priority.

·     Uniform mode—When a packet enters the IPv6 network, the ingress node maps the IP precedence or DSCP value in the original IP header to the outer IPv6 header as the traffic class. When the packet leaves the SRv6 network, the egress node maps the traffic class value in the outer IPv6 header to the original packet as the IP precedence or DSCP value.

The accuracy changes when the DSCP value and traffic class value are mapped to each other.

To specify different DiffServ modes for the inbound and outbound directions, use the diffserv-mode command with the ingress and egress keywords. To specify the same DiffServ mode for the inbound and outbound directions, use the diffserv-mode command without the ingress or egress keyword.

If you execute the diffserv-mode command multiple times, the most recent configuration takes effect.

When you configure the SRv6 DiffServ mode on the source and destination nodes of an SRv6 tunnel, follow these restrictions and guidelines:

·     The outbound DiffServ mode on the local end must be the same as the inbound DiffServ mode on the peer end.

·     The inbound DiffServ mode on the local end must be the same as the outbound DiffServ mode on the peer end.

For more information about IP precedence and DSCP, see priority mapping configuration in QoS Configuration Guide.

Examples

# Configure the SRv6 DiffServ mode as uniform.

<Sysname> system-view

[Sysname] segment-routing ipv6

[Sysname-segment-routing-ipv6] diffserv-mode uniform

display bgp egress-engineering ipv6

Use display bgp egress-engineering ipv6 to display BGP-EPE information for IPv6 peers.

Syntax

display bgp [ instance instance-name ] egress-engineering ipv6 [ ipv6-address ] [ verbose ]

Views

Any view

Predefined user roles

network-admin

network-operator

Parameters

instance instance-name: Specifies a BGP instance by its name, a case-sensitive string of 1 to 31 characters. If you do not specify a BGP instance, this command displays information about the default BGP instance.

ipv6-address: Specifies an IPv6 peer by its IPv6 address. The specified IPv6 peer must already exist. If you do not specify an IPv6 peer, this command displays BGP-EPE information for all IPv6 peers.

verbose: Displays detailed BGP-EPE information. If you do not specify this keyword, the command displays only brief BGP-EPE information.

Examples

# Display BGP-EPE information for all IPv6 peers.

<Sysname> display bgp egress-engineering ipv6

BGP peering segment type: Node-Adjacency

  Peer NodeAdj     : 2::9

  Local AS number  : 100

  Remote AS number : 200

  Local router ID  : 1.1.1.9

  Remote router ID : 2.2.2.9

  Interface        : GE0/0/1

  OriginalNextHop  : 2::9

  RelayNextHop     : FE80::28B6:9EFF:FE23:206

  Interface        : GE0/0/2

  OriginalNextHop  : 2::9

  RelayNextHop     : FE80::28B6:9EFF:FE23:208

# Display detailed BGP-EPE information for all IPv6 peers.

<Sysname> display bgp egress-engineering ipv6 verbose

BGP peering segment type: Node-Adjacency

  PeerAdj Num              : 2

  Nexthop                  : 2::9

  Local AS number          : 100

  Remote AS number         : 200

  Local router ID          : 1.1.1.9

  Remote router ID         : 2.2.2.9

  Local interface address  : 10::1

  Remote interface address : 10::2

  OriginalNextHop          : 2::9

  RelayNextHop             : FE80::28B6:9EFF:FE23:206

  SID(no PSP, no USP)      : 200::1

  SID(PSP)                 : 200::2

  Local interface address  : 20::1

  Remote interface address : 20::2

  OriginalNextHop          : 2::9

  RelayNextHop             : FE80::28B6:9EFF:FE23:208

  SID(no PSP, no USP)      : 200::1

  SID(PSP)                 : 200::2

 

  BGP peering segment type : Adjacency

    PeerAdj                  : FE80::28B6:9EFF:FE23:206

    Local AS number          : 100

    Remote AS number         : 200

    Local router ID          : 1.1.1.9

    Remote router ID         : 2.2.2.9

    Local interface address  : FE80::28B6:9EFF:FE23:D16

    Remote interface address : FE80::28B6:9EFF:FE23:206

    Interface                : GE0/0/1

    OriginalNextHop          : 2::9

    RelayNextHop             : FE80::28B6:9EFF:FE23:206

    SID(no PSP, no USP)      : 200::3

    SID(PSP)                 : 200::4

 

  BGP peering segment type : Adjacency

    PeerAdj                  : FE80::28B6:9EFF:FE23:208

    Local AS number          : 100

    Remote AS number         : 200

    Local router ID          : 1.1.1.9

    Remote router ID         : 2.2.2.9

    Local interface address  : FE80::28B6:9EFF:FE23:D18

    Remote interface address : FE80::28B6:9EFF:FE23:208

    Interface                : GE0/0/2

    OriginalNextHop          : 2::9

    RelayNextHop             : FE80::28B6:9EFF:FE23:208

    SID(no PSP, no USP)      : 200::5

    SID(PSP)                 : 200::6

Table 1 Command output

Field

Description

BGP peering segment type

BGP peering segment type of the peer:

·     Node—Node type.

·     Adjacency—Adjacency type.

·     Node-Adjacency—Node and adjacency type.

Peer Node

Address of the node-type peer.

Peer Adj

Address of the adjacency-type peer.

Peer NodeAdj

Address of the node- and adjacency-type peer.

PeerAdj Num

Number of adjacency-type peers.

Interface

Information about the interface used to establish peer relationship.

OriginalNextHop

IP address of the original next hop.

RelayNextHop

IP address of the recursed next hop.

SID(PSP)

PSP End.X SID.

SID(no PSP, no USP)

Non-PSP and non-USP End.X SID.

 

display bgp egress-engineering srv6 peer-set

Use display bgp egress-engineering srv6 peer-set to display information about BGP-EPE SRv6 peer sets.

Syntax

display bgp egress-engineering srv6 peer-set [ srv6-peer-set-name ]

Views

Any view

Predefined user roles

network-admin

network-operator

Parameters

peer-set-name: Specifies a BGP-EPE SRv6 peer set by its name, a case-sensitive string of 1 to 63 characters. If you do not specify a BGP-EPE SRv6 peer set, this command displays information about all BGP-EPE SRv6 peer sets.

Examples

# Display information about all BGP-EPE SRv6 peer sets.

<Sysname> display bgp egress-engineering srv6 peer-set

 

BGP egress peering segment srv6 peer-set: abc

  SID(PSP) : 101::1:0:0

  SID(no PSP, no USP) : 101::1:0:1

Members: 1

  Peer: 4:4:4::4

Table 2 Command output

Field

Description

BGP egress peering segment srv6 peer-set

Name of a BGP-EPE SRv6 peer set.

SID(PSP)

PSP End.X SID.

SID(no PSP, no USP)

Non-PSP and non-USP End.X SID.

Members

Number of peers in the BGP-EPE SRv6 peer set.

Peer

Peer in the BGP-EPE SRv6 peer set.

display ipv6 segment-routing sid-list

Use display ipv6 segment-routing sid-list to display SID list information.

Syntax

display ipv6 segment-routing sid-list [ list-name ]

Views

Any view

Predefined user roles

network-admin

network-operator

Parameters

list-name: Specifies an SID list by its name, a case-sensitive string of 1 to 31 characters. If you do not specify an SID list, this command displays information for all SID lists.

Examples

# Display information for SID list aa.

<Sysname> display ipv6 segment-routing sid-list aa

SID list name: aa

  SID information:

    SID index               Address

    1                       10::1

    2                       20::1

    3                       30::1

  SID list usage on tunnels:

    Tunnel number            SID list role

    0                        Primary

    1                        Backup

    2                        Primary

Table 3 Command output

Field

Description

Address

IPv6 address of the SR node.

SID list usage on tunnels

SID list usage on SRv6 tunnels.

SID list role

Role of the SID list on an SRv6 tunnel:

·     Primary.

·     Backup.

 

Related commands

ipv6 segment-routing sid-list

sid

tunnel sid-list

display isis segment-routing ipv6 capability

Use display isis segment-routing ipv6 capability to display IS-IS SRv6 capability information.

Syntax

display isis segment-routing ipv6 capability [ level-1 | level-2 ] [ process-id ]

Views

Any view

Predefined user roles

network-admin

network-operator

Parameters

level-1: Specifies IS-IS Level-1.

level-2: Specifies IS-IS Level-2.

process-id: Specifies an IS-IS process by its ID, in the range of 1 to 65535. If you do not specify a process, this command displays SRv6 capability information for all IS-IS processes.

Usage guidelines

If you do not specify a level, this command displays IS-IS SRv6 capability information for both Level-1 and Level-2.

Examples

# Display SRv6 capability information for IS-IS process 1.

<Sysname> display isis segment-routing ipv6 capability level-1 1

 

      IPv6 segment routing capability information for IS-IS(1)

 

                Level-1 IPv6 segment routing capability

 

System ID               SRv6 capability

0000.1000.0001          Enabled

0000.2000.0001          Enabled

0000.2000.0002          Enabled

0000.2000.0003          Enabled

Table 4 Command output

Field

Description

System ID

Neighbor system ID.

SRv6 capability

Whether SRv6 is enabled.

display isis segment-routing ipv6 locator

Use display isis segment-routing ipv6 locator to display IS-IS SRv6 locator route information.

Syntax

display isis segment-routing ipv6 locator [ ipv6-address prefix-length ] [ [ level-1 | level-2 ] | verbose ] * [ process-id ]

Views

Any view

Predefined user roles

network-admin

network-operator

Parameters

ipv6-address prefix-length: Specifies a destination IPv6 address prefix and the prefix length. The value range for the prefix-length argument is 1 to 128.

level-1: Specifies the level-1 area.

level-2: Specifies the level-2 area.

verbose: Displays detailed IS-IS SRv6 locator route information. If you do not specify this keyword, the command displays only brief IS-IS SRv6 locator route information.

process-id: Specifies an IS-IS process by its ID, in the range of 1 to 65535. If you do not specify a process, this command displays IS-IS SRv6 locator route information for all IS-IS processes.

Examples

# Display IS-IS SRv6 locator route information.

<Sysname> display isis segment-routing ipv6 locator

 

                         Route information for IS-IS(1)

                         ------------------------------

 

                          Level-1 Locator Route Table

                          ---------------------------

 

 Destination : 201::                                   PrefixLen: 64

 Flags       : R/-/-                                   Cost     : 2

 Next hop    : FE80::38A5:3DFF:FEE9:218                Interface: GE0/0/1

 

 Destination : 202::                                   PrefixLen: 64

 Flags       : R/-/-                                   Cost     : 1

 Next hop    : FE80::38A5:3DFF:FEE9:218                Interface: GE0/0/3

 

      Flags: D-Direct, R-Added to Rib, L-Advertised in LSPs, U-Up/Down Bit Set

Table 5 Command output

Field

Description

Destination

Destination IPv6 prefix.

PrefixLen

Prefix length.

Flag/Flags

Route flags:

·     D—The route is a direct route.

·     R—The route has been flushed to the RIB.

·     L—The route has been advertised in LSPs.

·     U—Penetration flag. Setting it to UP can prevent an LSP sent from L2 to L1 from being sent back to L2.

Cost

Route cost value.

Next hop

Route next hop.

Interface

Output interface.

