11-Network Management and Monitoring Configuration Guide

HomeSupportResource CenterSwitchesS12500X-AF SeriesS12500X-AF SeriesTechnical DocumentsConfigure & DeployConfiguration GuidesH3C S12500X-AF Switch Series Configuration Guides(R3606)-6W10011-Network Management and Monitoring Configuration Guide
15-IPv6 NetStream configuration
Title Size Download
15-IPv6 NetStream configuration 181.39 KB

Configuring IPv6 NetStream

About IPv6 NetStream

IPv6 NetStream is an accounting technology that provides statistics on a per-flow basis. An IPv6 flow is defined by the following 8-tuple elements:

·     Destination IPv6 address.

·     Source IPv6 address.

·     Destination port number.

·     Source port number.

·     Protocol number.

·     Traffic class.

·     Flow label.

·     Input or output interface.

IPv6 NetStream architecture

A typical IPv6 NetStream system includes the following elements:

·     NetStream data exporter—A device configured with IPv6 NetStream. The NDE provides the following functions:

¡     Classifies traffic flows by using the 8-tuple elements.

¡     Collects data from the classified flows.

¡     Aggregates and exports the data to the NSC.

·     NetStream collector—A program running in a Unix or Windows operating system. The NSC parses the packets received from the NDEs, and saves the data to its database.

·     NetStream data analyzer—A network traffic analyzing tool. Based on the data in NSC, the NDA generates reports for traffic billing, network planning, and attack detection and monitoring. The NDA can collect data from multiple NSCs. Typically, the NDA features a Web-based system for easy operation.

NSC and NDA are typically integrated into a NetStream server.

Figure 1 IPv6 NetStream system

IPv6 NetStream flow aging

IPv6 NetStream uses flow aging to enable the NDE to export IPv6 NetStream data to NetStream servers. IPv6 NetStream creates an IPv6 NetStream entry for each flow for storing the flow statistics in the cache.

When a flow is aged out, the NDE performs the following operations:

·     Exports the summarized data to NetStream servers in a specific format.

·     Clears IPv6 NetStream entry information in the cache.

IPv6 NetStream supports the following flow aging methods:

·     Periodical aging.

·     Forced aging.

Periodical aging

Periodical aging uses the following methods:

·     Inactive flow aging—A flow is inactive if no packet arrives for the IPv6 NetStream entry within the inactive flow aging timer. When the timer expires, the following events occur:

¡     The inactive flow entry is aged out.

¡     The statistics of the flow are sent to NetStream servers and are cleared in the cache. The statistics can no longer be displayed by using the display ipv6 netstream cache command.

This method ensures that inactive flow entries are cleared from the cache in a timely manner so new entries can be cached.

·     Active flow aging—A flow is active if packets arrive for the IPv6 NetStream entry within the active flow aging timer. When the timer expires, the statistics of the active flow are exported to NetStream servers. The device continues to collect its statistics, which can be displayed by using the display ipv6 netstream cache command.

The active flow aging method periodically exports the statistics of active flows to NetStream servers.

Forced aging

This method clears the IPv6 NetStream cache immediately. All entries in the cache are aged out and exported to NetStream servers.

IPv6 NetStream data export

Traditional data export

IPv6 NetStream collects the statistics of each flow and exports the statistics to NetStream servers.

This method consumes a lot of bandwidth and CPU usage, and requires a large cache size. In addition, you do not need all of the data in most cases.

Aggregation data export

An IPv6 NetStream aggregation mode merges the flow statistics according to the aggregation criteria of the aggregation mode, and it sends the summarized data to NetStream servers. The IPv6 NetStream aggregation data export uses less bandwidth than the traditional data export.

Table 1 lists the available IPv6 NetStream aggregation modes. In each mode, the system merges multiple flows with the same values for all aggregation criteria into one aggregate flow. The system records the statistics for the aggregate flow. These aggregation modes work independently and can take effect concurrently.

Table 1 IPv6 NetStream aggregation modes

Aggregation mode

Aggregation criteria

Protocol-port aggregation

·     Protocol number

·     Source port

·     Destination port

Source-prefix aggregation

·     Source AS number

·     Source mask

·     Source prefix (source network address)

·     Input interface index

Destination-prefix aggregation

·     Destination AS number

·     Destination mask

·     Destination prefix (destination network address)

·     Output interface index

Source-prefix and destination-prefix aggregation

·     Source AS number

·     Source mask

·     Source prefix (source network address)

·     Input interface index

·     Destination AS number

·     Destination mask

·     Destination prefix (destination network address)

·     Output interface index

IPv6 NetStream data export format

IPv6 NetStream exports data in the version 9 or version 10 format.