# Display detailed IS-IS SRv6 locator route information.

<Sysname> display isis segment-routing ipv6 locator verbose

 

                         Route information for IS-IS(1)

                         ------------------------------

 

                          Level-1 Locator Route Table

                          ---------------------------

 

 IPv6 dest   : 5000::/64

 Flag        : D/L/-                       Cost        : 0

 Admin tag   : -                           Src count   : 1

 Algorithm   : 0

 Priority    : Low

 Nexthop     : Direct

 NxthopFlag  : -

 Interface   : NULL0                       Delay Flag : N/A

 Nib ID      : 0x0

 

      Flags: D-Direct, R-Added to Rib, L-Advertised in LSPs, U-Up/Down Bit Set

 

                          Level-2 Locator Route Table

                          ---------------------------

 

 IPv6 dest   : 5000::/64

 Flag        : D/L/-                       Cost        : 0

 Admin tag   : -                           Src count   : 4

 Algorithm   : 0

 Priority    : Low

 Nexthop     : Direct

 NxthopFlag  : -

 Interface   : NULL0                       Delay Flag : N/A

 Nib ID      : 0x0

 

      Flags: D-Direct, R-Added to Rib, L-Advertised in LSPs, U-Up/Down Bit Set

Table 6 Command output

Field

Description

Route information for IS-IS(1)

Locator route information about the IS-IS proces.

Level-1 Locator Route Table

IS-IS Level-1 locator route information.

Level-2 Locator Route Table

IS-IS Level-2 locator route information.

IPv6 dest

Destination IPv6 prefix

Flag

Route state flag:

·     D—Direct route.

·     R—The route has been added into the routing table.

·     L—The route has been advertised in an LSP.

·     URoute leaking flag, indicating that the Level-1 route is from Level-2. U means that the route will not be returned to Level-2.

Cost

Route cost.

Admin tag

Administrative tag.

Src count

Number of advertisement sources.

Algorithm

Flexible algorithm ID.

Priority

Route convergence priority:

·     Critical.

·     High.

·     Medium.

·     Low.

Next hop

Next hop. If the route is a direct route, this field displays Direct.

NxthopFlag

Next hop flag. Value D indicates that the next hop is the direct next hop of the advertisement source.

Interface

Output interface.

Delay Flag

Microloop avoidance delay flag:

·     D—Microloop avoidance is configured. Route convergence is delayed.

·     N/A—Microloop avoidance is not configured or the microloop avoidance delay timer has expired. Route convergence is in progress.

Nib ID

Next hop index assigned by the routing management module.

display isis srv6 tunnel

Use display isis srv6 tunnel to display IS-IS SRv6 tunnel interface information.

Syntax

display isis srv6 tunnel [ level-1 | level-2 ] [ process-id ]

Views

Any view

Predefined user roles

network-admin

network-operator

Parameters

level-1: Specifies the level-1 area.

level-2: Specifies the level-2 area.

process-id: Specifies an IS-IS process by its ID, in the range of 1 to 65535. If you do not specify a process, this command displays SRv6 tunnel interface information for all IS-IS processes.

Usage guidelines

If you do not specify a level, this command displays IS-IS SRv6 tunnel interface information for both level-1 and level-2 areas.

Examples

# Display SRv6 tunnel interface information for IS-IS process 1.

<Sysname> display isis srv6 tunnel

 

                    SRv6 tunnel information for IS-IS(1)

                    ---------------------------------------

 

                           Level-1 tunnel statistics

                           -------------------------

 

   Tunnel name  Auto route  Destination                        Metric

   -----------------------------------------------------------------------

   Tun0         Shortcut    1000::1                            Relative 0

 

                           Level-2 tunnel statistics

                           -------------------------

 

   Tunnel name  Auto route  Destination                        Metric

   -----------------------------------------------------------------------

   Tun0         Shortcut    1000::                             Relative 0

Table 7 Command output

Field

Description

Auto route

Implementation method of automatic route advertisement on the tunnel interface:

·     Advertise—Forwarding adjacency. This method is not supported in the current software version.

·     Shortcut—IGP shortcut.

Metric

Metric of the tunnel interface.

Supported metric types:

·     Relative.

·     Absolute.

display ospfv3 segment-routing ipv6 capability

Use display ospfv3 segment-routing ipv6 capability to display OSPFv3 SRv6 capability information.

Syntax

display ospfv3 [ process-id ] segment-routing ipv6 capability

Views

Any view

Predefined user roles

network-admin

network-operator

Parameters

process-id: Specifies an OSPFv3 process by its ID, in the range of 1 to 65535. If you do not specify a process, this command displays SRv6 capability information for all OSPFv3 processes.

Examples

# Display SRv6 capability information for all OSPFv3 processes.

<Sysname> display ospfv3 segment-routing ipv6 capability

 

            OSPFv3 Process 1 with Router ID 1.1.1.1

 

Area 0.0.0.0

------------------------------------------------------------------------

 Router ID        SRv6 capability

 2.2.2.2          Enabled

Table 8 Command output

Field

Description

Router ID

Neighbor router ID.

SRv6 capability

Whether SRv6 is enabled.

display ospfv3 segment-routing ipv6 locator

Use display ospfv3 segment-routing ipv6 locator to display OSPFv3 SRv6 locator information.

Syntax

display ospfv3 [ process-id ] segment-routing ipv6 locator [ ipv6-address prefix-length ]

Views

Any view

Predefined user roles

network-admin

network-operator

Parameters

process-id: Specifies an OSPFv3 process by its ID, in the range of 1 to 65535. If you do not specify an OSPFv3 process, this command displays locator information for all OSPFv3 processes.

ipv6-address prefix-length: Specifies an IPv6 address prefix and the prefix length. The ipv6-address argument represents the IPv6 address prefix. The prefix-length argument represents the prefix length, in the range of 32 to 120. If you do not specify this option, the command displays locator information for all IPv6 prefixes.

Examples

# Display locator information for all OSPFv3 processes.

<Sysname> display ospfv3 segment-routing ipv6 locator

 

               OSPFv3 Process 1 with Router ID 1.1.1.1

-------------------------------------------------------------------------

 I  - Intra area route,  E1 - Type 1 external route,  N1 - Type 1 NSSA route

 IA - Inter area route,  E2 - Type 2 external route,  N2 - Type 2 NSSA route

 *  - Selected route

 

 *Destination: 192:168::12:0/120

  Type       : I                         Area       : 0.0.0.0

  AdvRouter  : 2.2.2.2                   Preference : 10

  NibID      : 0x23000002                Cost       : 10

  Interface  : GE0/0/1                   BkInterface: N/A

  Nexthop    : ::

  BkNexthop  : N/A

  Status     : Direct

Table 9 Command output

Field

Description

Destination

Destination network.

Type

Route type.

Area

Area ID.

AdvRouter

ID of the router that advertises LSAs.

Preference

Route preference.

NibID

ID of the next hop information in the route.

Cost

Route cost.

Interface

Output interface.

BkInterface

Backup output interface.

Nexthop

Next hop address.

BkNexthop

Backup next hop address.

Status

Route state:

·     Local—The route is a local route and has not been sent to the route management module.

·     Invalid—The next hop of the route is invalid.

·     Stale—The next hop of the route is stale.

·     Normal—The route is usable.

·     Delete—The route is deleted.

·     Direct—The route is a direct route.

·     Rely—The route is recursed by another route.

 

display ospfv3 srv6 tunnel

Use display ospfv3 srv6 tunnel to display OSPFv3 SRv6 tunnel interface information.

Syntax

display ospfv3 [ process-id ] srv6 tunnel [ interface-number ]

Views

Any view

Predefined user roles

network-admin

network-operator

Parameters

process-id: Specifies an OSPFv3 process by its ID, in the range of 1 to 65535. If you do not specify a process, this command displays SRv6 tunnel interface information for all OSPFv3 processes.

interface-number: Specifies an existing SRv6 tunnel interface by its interface number. If you do not specify an SRv6 tunnel interface, this command displays information about all SRv6 tunnel interfaces.

Examples

# Display SRv6 tunnel interface information for all OSPFv3 processes.

<Sysname> display ospfv3 srv6 tunnel

               OSPFv3 Process 1 with Router ID 1.1.1.1

                      SRv6 Tunnel Information

 

 Area: 0.0.0.0

 Interface: Tunnel1

        State      : Active

        Neighbor ID: 4.4.4.4

        Cost       : 1

        Auto route : Shortcut

        Metric     : Absolute  1

        Destination: 4::44

Table 10 Command output

Field

Description

Interface

Tunnel interface name.

State

Tunnel interface state:

·     Inactive—The next hop of the tunnel interface is not the optimal next hop. The tunnel interface is not used to forward traffic.

·     Active—The next hop of the tunnel interface is the optimal next hop. The tunnel interface is used to forward traffic.

Neighbor ID

Neighbor ID of the tunnel interface:

·     When the tunnel interface state is Inactive, the neighbor ID is 0.0.0.0, which indicates that the tunnel is not on the optimal path.

·     When the tunnel interface state is Active, the neighbor ID is the router ID of the tunnel destination end.

Cost

Route cost of the tunnel interface:

·     When the tunnel interface state is Inactive, this field displays 4294967295, which indicates that the tunnel is not on the optimal path.

·     When the tunnel interface state is Active, this field displays the cost of the route destined for the router ID of the tunnel destination end.

Destination

Tunnel destination address.

Auto route

Implementation method of automatic route advertisement on the tunnel interface. The value for this field is Shortcut, which represents IGP Shortcut.

Metric

Metric of the SRv6 tunnel interface.

Supported metric types:

·     Absolute.

·     Relative.

display segment-routing ipv6 forwarding

Use display segment-routing ipv6 forwarding to display SRv6 forwarding entry information.

Syntax

display segment-routing ipv6 forwarding [ entry-id ] [ slot slot-number ]

Views

Any view

Predefined user roles

network-admin

network-operator

Parameters

entry-id: Specifies an SRv6 forwarding entry by its ID, in the range of 0 to 4294967294. If you do not specify an SRv6 forwarding entry ID, this command displays information about all SRv6 forwarding entries.

slot slot-number: Specifies a card by its slot number. If you do not specify a card, this command displays SRv6 forwarding entries on the active MPU.

Examples

# Display all SRv6 forwarding entries.

<Sysname> display segment-routing ipv6 forwarding

Total SRv6 forwarding entries: 4

 

Flags: T – Forwarded through a tunnel

       N – Forwarded through the outgoing interface to the nexthop IP address

       A - Active forwarding information

       B – Backup forwarding information

 

ID            FWD-Type      Flags   Forwarding info

              Attri-Val             Attri-Val

--------------------------------------------------------------------------------

2148532225    SRv6PSIDList  NA      GE0/0/1

                                    FE80::54CB:70FF:FE86:316

                                    {6000::1, 7000::1, 8000::1}

2149580801    SRv6PCPath    TA      2148532225

2150629377    SRv6Policy    TA      2149580801

              Policy10

2153775105    SRv6SFC       NA      GE0/0/1

                                    FE80::54CB:70FF:FE86:316

                                    {6000::1, 7000::1, 8000::1}

Table 11 Command output

Field

Description

FWD-Type

Tunnel forwarding type:

·     SRv6PSIDList—Tunnel established based on the SID list in an SRv6 TE policy.

·     SRv6PCPath—Tunnel established on the candidate path selected by an SRv6 TE policy.

·     SRv6Policy—SRv6 TE policy tunnel.

·     SRv6PGroup—SRv6 TE policy group tunnel.

·     SRv6SFC—SRv6 service chain static proxy tunnel.

Flags

Forwarding flags:

·     T—Tunnel forwarding.

·     N—Output interface or next hop forwarding.

·     A—Active forwarding information.

·     B—Backup forwarding information.

Forwarding info

SRv6 forwarding information.

·     For the N forwarding flag, the forwarding information includes the output interface, next hop, and SID list.

·     For the T forwarding flag, the forwarding information is the SRv6 forwarding entry ID.

Attri-Val

Forwarding attribute.

In the current software version, the value is an SRv6 TE policy name.

This field is available only when the value for the FWD-Type field is SRv6Policy or SRv6PGroup.

display segment-routing ipv6 local-sid

Use display segment-routing ipv6 local-sid to display information about the SRv6 local SID forwarding table.

Syntax

display segment-routing ipv6 local-sid { end | end-am | end-as | end-b6encaps | end-coc32 | end-dt2m | end-dt2u | end-dt2ul | end-dx2 | end-dx2l | end-m | end-op | end-t | end-x-coc32 } [ sid ]

display segment-routing ipv6 local-sid { end-dt4 | end-dt46 | end-dt6 | end-dx4 | end-dx6 } [ sid | vpn-instance vpn-instance-name ]

display segment-routing ipv6 local-sid end-x [ sid | interface interface-type interface-number [ nexthop nexthop-ipv6-address ] ]

Views

Any view

Predefined user roles

network-admin

network-operator

Parameters

end: Specifies End SIDs.

end-am: Specifies End.AM SIDs.

end-as: Specifies End.AS SIDs.

end-b6encaps: Specifies End.B6ENCAPS SIDs.

end-coc32: Specifies End (COC32) SIDs.

end-dt2m: Specifies End.DT2M SIDs.

end-dt2u: Specifies End.DT2U SIDs.

end-dt2ul: Specifies End.DT2UL SIDs.

end-dt4: Specifies End.DT4 SIDs.

end-dt46: Specifies End.DT46 SIDs.

end-dt6: Specifies End.DT6 SIDs.

end-dx2: Specifies End.DX2 SIDs.

end-dx2l: Specifies End.DX2L SIDs.

end-dx4: Specifies End.DX4 SIDs.

end-dx6: Specifies End.DX6 SIDs.

end-m: Specifies End.M SIDs.

end-op: Specifies End.OP SIDs.

end-t: Specifies End.T SIDs.

end-x: Specifies End.X SIDs.

end-x-coc32: Specifies End.X (COC32) SIDs.

sid: Specifies an SRv6 SID. If you do not specify an SRv6 SID, this command displays SRv6 local forwarding table information for all SRv6 SIDs of the specified type.

vpn-instance vpn-instance-name: Specifies the MPLS L3VPN instance to which the SRv6 SIDs belong. The vpn-instance-name argument is a case-sensitive string of 1 to 31 characters. If you do not specify this option, the command displays SRv6 local SID forwarding table information in the public network.

interface interface-type interface-number: Specifies an output interface by its type and number. If you do not specify an output interface, the command displays SRv6 local SID forwarding table information for all End.X SIDs.

nexthop nexthop-ipv6-address: Specifies the IPv6 address of a next hop. If you do not specify a next hop, the command displays SRv6 local SID forwarding table information for all IPv6 next hops.

Examples

# Display SRv6 local forwarding table information for all End SIDs.

<Sysname> display segment-routing ipv6 local-sid end

 

                    Local SID forwarding table (End)

 

Total SIDs: 1

 

SID           : 100::64/96

Function type : End                             Flavor         : PSP

Locator name  : abc                             Allocation type: Static

Owner         : SIDMGR                          State          : Active

Create Time   : May 19 17:21:15.687 2020

# Display SRv6 local forwarding table information for all End.X SIDs.

<Sysname> display segment-routing ipv6 local-sid end-x

 

                    Local SID forwarding table (End.X)

 

Total SIDs: 1

 

SID           : 1000:0:0:15::/32

Function type : End.X                           Flavor         : PSP

Interface     : GE0/0/1                         Interface index: 0x102

Next hop      : FE80::1                         Allocation type: Static

Locator name  : abc

Owner         : SIDMGR                          State           : Active

Create Time   : May 19 17:21:46.740 2020

# Display SRv6 local forwarding table information for all End.DT4 SIDs.

<Sysname> display segment-routing ipv6 local-sid end-dt4

 

                    Local SID forwarding table (End.DT4)

 

Total SIDs: 1

 

SID           : 6:5::1:1/120

Function type : End.DT4                         Flavor         : PSP

VPN instance  : vpn1                            Allocation type: Static

Network type  : MPLS L3VPN

Locator name  : abc

Owner         : SIDMGR                          State          : Active

Create Time   : May 19 17:22:27.356 2020

# Display SRv6 local forwarding table information for all End.DT6 SIDs.

<Sysname> display segment-routing ipv6 local-sid end-dt6

 

                    Local SID forwarding table (End.DT6)

 

Total SIDs: 1

 

SID           : 1:2::2:2/120

Function type : End.DT6                         Flavor         : PSP

VPN instance  : vpn1                            Allocation type: Static

Network type  : MPLS L3VPN

Locator name  : abc

Owner         : SIDMGR                          State          : Active

Create Time   : May 19 17:22:27.356 2020

# Display SRv6 local forwarding table information for all End.OP SIDs.

<Sysname> display segment-routing ipv6 local-sid end-op

 

                    Local SID forwarding table (End.OP)

 

Total SIDs: 1

 

SID           : 100::190/96

Function type : End.OP

Locator name  : abc

Owner         : SIDMGR                          State          : Active

Create Time   : May 19 17:23:40.248 2020

# Display SRv6 local forwarding table information for all End.DX2 SIDs.

<Sysname> display segment-routing ipv6 local-sid end-dx2

 

                    Local SID forwarding table (End.DX2)

 

Total SIDs: 1

 

SID           : 100:1:2:3::6400/96

Function type : End.DX2                         Flavor         : PSP

Xconnect-group: abc                             Connection     : test

VSI name      :                                 Service ID     : 0

Interface     :

Locator name  : abc                             Allocation type: Static

Owner         : SIDMGR                          State          : Active

Create Time   : May 20 09:17:58.995 2020

# Display SRv6 local forwarding table information for all End.DT2U SIDs.

<Sysname> display segment-routing ipv6 local-sid end-dt2u

 

                    Local SID forwarding table (End.DT2U)

 

Total SIDs: 1

 

SID           : 100:1:2:3::C800/96

Function type : End.DT2U                        Flavor         : PSP

VSI name      : abc                             Allocation type: Static

Locator name  : abc

Owner         : SIDMGR                          State          : Active

Create Time   : May 20 09:18:14.504 2020

# Display SRv6 local forwarding table information for End.AS SIDs in Layer 2 encapsulation forwarding scenario.

<Sysname> display segment-routing ipv6 local-sid end-as

                    Local SID forwarding table (End.AS)

Total SIDs: 1

SID           : 100:1:2:3::C800/96

Function type : End.AS                          Allocation type: Static

Locator name  : abc                             Forward type   : L2

Inner type    : IPv4                            Source address : 2::60

Backup SID    : 1::AA                           Peer SID       : 300::3

Bypass        : Enabled                         Bypass SID     : 5::9

TTL mode      : Uniform                         TTL value      : -

Diffserv mode : Uniform                         Service class  : -

Color         : -                               Cache SL       : 2

Cache list    :

  4::3

  7::8

  8::9

  1::16::9

Encapsulation count: 2

 Out-interface: GE0/0/1                         In-interface   : GE0/0/1

 Out-S-VLAN   : 100                             Out-C-VLAN     : -

 In-S-VLAN    : 200                             In-C-VLAN      : -

 Dest MAC     : 0056-00aa-00cb

 Out-interface: GE0/0/2                         In-interface   : GE0/0/1

 Out-S-VLAN   : 101                             Out-C-VLAN     : -

 In-S-VLAN    : 201                             In-C-VLAN      : -

 Dest MAC     : 0056-00aa-00cd

Owner         : SIDMGR                          State          : Active

Create Time   : May 19 17:21:15.687 2020

# Display SRv6 local forwarding table information for End.AS SIDs in Layer 3 encapsulation forwarding scenario.

<Sysname> display segment-routing ipv6 local-sid end-as

                    Local SID forwarding table (End.AS)

Total SIDs: 1

SID           : 100:1:2:3::C800/96

Function type : End.AS                          Allocation type: Static

Locator name  : abc                             Forward type   : L3

Inner type    : IPv4                            Source address : 2::60

Backup SID    : 1::AA                           Peer SID       : 300::3

Bypass        : Enabled                         Bypass SID     : 5::9

TTL mode      : Uniform                         TTL value      : -

Diffserv mode : Uniform                         Service class  : -

Color         : -                               Cache-SL       : 2

Cache list    :

  4::3

  7::8

  8::9

  1::16::9

Encapsulation count: 2

 Next hop     : 10.1.1.2                        Out-interface  : GE0/0/2

 In-interface : GE0/0/2                         Symmetric-index: 1

 Next hop     : 10.1.1.3                        Out-interface  : GE0/0/1

 In-interface : GE0/0/1                         Symmetric-index: 2

Owner         : SIDMGR                          State          : Active

Create Time   : May 19 17:21:15.687 2020

# Display SRv6 local forwarding table information for End.AS SIDs in Layer 3 encapsulation forwarding scenario.

<Sysname> display segment-routing ipv6 local-sid end-as

                    Local SID forwarding table (End.AS)

Total SIDs: 1

SID           : 100:1:2:3::C800/96

Function type : End.AS                          Allocation type: Static

Locator name  : abc                             Forward type   : L3

Inner type    : IPv4                            Source address : 2::60

Backup SID    : 1::AA                           Peer SID       : 300::3

Bypass        : Enabled                         Bypass SID     : 5::9

TTL mode      : Uniform                         TTL value      : -

Diffserv mode : Uniform                         Service class  : -

Color         : -                               Cache-SL       : 2

Cache list    :

  4::3

  7::8

  8::9

  1::16::9

Encapsulation count: 2

 Next hop     : 10.1.1.2                        Out-interface  : Vlan20

 In-interface : Vlan20                          Symmetric-index: 1

 Next hop     : 10.1.1.3                        Out-interface  : Vlan10

 In-interface : Vlan10                          Symmetric-index: 2

Owner         : SIDMGR                          State          : Active

Create Time   : May 19 17:21:15.687 2020

# Display SRv6 local forwarding table information for End.AM SIDs in Layer 3 encapsulation forwarding scenario.

<Sysname> display segment-routing ipv6 local-sid end-am

 

                    Local SID forwarding table (End.AM)

 

Total SIDs: 1

 

SID           : 100:1:2:3::C800/96

Function type : End.AM                          Allocation type: Static

Locator name  : abc                             Forward type   : L3

Encapsulation count: 2

 Next hop     : 1::1                            Out-interface  : GE0/0/2

 In-interface : GE0/0/2

 Next hop     : 1::2                            Out-interface  : GE0/0/1

 In-interface : GE0/0/1

Owner         : SIDMGR                          State          : Active

Create Time   : May 19 17:21:15.687 2020

# Display SRv6 local forwarding table information for End.AM SIDs in Layer 3 encapsulation forwarding scenario.

<Sysname> display segment-routing ipv6 local-sid end-am

 

                    Local SID forwarding table (End.AM)

 

Total SIDs: 1

 

SID           : 100:1:2:3::C800/96

Function type : End.AM                          Allocation type: Static

Locator name  : abc                             Forward type   : L3

Encapsulation count: 2

 Next hop     : 1::1                            Out-interface  : Vlan20

 In-interface : Vlan20

 Next hop     : 1::2                            Out-interface  : Vlan10

 In-interface : Vlan10

Owner         : SIDMGR                          State          : Active

Create Time   : May 19 17:21:15.687 2020

# Display SRv6 local forwarding table information for End.AM SIDs in Layer 2 encapsulation forwarding scenario.

<Sysname> display segment-routing ipv6 local-sid end-am

 

                    Local SID forwarding table (End.AM)

 

Total SIDs: 1

 

SID           : 100:1:2:3::C800/96

Function type : End.AM                          Allocation type: Static

Locator name  : abc                             Forward type   : L2

Encapsulation count: 2

 Out-interface: GE0/0/1                         In-interface   : GE0/0/1

 Out-S-VLAN   : 100                             Out-C-VLAN     : -

 In-S-VLAN    : 200                             In-C-VLAN      : -

 Out-interface: GE0/0/2                         In-interface   : GE0/0/2

 Out-S-VLAN   : 101                             Out-C-VLAN     : -

 In-S-VLAN    : 201                             In-C-VLAN      : -

Owner         : SIDMGR                          State          : Active

Create Time   : May 19 17:21:15.687 2020

Table 12 Command output

Field

Description

SID

SRv6 SID.

Function type

SRv6 SID type:

·     End.

·     End.AM.

·     End.AS.