Both formats are template-based and support exporting the IPv6 NetStream aggregation data and collecting statistics about BGP next hop and MPLS packets.

The version 10 export format is compliant with the IPFIX standard.

IPv6 NetStream filtering

IPv6 NetStream filtering uses an ACL to identify packets. Whether IPv6 NetStream collects data for identified packets depends on the action in the matching rule.

·     IPv6 NetStream collects data for packets that match permit rules in the ACL.

·     IPv6 NetStream does not collect data for packets that match deny rules in the ACL.

For more information about ACLs, see ACL and QoS Configuration Guide.

IPv6 NetStream sampling

IPv6 NetStream sampling collects statistics on fewer packets and is useful when the network has a large amount of traffic. IPv6 NetStream on sampled traffic lessens the impact on the device's performance. For more information about sampling, see "Configuring samplers."

Protocols and standards

RFC 5101, Specification of the IP Flow Information Export (IPFIX) Protocol for the Exchange of IP Traffic Flow Information

Restrictions and guidelines

When the TCAM operating mode is the mixed mode, the LSXM1CGQ36HB1 module does not support IPv6 NetStream. For more information about the TCAM operating mode, see device management in Fundamentals Configuration Guide.

With IPv6 NetStream enabled for the outgoing traffic on an interface, the packets sent by the interface cannot be mirrored.

IPv6 NetStream tasks at a glance

To configure IPv6 NetStream, perform the following tasks:

1.     Enabling IPv6 NetStream (interface view)

2.     (Optional.) Configuring IPv6 NetStream filtering

3.     (Optional.) Configuring IPv6 NetStream sampling

4.     (Optional.) Configuring the RFC 7011 IPv6 NetStream template format

5.     (Optional.) Configuring the IPv6 NetStream data export format

6.     (Optional.) Configuring the refresh rate for IPv6 NetStream version 9 or version 10 template

7.     (Optional.) Configuring MPLS-aware IPv6 NetStream

8.     (Optional.) Configuring IPv6 NetStream flow aging

¡     Configuring periodical flow aging

¡     Configuring forced flow aging

9.     Configuring the IPv6 NetStream data export

a.     Configuring the IPv6 NetStream traditional data export

b.     (Optional.) Configuring the IPv6 NetStream aggregation data export

Enabling IPv6 NetStream (interface view)

Restrictions and guidelines

Do not enable both IPv6 NetStream and Layer 3 packet statistics counting on the outbound direction of the same interface. For more information about Layer 3 packet statistics counting, see IPv6 basics configuration and IP performance optimization in Layer 3—IP Services Configuration Guide.

Procedure

1.     Enter system view.

system-view

2.     Enter interface view.

interface interface-type interface-number

3.     Enable IPv6 NetStream.

ipv6 netstream { inbound | outbound }

By default, IPv6 NetStream is disabled.

Configuring IPv6 NetStream filtering

About this task

IPv6  NetStream filtering uses an ACL to identify packets.

·     To enable IPv6 NetStream to collect statistics for specific flows, use the ACL permit statements to identify these flows

·     To disable IPv6 NetStream from collecting statistics for specific flows, use the ACL deny statements to identify these flows.

Restrictions and guidelines

If IPv6 NetStream filtering and sampling are both configured, IPv6 packets are filtered first, and then the permitted packets are sampled.

The IPv6 NetStream filtering feature does not take effect on the outgoing MPLS packets.

Procedure

1.     Enter system view.

system-view

2.     Enter interface view.

interface interface-type interface-number

3.     Configure IPv6 NetStream filtering on the interface.

ipv6 netstream { inbound | outbound } filter acl acl-number

By default, IPv6 NetStream filtering is disabled. IPv6 NetStream collects statistics of all IPv6 packets passing through the interface.

Configuring IPv6 NetStream sampling

Restrictions and guidelines

By default, IPv6 NetStream collects all data of target flows. If the flow traffic is heavy, IPv6 NetStream is resource-consuming and can cause high CPU usage, which impacts the device forwarding performance. IPv6 NetStream sampling is helpful to decrease the IPv6 NetStream traffic volume. If the collected statistics can basically reflect the network status, you can enable this feature and set a proper sampling rate. The higher the sampling rate, the less impact on device performance.

The supported traffic capacity after sampling depends on the number of chips. Each chip supports a maximum of 1G traffic.

If IPv6 NetStream sampling and filtering are both configured, IPv6 packets are filtered first, and then the permitted packets are sampled.

Procedure

1.     Enter system view.

system-view

2.     Create a sampler.

sampler sampler-name mode random packet-interval rate

For more information about samplers, see "Configuring samplers."