·     End.B6.Encaps.

·     End (COC32).

·     End.DT2M.

·     End.DT2U.

·     End.DT2UL.

·     End.DT4.

·     End.DT46.

·     End.DT6.

·     End.DX2.

·     End.DX2L.

·     End.M.

·     End.OP.

·     End.X.

·     End.X (COC32).

Flavor

SRv6 SID flavor type:

·     PSP—The penultimate SRv6 node removes the SRH.

·     NOPSP—The penultimate SRv6 node does not remove the SRH.

Interface

Output interface.

Interface index

Output interface index.

Next hop

Next hop address.

VPN instance

VPN instance name.

For the public network, this field displays Public instance.

Xconnect group

Cross-connect group name.

Connection

Cross-connect name.

VSI name

VSI name.

Service ID

Ethernet service instance ID.

If no Ethernet service instance ID exists, this field displays 0.

Allocation type

SID allocation type:

·     Static—Manually configured.

·     Dynamic—Dynamically allocated.

Network type

Type of the network to which the SRv6 SID is applied:

·     MPLS L3VPN—The SRv6 SID is applied to an MPLS L3VPN network.

·     EVPN L3VPN—The SRv6 SID is applied to an EVPN L3VPN network.

·     MPLS L3VPN, EVPN L3VPN—The SRv6 SID is applied to MPLS L3VPN and EVPN L3VPN networks.

Mirror locator number

Number of protected locators.

Mirror locator

IPv6 address prefix and prefix length of each protected locator.

Owner

Protocol that applies for the SID:

·     SIDMGR.

·     BGP.

·     SRPolicy.

·     IS-IS.

·     OSPFv3.

·     L2VPN.

·     LSM.

State

SID state:

·     Active.

·     Inactive.

Create Time

SID creation time.

Forward type

SFF-to-SF packet forwarding type:

·     L2—Layer 2 forwarding.

·     L3—Layer 3 forwarding.

Inner type

Protocol type of the original SFF-to-SF packet.

Source address

Source IPv6 address re-encapsulated for the packet received by the SFF from the SF.

Backup SID

Backup End.AS SID.

Peer SID

Backup SFF SID, which is the an End SID.

Bypass

Bypass protection status: Enabled or disabled (-).

Bypass SID

Backup SID of the bypass path, which is the valid End.AS SID of other protection devices in the SF group.

TTL mode

TTL processing mode:

·     Uniform—After a packet is forwarded back to the SFF from the SF, the SFF uses the TTL value in the original packet minus 1 as the TTL in the newly encapsulated IPv6 header.

·     Pipe—After a packet is forwarded back to the SFF from the SF, the SFF uses the specified TTL value (ttl-value) minus 1 as the TTL in the newly encapsulated IPv6 header.

TTL value

TTL value:

·     In the Uniform TTL processing mode, a hyphen (-) is displayed.

·     In the Pipe TTL processing mode, the configured TTL value is displayed.

Diffserv mode

Differentiated services (Diffserv) mode:

·     Uniform—In the inbound direction (SF to SFF), the SFF maps the carried IP or DSCP value to the priority in the newly encapsulated IPv6 header. The packet color will not be changed. In the outbound direction (SFF to SF), the SFF removes the outer IPv6 and SRH header. Then it maps the priority in the outer IPv6 header to the IP or DSCP value in the original packet. The packet color will not be changed.

·     Pipe—In the inbound direction (SF to SFF), the SFF ignores the carried IP or DSCP value. It uses the configured service-class value as the priority in the newly encapsulated IPv6 header, and the configured color value as the color for the new packet. In SRv6 networks, QoS scheduling is performed for packets based on the priority and color values. In the outbound direction (SFF to SF), the SFF removes the outer IPv6 and SRH header without modifying the IP or DSCP value and color in the original packet.

Service class

Diffserv class of the service chain. Values include the following in ascending priority order:

·     be

·     af1

·     af2

·     af3

·     af4

·     ef

·     cs6

·     cs7

If no Diffserv class is configured, a hyphen (-) is displayed.

Color

Packet color. Values include the following in ascending order of packet loss probability:

·     green—Indicates packet loss probability 0.

·     yellow—Indicates packet loss probability 1.

·     red—Indicates packet loss probability 2.

If no Diffserv class is configured, a hyphen (-) is displayed.

Cache-SL

Segment left value, which indicates the number of nodes to access in the SID list before arrival at the final destination.

Cache list

SID list that needs to be encapsulated after the SFF receives the packet from the SF.

Encapsulation count

Number of equal-cost paths between the SFF and SF.

Out-Interface

Outbound interface for the SFF to forward packets to the SF.

In-Interface

Inbound interface for the SFF to receive packets from the SF.

Out-S-VLAN

Outer VLAN ID for SFF-to-SF (outbound) packets.

Out-C-VLAN

Inner VLAN ID for SFF-to-SF (outbound) packets.

In-S-VLAN

Outer VLAN ID for SF-to-SFF (inbound) packets.

In-C-VLAN

Inner VLAN ID for SF-to-SFF (inbound) packets.

Dest MAC

Destination MAC address encapsulated for packets from the SF to the remote backup SFF in Layer 2 forwarding.

Symmetric-index

Index that identifies a VM used for forwarding bidirectional traffic when multiple VMs exist on the SF. Both inbound and outbound traffic with the same source and destination addresses will traverse the same VM.

 

display segment-routing ipv6 locator

Use display segment-routing ipv6 locator to display SRv6 locator information.

Syntax

display segment-routing ipv6 locator [ locator-name ]

Views

Any view

Predefined user roles

network-admin

network-operator

Parameters

locator-name: Specifies a locator by its name, a case-sensitive string of 1 to 31 characters. If you do not specify a locator, this command displays information about all locators.

Examples

# Display information about all locators.

<Sysname> display segment-routing ipv6 locator

 

                      Locator configuration table

 

Locator name        : abc                                   Flag(A)       : 0

IPv6 prefix         : 100:1:2:3::                           Prefix length : 96

Static length       : 24                                    Args length   : 8

Common prefix length: 0

Algorithm           : 0

Auto SID start      : N/A

Auto SID end        : N/A

Static SID start    : 100:1:2:3::100

Static SID end      : 100:1:2:3::FFFF:FF00

Table 13 Command output

Field

Description

Flag(A)

Anycast locator flag (A-bit). If A-bit is set, the locator is an anycast locator.

IPv6 prefix

IPv6 address prefix of the locator.

Prefix length

Prefix length of the locator.

Static length

Static length of the locator.

Args length

Argument length.

Common prefix length

Common prefix length of the locator.

Algorithm

Algorithm ID:

·     0—SPF algorithm.

·     128 to 255—Flex-Algo algorithm.

Auto SID start

Start dynamic SRv6 SID.

If no dynamic SRv6 SID exists, this field displays N/A.

Auto SID end

End dynamic SRv6 SID.

If no dynamic SRv6 SID exists, this field displays N/A.

Static SID start

Start static SRv6 SID.

If no static SRv6 SID exists, this field displays N/A.

Static SID end

End static SRv6 SID.

If no static SRv6 SID exists, this field displays N/A.

egress-engineering srv6 peer-set

Use egress-engineering srv6 peer-set to create a BGP-EPE SRv6 peer set.

Use undo egress-engineering srv6 peer-set to delete a BGP-EPE SRv6 peer set.

Syntax

egress-engineering srv6 peer-set peer-set-name [ static-sid { psp psp-sid | no-psp-usp no-psp-usp-sid } * ]

undo egress-engineering srv6 peer-set peer-set-name

Default

No BGP-EPE SRv6 peer sets exist.

Views

BGP instance view

Predefined user roles

network-admin

Parameters

peer-set-name: Specifies a name for the BGP-EPE SRv6 peer set, which is a case-sensitive string of 1 to 63 characters.

static-sid: Specifies a static SRv6 SID for the BGP-EPE SRv6 peer set. If you do not specify a static SRv6 SID, dynamic SRv6 SID allocation applies.

psp psp-sid: Specifies an End.X SID and enables PSP to remove the SRH on the penultimate segment.

no-psp-usp no-psp-usp-sid: Specifies an End.X SID and disables PSP and USP. The SRH is not removed on the penultimate segment or the ultimate segment.

Usage guidelines

BGP-EPE allocates BGP peer SIDs to inter-AS segments. The device advertises the peer SIDs to a network controller through BGP LS messages. The controller orchestrates the IGP SIDs and BGP peer SIDs to realize optimal inter-AS traffic forwarding.

If the device establishes BGP peer relationship with multiple devices, use this command to add the peer devices to a peer set and allocate a PeerSet SID to the peer set. When the device forwards traffic based on the PeerSet SID, it distributes the traffic among the peers for load sharing.

Before you use this command, apply a locator to BGP-EPE by using the segment-routing ipv6 egress-engineering locator command in BGP instance view.

·     If automatic SID allocation is used, the device dynamically allocates an SRv6 SID to the BGP-EPE SRv6 peer set from the specified locator.

·     If you specify a static SRv6 SID for the BGP-EPE SRv6 peer set, the specified static SRv6 SID must belong to the specified locator.

If you execute the egress-engineering srv6 peer-set command to specify multiple SRv6 SIDs for one peer set, the effective configuration depends on whether the SRv6 SIDs are the same type.

·     If all the SRv6 SIDs belong to the same type, only the most recent configuration takes effect.

·     If the SRv6 SIDs belong to different types, the configuration for all the SRv6 SID types takes effect. For the SRv6 SIDs that belong to the same type, only the most recent configuration takes effect. Make sure each SRv6 SID is unique among all the SRv6 SID types.

The static SRv6 SIDs configured by using the following commands cannot be the same in a BGP instance:

·     egress-engineering srv6 peer-set.

·     peer egress-engineering srv6.

Examples

# Create a BGP-EPE SRv6 peer set named epe and configure the peer set to use a dynamically allocated SRv6 SID.

<Sysname> system-view

[Sysname] bgp 100

[Sysname-bgp-default] egress-engineering srv6 peer-set epe

Related commands

peer egress-engineering srv6

peer peer-set

segment-routing ipv6 egress-engineering locator

encapsulation source-address

Use encapsulation source-address to specify a source address for the outer IPv6 header of SRv6 packets.

Use undo encapsulation source-address to restore the default.

Syntax

encapsulation source-address ipv6-address [ ip-ttl ttl-value ]

undo encapsulation source-address

Default

No source address is specified for the outer IPv6 header of SRv6 packets.

Views

SRv6 view

Predefined user roles

network-admin

Parameters

ipv6-address: Specifies a source IPv6 address. The IPv6 address cannot be a loopback address, link-local address, multicast address, or unspecified address.

ip-ttl ttl-value: Specifies the TTL of the outer IPv6 header, in the range of 1 to 255. The default value is 255.

Usage guidelines

As a best practice to ensure correct traffic forwarding in an SRv6 network, specify a source address for the outer IPv6 header of SRv6 packets.

You must specify an IPv6 address of the local device as the source IPv6 address, and make sure the IPv6 address has been advertised by a routing protocol. As a best practice, specify a loopback interface address of the local device as the source IPv6 address.

Examples

# Specify 1::1 as the source address of SRv6 packets in the outer IPv6 header and set the TTL of the outer IPv6 header to 200.

<Sysname> system-view

[Sysname] segment-routing ipv6

[Sysname-segment-routing-ipv6] encapsulation source-address 1::1 ip-ttl 200

fast-reroute microloop-avoidance enable

Use fast-reroute microloop-avoidance enable to enable FRR microloop avoidance.

Use undo fast-reroute microloop-avoidance enable to disable FRR microloop avoidance.

Syntax

fast-reroute microloop-avoidance enable [ level-1 | level-2 ]

undo fast-reroute microloop-avoidance enable [ level-1 | level-2 ]

Default

FRR microloop avoidance is disabled.

Views

IS-IS IPv6 unicast address family view

Predefined user roles

network-admin

Parameters

level-1: Specifies FRR microloop avoidance for IS-IS Level-1.

level-2: Specifies FRR microloop avoidance for IS-IS Level-2.

Usage guidelines

Use this command only on the source node.

On an network configured with TI-LFA FRR, if a node or link fails, traffic will be switched to the backup path calculated by TI-LFA. If a device along the backup path has not finished route convergence, a traffic loop will occur. Traffic will be looped between the device and the source node (the node prior to the node or link that failed) until the device finishes route convergence.

To resolve this problem, configure microloop avoidance on the source node. Then, when a node or link fails, traffic will be switched to the backup path calculated by TI-LFA. The source node waits for a period of time for other devices to finish route convergence. After the delay time elapses, the source node starts route convergence.

If you do not specify the level-1 or level-2 keyword, the command enables or disables FRR microloop avoidance on all IS-IS levels.

Examples

# Enable FRR microloop avoidance for IS-IS process 1.

<Sysname> system-view

[Sysname] isis 1

[Sysname-isis-1] address-family ipv6

[Sysname-isis-1-ipv6] fast-reroute microloop-avoidance enable

Related commands

fast-reroute microloop-avoidance rib-update-delay

fast-reroute microloop-avoidance rib-update-delay

Use fast-reroute microloop-avoidance rib-update-delay to set the FRR microloop avoidance RIB-update-delay time.

Use undo fast-reroute microloop-avoidance rib-update-delay to restore the default.

Syntax

fast-reroute microloop-avoidance rib-update-delay delay-time [ level-1 | level-2 ]

undo fast-reroute microloop-avoidance rib-update-delay [ level-1 | level-2 ]

Default

The FRR microloop avoidance RIB-update-delay time is 5000 ms.

Views

IS-IS IPv6 unicast address family view

Predefined user roles

network-admin

Parameters

delay-time: Specifies the FRR microloop avoidance RIB-update-delay time in milliseconds. The value range is 1 to 60000.

level-1: Specifies the FRR microloop avoidance RIB-update-delay time for IS-IS Level-1.

level-2: Specifies the FRR microloop avoidance RIB-update-delay time for IS-IS Level-2.

Usage guidelines

Use this command only on the source node.

If you do not specify the level-1 or level-2 keyword, the command sets the FRR microloop avoidance RIB-update-delay time for all IS-IS levels.

Examples

# Set the FRR microloop avoidance RIB-update-delay time to 6000 ms for Level-1 of IS-IS process 1.

<Sysname> system-view

[Sysname] isis 1

[Sysname-isis-1] address-family ipv6

[Sysname-isis-1-ipv6] fast-reroute microloop-avoidance rib-update-delay 6000 level-1

Related commands

fast-reroute microloop-avoidance

fast-reroute ti-lfa

Use fast-reroute ti-lfa to enable Topology-Independent Loop-free Alternate Fast Re-Route (TI-LFA FRR).

Use undo fast-refroute ti-lfa to disable TI-LFA FRR.

Syntax

In IS-IS IPv6 unicast address family view:

fast-reroute ti-lfa [ per-prefix ] [ route-policy route-policy-name | host ] [ level-1 | level-2 ]

undo fast-reroute ti-lfa [ level-1 | level-2 ]

In OSPFv3 process view:

fast-reroute ti-lfa [ per-prefix ] [ route-policy route-policy-name | host ]

undo fast-reroute ti-lfa

Default

TI-LFA FRR is disabled.

Views

IS-IS IPv6 unicast address family view

OSPFv3 process view

Predefined user roles

network-admin

Parameters

per-prefix: Calculates backup information for each advertising source of a route. Specify this keyword only if routes are advertised by multiple sources. If you do not specify this keyword, the device calculates backup information for each route.

route-policy route-policy-name: Enables TI-LFA FRR for prefixes identified by the routing policy. The route-policy-name argument specifies a routing policy by its name, a case-sensitive string of 1 to 63 characters.

host: Enables TI-LFA for host routes.

level-1: Specifies TI-LFA FRR for IS-IS Level-1.

level-2: Specifies TI-LFA FRR for IS-IS Level-2.

Usage guidelines

TI-LFA FRR provides link and node protection for SR tunnels. When a link or node fails, TI-LFA FRR switches the traffic to the backup path to ensure continuous data forwarding.

Before configuring TI-LFA FRR on a level, you must execute the fast-reroute lfa command in IS-IS IPv6 unicast address family view or OSPFv3 process view to enable LFA FRR on that level. TI-LFA FRR takes effect only after you enable LFA FRR.

If you do not specify the route-policy route-policy-name option or the host keyword, the device calculates backup information for all routes.

If you do not specify the level-1 or level-2 keyword, the command applies to both IS-IS levels.

Examples

# Enable TI-LFA FRR for IS-IS process 1 and calculate backup information for all routes.

<Sysname> system-view

[Sysname] isis 1

[Sysname-isis-1] address-family ipv4

[Sysname-isis-1-ipv4] fast-reroute ti-lfa

# Enable TI-LFA FRR for OSPFv3 process 1 and calculate backup information for all routes.

<Sysname> system-view

[Sysname] ospfv3 1

[Sysname-ospfv3-1] fast-reroute ti-lfa

Related commands

fast-reroute (IS-IS in Layer 3—IP Routing Command Reference)

fast-reroute (OSPFv3 in Layer 3—IP Routing Command Reference)

route-policy (Layer 3—IP Routing Command Reference)

ipv6 segment-routing sid-list

Use ipv6 segment-routing sid-list to create an SID list and enter its view, or enter the view of an existing SID list.

Use undo ipv6 segment-routing sid-list to delete an SID list.

Syntax

ipv6 segment-routing sid-list list-name

undo ipv6 segment-routing sid-list list-name

Default

No SID lists exist.

Views

System view

Predefined user roles

network-admin

Parameters

list-name: Specifies the name of the SID list, a case-sensitive string of 1 to 31 characters.

Examples

# Create SID list aa and enter its view.

<Sysname> system-view

[Sysname] ipv6 segment-routing sid-list aa

[Sysname-srv6-sid-list-aa]

Related commands

sid

tunnel sid-list

isis ipv6 fast-reroute ti-lfa disable

Use isis ipv6 fast-reroute ti-lfa disable to prevent an IS-IS interface from participating in TI-LFA calculation.

Use undo isis ipv6 fast-reroute ti-lfa disable to allow an IS-IS interface to participate in TI-LFA calculation.

Syntax

isis ipv6 fast-reroute ti-lfa disable [ level-1 | level-2 ]

undo isis ipv6 fast-reroute ti-lfa disable [ level-1 | level-2 ]

Default

An IS-IS interface participates in TI-LFA calculation.

Views

Interface view

Predefined user roles

network-admin

Parameters

level-1: Specifies TI-LFA calculation on IS-IS Level-1.

level-2: Specifies TI-LFA calculation on IS-IS Level-2.

Usage guidelines

Disable the output interface to the primary next hop from participating in TI-LFA calculation.

If you do not specify the level-1 or level-2 keyword, this command applies to both IS-IS levels.

Examples

# Prevent GigabitEthernet0/0/1 from participating in TI-LFA calculation.

<Sysname> system-view

[Sysname] interface gigabitethernet 0/0/1

[Sysname-GigabitEthernet0/0/1] isis enable 1

[Sysname-GigabitEthernet0/0/1] isis ipv6 fast-reroute ti-lfa disable

Related commands

fast-reroute ti-lfa

locator

Use locator to create an SRv6 locator and enter its view, or enter the view of an existing SRv6 locator.

Use undo locator to delete an SRv6 locator.

Syntax

locator locator-name [ ipv6-prefix ipv6-address prefix-length [ args args-length | static static-length ] * ]

locator locator-name [ ipv6-prefix ipv6-address prefix-length common-prefix common-prefix-length coc32 [ args args-length | static static-length ] * ]

undo locator locator-name

Default

No SRv6 locators exist.

Views

SRv6 view

Predefined user roles

network-admin

Parameters

locator-name: Specifies a locator name, a case-sensitive string of 1 to 31 characters.

ipv6-prefix ipv6-address prefix-length: Specifies an IPv6 address prefix and the prefix length. The ipv6-address argument represents the IPv6 address prefix. The prefix-length argument represents the prefix length, in the range of 32 to 120.

args args-length: Specifies an argument length. The value range for the args-length argument depends on the value of the prefix-length argument and varies by device model. If you do not specify an argument length, the argument length is 0.

static static-length: Specifies the static length. The value range for the static-length argument varies by the value of the prefix-length argument and varies by device model. If you do not specify a static length, the static length is 0.

common-prefix common-prefix-length: Specifies the G-SID common prefix length. The value range for the common-prefix-length argument varies by the value of the prefix-length argument and varies by device model. If you do not specify a G-SID common prefix length, the common prefix length is 0.

coc32: Enables 32-bit G-SID compression.

Usage guidelines

An SRv6 locator can be one of the following types:

·     COC32 type—An SRv6 locator with the coc32 keyword specified.

·     Common type—An SRv6 locator without the coc32 keyword specified.

For more information about the SRv6 SID fields, see SRv6 configuration in Segment Routing Configuration Guide.

If SRv6 compression is enabled, use the locator command to configure the G-SID common prefix length and specify the G-SID compression mode. Only the 32-bit G-SID compression mode is supported in the current software version. In this mode, a standard 128-bit SRv6 SID is compressed to a 32-bit G-SID.

If a static opcode has been configured, a routing protocol preferentially uses the static opcode to construct SRv6 SIDs. If no static opcode exists, the routing protocol dynamically allocates SRv6 SIDs.

By applying a locator to IGP and BGP, you can use IGP and BGP to advertise the SRv6 SIDs on the locator.

When you create a locator, you must specify an IPv6 address prefix, prefix length, and static length for the locator. When you enter the view of an existing SRv6 locator, you do not need to specify the IPv6 address prefix, prefix length, or static length of the locator.

Each locator must have a unique name.

Do not specify the same IPv6 address prefix and prefix length for different locators. In addition, the IPv6 address prefixes of different locators cannot overlap.

You cannot delete a locator if that locator has dynamic SRv6 SIDs that are being used.

Examples

# Configure locator test1, setting the IPv6 address prefix to 100::, prefix length to 64, and static length to 32, and enter the SRv6 locator view of this locator.

<Sysname> system-view

[Sysname] segment-routing ipv6

[Sysname-segment-routing-ipv6] locator test1 ipv6-prefix 100:: 64 static 32

[Sysname-segment-routing-ipv6-locator-test1]

Related commands

opcode

srv6 compress enable

opcode

Use opcode to configure the opcode of an SRv6 SID.

Use undo opcode to delete the opcode of an SRv6 SID.

Syntax

opcode { opcode | hex hex-opcode } end [ no-psp ]

opcode { opcode | hex hex-opcode } end-x interface interface-type interface-number nexthop nexthop-ipv6-address [ no-psp ]

opcode { opcode | hex hex-opcode } end-coc32 [ no-psp ]

opcode { opcode | hex hex-opcode } end-x-coc32 interface interface-type interface-number nexthop nexthop-ipv6-address [ no-psp ]

opcode { opcode | hex hex-opcode } end-dt4 [ vpn-instance vpn-instance-name [ evpn | l3vpn-evpn ] ]

opcode { opcode | hex hex-opcode } end-dt46 [ vpn-instance vpn-instance-name [ evpn | l3vpn-evpn ] ]

opcode { opcode | hex hex-opcode } end-dt6 [ vpn-instance vpn-instance-name [ evpn | l3vpn-evpn ] ]

opcode { opcode | hex hex-opcode } end-dx4 interface interface-type interface-number nexthop nexthop-ipv4-address [ vpn-instance vpn-instance-name [ evpn ] ]

opcode { opcode | hex hex-opcode } end-dx6 interface interface-type interface-number nexthop np-ipv6-address [ vpn-instance vpn-instance-name [ evpn ] ]

opcode { opcode | hex hex-opcode } end-dx2 xconnect-group group-name connection connection-name

opcode { opcode | hex hex-opcode } end-dx2 vsi vsi-name interface interface-type interface-number

opcode { opcode | hex hex-opcode } end-dx2l xconnect-group group-name connection connection-name

opcode { opcode | hex hex-opcode } end-dx2l vsi vsi-name interface interface-type interface-number

opcode { opcode | hex hex-opcode } end-dt2m vsi vsi-name

opcode { opcode | hex hex-opcode } end-dt2u vsi vsi-name

opcode { opcode | hex hex-opcode } end-dt2ul vsi vsi-name

opcode { opcode | hex hex-opcode } end-m mirror-locator ipv6-address prefix-length

opcode { opcode | hex hex-opcode } end-op

undo opcode { opcode | hex hex-opcode } [ end-m mirror-locator ipv6-address prefix-length ]

Default

No opcode exists.