3.     Enter interface view.

interface interface-type interface-number

4.     Configure IPv6 NetStream sampling.

ipv6 netstream { inbound | outbound } sampler sampler-name

By default, IPv6 NetStream sampling is disabled.

Configuring the RFC 7011 IPv6 NetStream template format

Restrictions and guidelines

The IPv6 NetStream template format on the device must be consistent with that on the server.

Procedure

1.     Enter system view.

system-view

2.     Configure the IPv6 NetStream template to use the format defined by the RFC 7011.

ip netstream template rfc7011

By default, the IPv6 NetStream template uses the H3C format.

For more information about this command, see the NetStream commands in Network Management and Monitoring Command Reference.

Configuring the IPv6 NetStream data export format

About this task

When you configure the IPv6 NetStream data export format, you can also specify the following settings:

·     Whether or not to export the BGP next hop information.

·     How to export the autonomous system (AS) information: origin-as or peer-as.

¡     origin-as—Records the original AS numbers for the flow source and destination.

¡     peer-as—Records the peer AS numbers for the flow source and destination.

For example, as shown in Figure 2, a flow starts at AS 20, passes AS 21 through AS 23, and then reaches AS 24. IPv6 NetStream is enabled on the device in AS 22.

·     Specify the origin-as keyword to export AS 20 as the source AS and AS 24 as the destination AS.

·     Specify the peer-as keyword to export AS 21 as the source AS and AS 23 as the destination AS.

Figure 2 Recorded AS information varies by different keyword configurations

Procedure

1.     Enter system view.

system-view

2.     Configure the IPv6 NetStream data export format, and configure the AS and BGP next hop export attributes.

¡     Configure the version 9 format.

ipv6 netstream export version 9 { origin-as | peer-as } [ bgp-nexthop ]

¡     Configure the version 10 format.

ipv6 netstream export version 10 [ origin-as | peer-as ] [ bgp-nexthop ]

By default:

¡     The version 9 format is used to export IPv6 NetStream data.

¡     The peer AS numbers for the flow source and destination are exported.

¡     The BGP next hop information is not exported.

Configuring the refresh rate for IPv6 NetStream version 9 or version 10 template

About this task

Version 9 and version 10 are template-based and support user-defined formats. An IPv6 NetStream device must send the updated template to NetStream servers regularly, because the servers do not permanently save templates.

For a NetStream server to use the correct version 9 or version 10 template, configure the time-based or packet count-based refresh rate. If both settings are configured, the template is sent when either of the conditions is met.

Procedure

1.     Enter system view.

system-view

2.     Configure the refresh rate for the IPv6 NetStream version 9 or version 10 template.

ipv6 netstream export template refresh-rate { packet packets | time minutes }

By default, the packet count-based refresh rate is 20 packets, and the time-based refresh interval is 30 minutes.

Configuring MPLS-aware IPv6 NetStream

About this task

An MPLS flow is identified by the same labels in the same position and the same 8-tuple elements. MPLS-aware NetStream collects and exports statistics on a maximum of three labels in the label stack, with or without IP fields.

Procedure

1.     Enter system view.

system-view

2.     Collect and export statistics on MPLS packets.

ip netstream mpls [ label-positions label-position1 [ label-position2 [ label-position3 ] ] ] [ no-ip-fields ]

By default, statistics of MPLS packets are not collected or exported.

Configuring IPv6 NetStream flow aging

Configuring periodical flow aging

1.     Enter system view.

system-view

2.     Set the aging timer for active flows.

ipv6 netstream timeout active minutes

By default, the aging timer for active flows is 5 minutes.

3.     Set the aging timer for inactive flows.

ipv6 netstream timeout inactive seconds

By default, the aging timer for inactive flows is 300 seconds.

Configuring forced flow aging

1.     Enter system view.

system-view

2.     Set the upper limit for IPv6 NetStream entries.

ipv6 netstream max-entry max-entries

By default, a maximum of 1048576 IPv6 NetStream entries can be cached.

3.     Return to user view.

quit

4.     Clear the cache, including the cached IPv6 NetStream entries and the related statistics.

reset ipv6 netstream statistics

Configuring the IPv6 NetStream data export

Configuring the IPv6 NetStream traditional data export

1.     Enter system view.

system-view

2.     Specify a destination host for IPv6 NetStream traditional data export.

ipv6 netstream export host { ipv4-address | ipv6-address } udp-port [ vpn-instance vpn-instance-name ] [ slot slot-number ]

By default, no destination host is specified.