Views

SRv6 locator view

Predefined user roles

network-admin

Parameters

opcode: Specifies an opcode in the range of 1 to 2static-length-1, in which the static-length argument is configured by using the locator command.

end: Specifies the End type.

end-x: Specifies the End.X type.

end-coc32: Specifies the End (COC32) type.

end-x-coc32: Specifies the End.X (COC32) type.

end-dt4: Specifies the End.DT4 type.

end-dt46: Specifies the End.DT46 type.

end-dt6: Specifies the End.DT6 type.

end-dx4: Specifies the End.DX4 type.

end-dx6: Specifies the End.DX6 type.

end-dx2: Specifies the End.DX2 type.

end-dx2l: Specifies the End.DX2L type.

end-dt2m: Specifies the End.DT2M type.

end-dt2u: Specifies the End.DT2U type.

end-dt2ul: Specifies the End.DT2UL type.

end-m: Specifies the End.M type.

end-op: Specifies the End.OP type.

no-psp: Disables the penultimate SRv6 node from removing the SRH. If you do not specify this keyword, the penultimate SRv6 node will remove the SRH.

interface interface-type interface-number: Specifies an output interface.

nexthop nexthop-ipv4-address: Specifies a next hop IPv4 address.

nexthop nexthop-ipv6-address: Specifies a next hop IPv6 address.

vpn-instance vpn-instance-name: Specifies the MPLS L3VPN instance to which the SRv6 SID belongs. The vpn-instance-name argument is a case-sensitive string of 1 to 31 characters. The specified VPN instance must exist. If the SRv6 SID belongs to the public network, do not specify this option.

evpn: Specifies EVPN routes. If you do not specify this keyword, the command specifies the SRv6 SID of VPNv4 or VPNv6 routes.

l3vpn-evpn: Specifies EVPN routes, VPNv4 routes, and VPNv6 routes.

xconnect-group group-name: Specifies the cross-connect group to which the SRv6 SID belongs. The group-name argument represents the cross-connect group name, a case-sensitive string of 1 to 31 characters. The name cannot contain a hyphen (-). The specified cross-connect group must exist.

connection connection-name: Specifies the cross-connect to which the SRv6 SID belongs. The connection-name argument represents the cross-connect name, a case-sensitive string of 1 to 20 characters. The name cannot contain a hyphen (-). The specified cross-connect must exist.

vsi vsi-name: Specifies the VSI to which the SRv6 SID belongs. The vsi-name argument represents the VSI name, a case-sensitive string of 1 to 31 characters. The specified VSI must exist.

mirror-locator ipv6-address prefix-length: Specifies a protected locator by its IPv6 address prefix and prefix length. The ipv6-address argument represents the IPv6 address prefix. The prefix-length argument represents the prefix length, in the range of 32 to 120. Make sure the specified locator is the same as the locator on a protected node.

Usage guidelines

An SRv6 locator and its opcode and argument generate unique SRv6 SIDs. SRv6 SIDs form local SID forwarding table entries.

Use this command to configure the opcode of static SRv6 SIDs on a locator. The number of static SRv6 SIDs is determined by the static static-length option in the locator command.

You can execute the opcode command multiple times with the end-m keyword to specify multiple protected locators for the same opcode. Each protected locator represents one or multiple remote SRv6 SIDs that require protection. A protected locator can be specified only for one opcode. Different opcodes cannot have protected locators belonging to the same subnet.

To modify the opcode of static SRv6 SIDs on a locator, you must first delete the original opcode by using the undo opcode command.

To configure End (COC32) SRv6 SIDs or End.X (COC32) SRv6 SIDs, you must also perform the following tasks:

·     Enable SRv6 compression by using the srv6 compress enable command.

·     Configure the G-SID common prefix length by using the locator command.

Examples

# Configure End SRv6 SIDs, and set the opcode to 64. Configure End.X SRv6 SIDs, set the opcode to 128, and configure GigabitEthernet 0/0/1 as the output interface and 2001::1 as the next hop IPv6 address.

<Sysname> system-view

[Sysname] segment-routing ipv6

[Sysname-segment-routing-ipv6] locator test ipv6-prefix 100:: 64 static 32

[Sysname-segment-routing-ipv6-locator-test] opcode 64 end

[Sysname-segment-routing-ipv6-locator-test] opcode 128 end-x interface gigabitethernet 0/0/1 nexthop 2001::1

Related commands

locator

segment-routing ipv6

srv6 compress enable

ospfv3 fast-reroute ti-lfa disable

Use ospfv3 fast-reroute ti-lfa disable to prevent an OSPFv3 interface from participating in TI-LFA calculation.

Use undo ospfv3 fast-reroute ti-lfa disable to allow an OSPFv3 interface to participate in TI-LFA calculation.

Syntax

ospfv3 fast-reroute ti-lfa disable [ instance instance-id ]

undo ospfv3 fast-reroute ti-lfa disable [ instance instance-id ]

Default

An OSPFv3 interface participates in TI-LFA calculation.

Views

Interface view

Predefined user roles

network-admin

Parameters

instance instance-id: Specifies an instance by its ID, in the range of 0 to 255. The default value is 0.

Examples

# Prevent GigabitEthernet0/0/1 from participating in TI-LFA calculation.

<Sysname> system-view

[Sysname] interface gigabitethernet 0/0/1

[Sysname-GigabitEthernet0/0/1] ospfv3 enable 1

[Sysname-GigabitEthernet0/0/1] ospfv3 fast-reroute ti-lfa disable

path-mtu

Use path-mtu to set the SRv6 path MTU.

Use undo path-mtu to restore the default.

Syntax

path-mtu mtu-value

undo path-mtu

Default

The SRv6 path MTU is 1500 bytes.

Views

SRv6 view

Predefined user roles

network-admin

Parameters

mtu-value: Sets the path MTU, in bytes. The value range for this argument is 1280 to 1500.

Usage guidelines

This command specifies the maximum bytes that can be contained in an SRv6 tunneled packets.

The transit nodes do not fragment SRv6 tunneled packets. If a packet is larger than the MTU of the output interface, the packet will be discarded. If the MTU is too small, the bandwidth is not sufficiently used. To address these issues, use this command to set an appropriate SRv6 path MTU.

Examples

# Set the SRv6 path MTU to 2000 bytes.

<Sysname> system-view

[Sysname] segment-routing ipv6

[Sysname-segment-routing-ipv6] path-mtu 2000

path-mtu reserved

Use path-mtu reserved to specify a reserved MTU for SRv6 path MTU.

Use undo path-mtu reserved to restore the default.

Syntax

path-mtu reserved [ reserved-value ]

undo path-mtu reserved

Default

No reserved MTU is specified for SRv6 path MTU.

Views

SRv6 view

Predefined user roles

network-admin

Parameters

reserved-value: Specifies an MTU value, in bytes. The value range for this argument is 0 to 220. The default value is 72 bytes.

Usage guidelines

Use this command in the TI-LFA scenario. When packets are switched to the backup path after the primary path fails, the device reconstrcts an IPv6 header and SRH for the packets. As a result, packet drop might occur because the packet size has exceeded the MTU. To resolve this issue, configure a reserved MTU on the source node to reserve bytes for adding a new SRH to SRv6 packets in case of primary path failure.

The SRv6 path MTU minus the reserved MTU is the active MTU. Make sure the active MTU is equal to or greater than 1280 bytes.

The effective MTU for SRv6 packets on the source node is the smaller value from the following values:

·     The active MTU.

·     The IPv6 MTU of the physical output interface.

For example, if the SRv6 path MTU is 1600 bytes and the reserved MTU is 100 bytes, the active MTU is 1500 bytes.

·     If the IPv6 MTU of the physical output interface is equal to or greater than the 1500 bytes, the effective MTU on the source node is 1500 bytes.

·     If the IPv6 MTU of the physical output interface is smaller than 1500 bytes, the effective MTU on the source node is the IPv6 MTU of the physical output interface.

Examples

# Reserve 200 bytes for SRv6 path MTU.

<Sysname> system-view

[Sysname] segment-routing ipv6

[Sysname-segment-routing-ipv6] path-mtu reserved 200

peer egress-engineering srv6

Use peer egress-engineering srv6 to enable SRv6 BGP-EPE.

Use undo peer egress-engineering srv6 to disable SRv6 BGP-EPE.

Syntax

peer group-name egress-engineering srv6

undo peer group-name egress-engineering srv6

peer ipv6-address [ prefix-length ] egress-engineering srv6 [ locator locator-name | static-sid { psp psp-sid | no-psp-usp no-psp-usp-sid } * ]

undo peer ipv6-address [ prefix-length ] egress-engineering srv6 [ locator | static-sid { psp | no-psp-usp } * ]

Default

SRv6 BGP-EPE is disabled.

Views

BGP instance view

Predefined user roles

network-admin

Parameters

group-name: Specifies a peer group by its name, a case-sensitive string of 1 to 47 characters. The specified peer group must already exist.

ipv6-address: Specifies a peer by its IPv6 address. The specified peer must already exist.

prefix-length: Specifies the prefix length, in the range of 0 to 128. To specify dynamic peers within a subnet, you must specify both the ipv6-address and prefix-length arguments.

locator locator-name: Specifies a locator by its name. If you do not specify a locator, the device can dynamically allocate an End.X SID in the locator to the peer.

static-sid: Specifies a static SRv6 SID for the peer.

psp psp-sid: Specifies an End.X SID and enables PSP to remove the SRH on penultimate segment.

no-psp-usp no-psp-usp-sid: Specifies an End.X SID and disables PSP and USP. The SRH is not removed on the penultimate segment or the ultimate segment.

Usage guidelines

This command enables the device to allocate PeerNode SIDs and PeerAdj SIDs to peers.

If you do not specify any parameters, the device will dynamically allocate SRv6 SIDs to peers. The SRv6 SIDs belong to the locator specified by using the segment-routing ipv6 egress-engineering locator command in BGP instance view.

When you use the peer egress-engineering srv6 command for a peer, follow these restrictions and guidelines:

·     If you use this command to specify multiple locators for that peer, only the most recent configuration takes effect.

·     If you use this command to specify multiple static SRv6 SIDs and the SIDs belong to different types, all types of SRv6 SIDs can take effect. For the same type of SRv6 SIDs, only the most recent configuration takes effect.

If you specify a static SRv6 SID for a peer, the specified static SRv6 SID must belong to the locator specified by using the segment-routing ipv6 egress-engineering locator command in BGP instance view.

The static SRv6 SIDs specified by using the following commands cannot be the same:

·     peer egress-engineering srv6.

·     egress-engineering srv6 peer-set.

Examples

# Enable SRv6 BGP-EPE.

<Sysname> system-view

[Sysname] bgp 100

[Sysname-bgp-default] peer 1::1 egress-engineering srv6

Related commands

egress-engineering srv6 peer-set

segment-routing ipv6 egress-engineering locator

peer peer-set

Use peer peer-set to add a peer to a BGP-EPE SRv6 peer set.

Use undo peer peer-set to remove a peer from a BGP-EPE SRv6 peer set.

Syntax

peer { ipv6-address [ prefix-length ] } peer-set srv6-peer-set-name

undo peer { ipv6-address [ prefix-length ] } peer-set

Default

No peers are added to a BGP-EPE SRv6 peer set.

Views

BGP instance view

Predefined user roles

network-admin

Parameters

ipv6-address: Specifies a peer by its IPv6 address. The peer must exist.

prefix-length: Specifies a prefix length in the range of 0 to 128. To specify a subnet, you must specify both the ipv6-address and prefix-length arguments.

peer-set-name: Specifies a BGP-EPE SRv6 peer set by its name, a case-sensitive string of 1 to 63 characters.

Usage guidelines

A PeerSet SID can be allocated to a BGP-EPE SRv6 peer set. When the device forwards traffic based on the PeerSet SID, it distributes the traffic among the peers in the peer set for load sharing.

Before adding a peer to a BGP-EPE SRv6 peer set, you must enable SRv6 BGP-EPE for that peer.

To change the BGP-EPE SRv6 peer set for a peer, you must first use undo peer peer-set command to remove that peer from the original BGP-EPE SRv6 peer set.

Examples

# Add peer 10::1 to the BGP-EPE SRv6 peer set named abc.

<Sysname> system-view

[Sysname] bgp 100

[Sysname-bgp-default] peer 10::1 peer-set abc

Related commands

egress-engineering srv6 peer-set

peer egress-engineering srv6

router-id

Use router-id to configure the router ID for an IPv6 IS-IS process and enable IPv6 TE.

Use undo router-id to remove the router ID from an IPv6 IS-IS process and disable IPv6 TE.

Syntax

router-id ipv6-address

undo router-id

Default

No router ID is configured for an IPv6 IS-IS process and IPv6 TE is disabled.

Views

IS-IS IPv6 address family view

Predefined user roles

network-admin

Parameters

ipv6-address: Specifies an IPv6 router ID.

Usage guidelines

The IPv6 router ID must be unique in the IPv6 network.

The IPv6 router ID determines the source and destination addresses of the SRv6 tunnel distributed to the IGP. The destination address of the SRv6 tunnel must be the same as the IPv6 router ID of the destination node.

Configuring an IPv6 route ID on a router also enables the IPv6 TE feature on that router. After the SRv6 tunnel participates in IGP route calculation, traffic can be directed to the SRv6 tunnel.

Examples

# Configure the router ID for an IPv6 IS-IS process and enable IPv6 TE.

<Sysname> system-view

[Sysname] isis 1

[Sysname-isis-1] cost-style wide

[Sysname-isis-1] address-family ipv6

[Sysname-isis-1-ipv6] router-id 1000::1

segment-routing ipv6 (system view)

Use segment-routing ipv6 to enable SRv6 and enter SRv6 view.

Use undo segment-routing ipv6 to disable SRv6.

Syntax

segment-routing ipv6

undo segment-routing ipv6

Default

SRv6 is disabled.

Views

System view

Predefined user roles

network-admin

Usage guidelines

After you execute this command, you can configure locators in SRv6 view. Then, you can configure the opcode portion in SRv6 locator view to generate local SID forwarding table entries.

You cannot disable SRv6 when a locator in SRv6 view has dynamic SRv6 SIDs that are being used.

Examples

# Enable SRv6 and enter SRv6 view.

<Sysname> system-view

[Sysname] segment-routing ipv6

[Sysname-segment-routing-ipv6]

segment-routing ipv6 egress-engineering locator

Use segment-routing ipv6 egress-engineering locator to apply a locator to BGP-EPE.

Use undo segment-routing ipv6 egress-engineering locator to restore the default.

Syntax

segment-routing ipv6 egress-engineering locator locator-name

undo segment-routing ipv6 egress-engineering locator

Default

No locator is applied to BGP-EPE.

Views

BGP instance view

Predefined user roles

network-admin

Parameters

locator-name: Specifies a locator by its name, a case-sensitive string of 1 to 31 characters.

Usage guidelines

Use this command to restrict the range of End.X SIDs that can be allocated to BGP-EPE SRv6 peer sets and BGP-EPE-enabled peers in a BGP instance. All static SRv6 SIDs configured for the BGP-EPE SRv6 peer sets and peers must belong to the locator specified by using this command.

To dynamically allocate End.X SIDs from the specified locator:

·     Do not configure a static SRv6 SID when you create a BGP-EPE SRv6 peer set by using the egress-engineering srv6 peer-set command.

·     Do not specify a locator or configure a static SRv6 SID when you enable SRv6 BGP-EPE for a peer by using the peer egress-engineering srv6 command.

Examples

# Apply locator test to BGP-EPE.

<Sysname> system-view

[Sysname] bgp 100

[Sysname-bgp-default] segment-routing ipv6 egress-engineering locator test

Related commands

egress-engineering srv6 peer-set

peer egress-engineering srv6

segment-routing ipv6 end-x delete-delay

Use segment-routing ipv6 end-x delete-delay to enable dynamic End.X SID deletion delay and set the delay time.

Use undo segment-routing ipv6 end-x delete-delay to disable dynamic End.X SID deletion delay.

Syntax

segment-routing ipv6 end-x delete-delay [ time-value ]

undo segment-routing ipv6 end-x delete-delay

Default

Dynamic End.X SID deletion delay is enabled. The delay time is 1800 seconds.

Views

IS-IS IPv6 address family view

OSPFv3 process view

Predefined user roles

network-admin

Parameters

time-value: Sets the dynamic End.X SID deletion delay time in seconds, in the range of 1 to 3600. The default value is 1800.

Usage guidelines

Packet loss occurs between OSPFv3 or IS-IS neighbors if the neighbors frequently delete and request dynamically allocated End.X SIDs for the links between them because of neighbor flapping. To resolve this issue, set a delay timer for deleting dynamically allocated End.X SIDs when the neighbors are disconnected. If the neighbors are still disconnected when the delay timer expires, the device deletes the dynamically allocated End.X SIDs.

The device always immediately deletes automatically allocated End.X SIDs without any delay in the following situations:

·     The reset ospfv3 process command is executed.

·     The reset isis all command is executed.

·     Interfaces are deleted or removed. For example, an interface module is removed, or a subinterface or VLAN interface is deleted.

Examples

# Enable dynamic End.X SID deletion delay for IPv6 IS-IS process 1.

<Sysname> system-view

[Sysname] isis 1

[Sysname-isis-1] address-family ipv6

[Sysname-isis-1-ipv6] segment-routing ipv6 end-x delete-delay

# Enable dynamic End.X SID deletion delay for OSPFv3 process 1.

<Sysname> system-view

[Sysname] ospfv3 1

[Sysname-ospfv3-1] segment-routing ipv6 end-x delete-delay

Related commands

reset isis all (Layer 3—IP Routing Command Reference)

reset ospfv3 process (Layer 3—IP Routing Command Reference)

segment-routing ipv6 locator (IS-IS IPv6 address family view)

Use segment-routing ipv6 locator to apply an SRv6 locator to an IPv6 IS-IS process.

Use undo segment-routing ipv6 locator to remove the specified SRv6 locator from an IPv6 IS-IS process.

Syntax

segment-routing ipv6 locator locator-name [ level-1 | level-2 ] [ auto-sid-disable ]

undo segment-routing ipv6 locator locator-name

Default

No SRv6 locators are applied to an IPv6 IS-IS process.

Views

IS-IS IPv6 address family view

Predefined user roles

network-admin

Parameters

locator-name: Specifies a locator by its name, a case-sensitive string of 1 to 31 characters.

level-1: Specifies the level-1 area.

level-2: Specifies the level-2 area.

auto-sid-disable: Disables automatic SRv6 SID allocation. If you do not specify this keyword, the device allows dynamically allocated SRv6 SIDs. If static SRv6 SIDs are configured when automatic SRv6 SID allocation is enabled, the static SRv6 SIDs take precedence. If no static SRv6 SIDs are configured when automatic SRv6 SID allocation is enabled, the system dynamically allocates SRv6 SIDs.

Usage guidelines

Use this command to enable IPv6 IS-IS to advertise SRv6 SIDs.

If you do not specify a level, this command applies the specified locator to both level-1 and level-2 areas.

Use this command only when the cost style of IS-IS is wide, compatible, or wide-compatible.

Execute this command multiple times to apply multiple locators to an IPv6 IS-IS process so that the process can advertise multiple SRv6 SIDs.

Examples

# Apply locator abc to an IPv6 IS-IS process.

<Sysname> system-view

[Sysname] isis 1

[Sysname-isis-1] cost-style wide

[Sysname-isis-1] address-family ipv6

[Sysname-isis-1-ipv6] segment-routing ipv6 locator abc

Related commands

display segment-routing ipv6 locator

locator

segment-routing ipv6 locator (OSPFv3 process view)

Use segment-routing ipv6 locator to apply an SRv6 locator to an OSPFv3 process.

Use undo segment-routing ipv6 locator to remove the specified SRv6 locator from an OSPFv3 process.

Syntax

segment-routing ipv6 locator locator-name [ auto-sid-disable ]

undo segment-routing ipv6 locator locator-name

Default

No SRv6 locators are applied to an OSPFv3 process.

Views

OSPFv3 process view

Predefined user roles

network-admin

Parameters

locator-name: Specifies a locator by its name, a case-sensitive string of 1 to 31 characters.

auto-sid-disable: Disables automatic SRv6 SID allocation. If you do not specify this keyword, the device allows dynamically allocated SRv6 SIDs. If static SRv6 SIDs are configured when automatic SRv6 SID allocation is enabled, the static SRv6 SIDs take precedence. If no static SRv6 SIDs are configured when automatic SRv6 SID allocation is enabled, the system dynamically allocates SRv6 SIDs.

Usage guidelines

Use this command to enable OSPFv3 to advertise SRv6 SIDs.

Execute this command multiple times to apply multiple locators to an OSPFv3 process so that the process can advertise multiple SRv6 SIDs.

Examples

# Apply locator abc to an OSPFv3 process.

<Sysname> system-view

[Sysname] ospfv3 1

[Sysname-ospfv3-1] segment-routing ipv6 locator abc

Related commands

display segment-routing ipv6 locator

locator

segment-routing microloop-avoidance enable

Use segment-routing microloop-avoidance enable to enable SR microloop avoidance.

Use undo segment-routing microloop-avoidance enable to disable SR microloop avoidance.

Syntax

In IS-IS IPv6 unicast address family view:

segment-routing microloop-avoidance enable [ level-1 | level-2 ]

undo segment-routing microloop-avoidance enable [ level-1 | level-2 ]

In OSPFv3 process view:

segment-routing microloop-avoidance enable

undo segment-routing microloop-avoidance enable

Default

SR microloop avoidance is disabled.

Views

IS-IS IPv6 unicast address family view

OSPFv3 process view

Predefined user roles

network-admin

Parameters

level-1: Specifies IS-IS Level-1.

level-2: Specifies IS-IS Level-2.

Usage guidelines

After a network failure occurs or recovers, route convergence occurs on relevant network devices. Because of nonsimultaneous convergence on network devices, microloops might be formed. After you configure SR microloop avoidance, the devices will forward traffic along the specified path before route convergence is finished on all the relevant network devices. Because the forwarding path is independent of route convergence, microloops are avoided.

If you do not specify the level-1 or level-2 keyword, this command applies to both IS-IS levels.

Examples

# Enable SR microloop avoidance for IPv6 IS-IS process 1.

<Sysname> system-view

[Sysname] isis 1

[Sysname-isis-1] address-family ipv6

[Sysname-isis-1-ipv6] segment-routing microloop-avoidance enable

# Enable SR microloop avoidance for OSPFv3 process 1.

<Sysname> system-view

[Sysname] ospfv3 1

[Sysname-isis-1] address-family ipv6

[Sysname-ospfv3-1] segment-routing microloop-avoidance enable

Related commands

segment-routing microloop-avoidance rib-update-delay

segment-routing microloop-avoidance rib-update-delay

Use segment-routing microloop-avoidance rib-update-delay to set the SR microloop avoidance RIB-update-delay time.

Use undo segment-routing microloop-avoidance rib-update-delay to restore the default.

Syntax

In IS-IS IPv6 unicast address family view:

segment-routing microloop-avoidance rib-update-delay delay-time [ level-1 | level-2 ]

undo segment-routing microloop-avoidance rib-update-delay [ level-1 | level-2 ]

In OSPFv3 process view:

segment-routing microloop-avoidance rib-update-delay delay-time

undo segment-routing microloop-avoidance rib-update-delay

Default

The SR microloop avoidance RIB-update-delay time is 5000 milliseconds.

Views

IS-IS IPv6 unicast address family view

OSPFv3 process view

Predefined user roles

network-admin

Parameters

delay-time: Sets the delay time in milliseconds, in the range of 1 to 60000.

level-1: Specifies IS-IS Level-1.

level-2: Specifies IS-IS Level-2.

Usage guidelines

To ensure sufficient time for IGP to complete route convergence, set the SR microloop avoidance RIB-update-delay time. Before the timer expires, faulty relevant devices will forward traffic along the specified path. Upon expiration of the timer and completion of IGP route convergence, traffic will traverse along the IGP-calculated path.

If you do not specify the level-1 or level-2 keyword, this command applies to both IS-IS levels.

Examples

# Set the SR microloop avoidance RIB-update-delay time to 6000 milliseconds for IPv6 IS-IS process 1.

<Sysname> system-view

[Sysname] isis 1

[Sysname-isis-1] address-family ipv6

[Sysname-isis-1-ipv6] segment-routing microloop-avoidance rib-update-delay 6000

# Set the SR microloop avoidance RIB-update-delay time to 6000 milliseconds for OSPFv3 process 1.

<Sysname> system-view

[Sysname] ospfv3 1

[Sysname-isis-1] address-family ipv6

[Sysname-ospfv3-1] segment-routing microloop-avoidance rib-update-delay 6000

Related commands

segment-routing microloop-avoidance enable

service-class

Use service-class to specify a service class value for an SRv6 tunnel interface.

Use undo service-class to restore the default.

Syntax

service-class class-value

undo service-class

Default

No service class value is specified for an SRv6 tunnel interface.

Views

SRv6 tunnel interface view

Predefined user roles

network-admin

Parameters

class-value: Specifies a service class value. The lower the service class value, the lower the forwarding priority of a tunnel. If no service class value is specified for a tunnel, the tunnel has the lowest forwarding priority. The value range for this argument is 0 to 7.

Usage guidelines

Class Based Tunnel Selection (CBTS) compares the service class value of the traffic with the service class values of SRv6 tunnels. CBTS uses the following rules to select a tunnel to forward the traffic:

·     If the traffic matches an SRv6 tunnel, CBTS uses this tunnel.

·     If the traffic matches multiple SRv6 tunnels, CBTS selects a tunnel based on the flow forwarding mode set on the tunnel interface:

¡     If flow-based forwarding is set, CBTS randomly selects a matching tunnel for packets of the same flow.

¡     If packet-based forwarding is set, CBTS uses all matching tunnels to load share the packets.

·     If the traffic does not match any SRv6 tunnels, CBTS selects an SRv6 tunnel from all tunnels with a service class value smaller than the traffic. Among these tunnels, the one with the largest service class value is used. If all SRv6 tunnels have a service class value greater than the traffic, CBTS uses the tunnel with the smallest service class value.

Examples

# Set the service class value to 5 for SRv6 tunnel interface Tunnel 1.

<Sysname> system-view

[Sysname] interface tunnel 1 mode sr ipv6

[Sysname-Tunnel1] service-class 5

sid

Use sid to configure a node in an SID list.

Use undo sid to remove a node from an SID list.

Syntax

sid [ index index-number ] ipv6-address

undo sid index index-number

Default

No nodes exist in an SID list.

Views

SID list view

Predefined user roles

network-admin

Parameters

index index-number: Specifies an index for the node, in the range of 1 to 65535. If you do not specify an index for the node, the system automatically assigns the node the largest index that has been assigned plus an increment. The increment is 4.

ipv6-address: Specifies the IPv6 address of the node.

Usage guidelines

Make sure the node nearest to the source node is assigned the smallest index. The nearer a node is to the source node, the smaller the index value of the node must be.

Examples

# Configure a node in SID list aa. The index is 2 and the IPv6 address is 1::1.

<Sysname> system-view

[Sysname] ipv6 segment-routing sid-list aa

[Sysname-srv6-sid-list-aa] sid index 2 1::1

Related commands

ipv6 segment-routing sid-list

srv6 compress enable (IS-IS IPv6 address family view)

Use srv6 compress enable to enable SRv6 compression for IPv6 IS-IS.

Use undo srv6 compress enable to disable SRv6 compression for IPv6 IS-IS.

Syntax

srv6 compress enable [ level-1 | level-2 ]

undo srv6 compress enable

Default

SRv6 compression is disabled for IPv6 IS-IS.

Views

IS-IS IPv6 address family view

Predefined user roles

network-admin

Parameters

level-1: Specifies the level-1 area.

level-2: Specifies the level-2 area.

Usage guidelines

If you do not specify a level, this command enables SRv6 compression for both level-1 and level-2 areas.

If IPv6 IS-IS is used to advertise G-SIDs to neighbors, you must use this command to enable SRv6 compression for IPv6 IS-IS.

Use this command only when the cost style of IS-IS is wide, compatible, or wide-compatible.

Before you use this command, apply a locator to IS-IS IPv6 address family view by using the segment-routing ipv6 locator command.

Examples

# Enable SRv6 compression for IPv6 IS-IS.

<Sysname> system-view

[Sysname] isis 1

[Sysname-isis-1] cost-style wide

[Sysname-isis-1] address-family ipv6

[Sysname-isis-1-ipv6] srv6 compress enable

Related commands

segment-routing ipv6 locator (IS-IS IPv6 address family view)

srv6 compress enable (SRv6 view)

Use srv6 compress enable to enable SRv6 compression.

Use undo srv6 compress enable to disable SRv6 compression.

Syntax

srv6 compress enable

undo srv6 compress enable

Default

SRv6 compression is disabled.

Views

SRv6 view

Predefined user roles

network-admin

Usage guidelines

Typically, an address space is reserved for SRv6 SID allocation in an SRv6 subnet. This address space is called an SID space. In the SRv6 subnet, all SIDs are allocated from the SID space. The SIDs have the same prefix (common prefix). The SID common prefix is redundant information in the SRH.

SRv6 compression removes the common prefix from the SIDs in the SID list of the SRH. The remaining part of an SID is called a G-SID. G-SIDs reduce the cost of SRH.

When SRv6 uses the SID list in the SRH to replace the destination address of a packet, it combines the common prefix and the destination G-SID to form a new SID. This new SID is used as the destination address of the packet.

Examples

# Enable SRv6 compression.

<Sysname> system-view

[Sysname] segment-routing ipv6

[Sysname-segment-routing-ipv6] srv6 compress enable

srv6 igp metric

Use srv6 igp metric to assign a metric to an SRv6 tunnel.

Use undo srv6 igp metric to restore the default.

Syntax

srv6 igp metric { absolute value | relative value }

undo srv6 igp metric

Default

The metric of an SRv6 tunnel equals its IGP metric.

Views

SRv6 tunnel interface view

Predefined user roles

network-admin

Parameters

absolute value: Specifies an absolute metric, an integer in the range of 1 to 65535.

relative value: Specifies a relative metric, an integer in the range of –10 to +10. A relative metric is the assigned metric value plus the IGP metric.

Usage guidelines

When IGP shortcut is enabled for an SRv6 tunnel, the tunnel participates in the IGP route calculation as a link. You can use this command to configure the metric of this link used for IGP route calculation.

Examples

# Assign SRv6 tunnel interface Tunnel 0 a relative metric of –1 for route calculation in IGP shortcut mechanism.

<Sysname> system-view

[Sysname] interface tunnel 0 mode sr ipv6

[Sysname-Tunnel0] srv6 igp metric relative -1

Related commands

srv6 igp shortcut

srv6 igp shortcut

Use srv6 igp shortcut to enable IGP shortcut for an SRv6 tunnel. The tunnel ingress node includes the tunnel in the IGP route calculation as a link.

Use undo srv6 igp shortcut to disable IGP shortcut.

Syntax

srv6 igp shortcut [ isis | ospf ]

undo srv6 igp shortcut

Default

IGP shortcut is disabled for an SRv6 tunnel. The ingress node does not include the tunnel in the IGP route calculation as a link.

Views

SRv6 tunnel interface view

Predefined user roles

network-admin

Parameters

isis: Specifies IS-IS as the IGP.

ospf: Specifies OSPF as the IGP.

Usage guidelines

If you do not specify an IGP in this command, both OSPF and IS-IS will include the SRv6 tunnel in route calculation.

Examples

# Enable IGP shortcut for SRv6 tunnel interface Tunnel 0, so the tunnel ingress node considers the tunnel as a link in OSPF and IS-IS route calculation.

<Sysname> system-view

[Sysname] interface tunnel 0 mode sr ipv6

[Sysname-Tunnel0] srv6 igp shortcut

Related commands

srv6 igp metric

tunnel bfd enable echo

Use tunnel bfd enable echo to enable BFD echo-mode detection on an SRv6 tunnel interface.

Use undo tunnel bfd enable echo to disable BFD echo-mode detection on an SRv6 tunnel interface.

Syntax

tunnel bfd enable echo

undo tunnel bfd enable echo

Default

BFD echo-mode detection is disabled on an SRv6 tunnel interface.

Views

SRv6 tunnel interface view

Predefined user roles

network-admin

Usage guidelines

Execute this command on an SRv6 tunnel interface to use BFD sessions for quick link connectivity detection of the SRv6 tunnel. If a link failure is detected along the path, the device can quickly handle the issue, for example, it can direct the traffic to the backup path to ensure traffic forwarding continuity.

If the BFD session of a path is down, the path is unavailable. If the BFD session of a path is up, the path is available.

Examples

# Enable BFD echo-mode detection on SRv6 tunnel interface Tunnel 1.

<Sysname> system-view

[Sysname] interface tunnel 1 mode sr ipv6

[Sysname-Tunnel1] tunnel bfd enable echo

Related commands

bfd echo-source-ipv6 (High Availability Command Reference)

tunnel sid-list

Use tunnel sid-list to specify an SID list on an SRv6 tunnel interface.

Use undo tunnel sid-list to remove an SID list from an SRv6 tunnel interface.

Syntax

tunnel sid-list list-name [ backup ]

undo tunnel sid-list list-name

Default

No SID lists are specified for an SRv6 tunnel interface.

Views

SRv6 tunnel interface view

Predefined user roles

network-admin

Parameters

list-name: Specifies an SID list by its name, a case-sensitive string of 1 to 31 characters.

backup: Specifies the SID list as the backup path of the SRv6 tunnel. If you do not specify this keyword, the specified SID list is used as the primary path of the SRv6 tunnel.

Examples

# Specify SID list aa on SRv6 tunnel interface Tunnel 1.

<Sysname> system-view

[Sysname] interface tunnel 1 mode sr ipv6

[Sysname-Tunnel1] tunnel sid-list aa

Related commands

interface tunnel (Layer 3—IP Services Command Reference)

ipv6 segment-routing sid-list

  • Cloud & AI
  • InterConnect
  • Intelligent Computing
  • Security
  • SMB Products
  • Intelligent Terminal Products
  • Product Support Services
  • Technical Service Solutions
All Services
  • Resource Center
  • Policy
  • Online Help
All Support
  • Become a Partner
  • Partner Resources
  • Partner Business Management
All Partners
  • Profile
  • News & Events
  • Online Exhibition Center
  • Contact Us
All About Us
新华三官网