3.     (Optional.) Specify the source interface for IPv6 NetStream data packets sent to the NetStream servers.

ipv6 netstream export source interface interface-type interface-number

By default, no source interface is specified for IPv6 NetStream data packets. The packets take the IPv6 address of the output interface (interface that is connected to the NetStream server) as the source IPv6 address.

As a best practice, connect the management Ethernet interface to a NetStream server, and configure the interface as the source interface.

4.     (Optional.) Limit the IPv6 NetStream data export rate.

ipv6 netstream export rate rate

By default, the data export rate is not limited.

Configuring the IPv6 NetStream aggregation data export

About this task

The IPv6 NetStream aggregation can be implemented by software or hardware. Unless otherwise noted, NetStream aggregation refers to software NetStream aggregation.

IPv6 NetStream hardware aggregation uses hardware to directly merge the flow statistics according to the aggregation mode criteria, and stores the data in the cache. The aging of IPv6 NetStream hardware aggregation entries is the same as the aging of IPv6 NetStream traditional data entries. When a hardware aggregation entry is aged out, the data is exported.

IPv6 NetStream hardware aggregation reduces resource consumption.

Restrictions and guidelines

The IPv6 NetStream hardware aggregation does not take effect in the following situations:

·     The destination host is configured for NetStream traditional data export.

·     The configured aggregation mode is not supported by IPv6 NetStream hardware aggregation.

Configurations in IPv6 NetStream aggregation mode view apply only to the IPv6 NetStream aggregation data export. Configurations in system view apply to the IPv6 NetStream traditional data export. When no configuration in IPv6 NetStream aggregation mode view is provided, the configurations in system view apply to the IPv6 NetStream aggregation data export.

Procedure

1.     Enter system view.

system-view

2.     Specify an IPv6 NetStream aggregation mode and enter its view.

ipv6 netstream aggregation { destination-prefix | prefix | protocol-port | source-prefix }

By default, no IPv6 NetStream aggregation mode is specified.

3.     Enable the IPv6 NetStream aggregation mode.

enable

By default, the IPv6 NetStream aggregation is disabled.

4.     Specify a destination host for IPv6 NetStream aggregation data export.

ipv6 netstream export host { ipv4-address | ipv6-address } udp-port [ vpn-instance vpn-instance-name ]

By default, no destination host is specified.

If you expect only IPv6 NetStream aggregation data, specify the destination host only in the related IPv6 NetStream aggregation mode view.

5.     (Optional.) Specify the source interface for IPv6 NetStream data packets sent to the NetStream servers.

ipv6 netstream export source interface interface-type interface-number

By default, no source interface is specified for IPv6 NetStream data packets. The packets take the IPv6 address of the output interface as the source IPv6 address.

You can configure different source interfaces in different IPv6 NetStream aggregation mode views.

If no source interface is configured in IPv6 NetStream aggregation mode view, the source interface configured in system view applies.

Display and maintenance commands for IPv6 NetStream

Execute display commands in any view and reset commands in user view.

 

Task

Command

Display IPv6 NetStream entry information.

display ipv6 netstream cache [ verbose ] [ type { ip | ipl2 | l2 | mpls [ label-position1 label-value1 [ label-position2 label-value2 [ label-position3 label-value3 ] ] ] } ] [ destination destination-ip | destination-port destination-port | interface interface-type interface-number | protocol protocol | source source-ip | source-port source-port ] * [ arrived-time start-date start-time end-date end-time ] [ slot slot-number ]

Display information about the IPv6 NetStream data export.

display ipv6 netstream export [ slot slot-number ]

Display IPv6 NetStream template information.

display ipv6 netstream template [ slot slot-number ]

Age out, export all IPv6 NetStream data, and clear the cache.

reset ipv6 netstream statistics

IPv6 NetStream configuration examples

Example: Configuring IPv6 NetStream traditional data export

Network configuration

As shown in Figure 3, configure IPv6 NetStream on Router A to collect statistics on packets passing through Router A.

·     Enable IPv6 NetStream for incoming and outgoing traffic on HundredGigE 1/0/1.

·     Configure Router A to export the IPv6 NetStream traditional data to UDP port 5000 of the NetStream server.

Figure 3 Network diagram

Procedure

 

IMPORTANT

IMPORTANT:

By default, interfaces on the device are disabled (in ADM or Administratively Down state). To have an interface operate, you must use the undo shutdown command to enable that interface.

# Assign an IP address to each interface, as shown in Figure 3. (Details not shown.)

# Enable IPv6 NetStream for incoming and outgoing traffic on HundredGigE 1/0/1.

<RouterA> system-view

[RouterA] interface hundredgige 1/0/1

[RouterA-HundredGigE1/0/1] ipv6 netstream inbound

[RouterA-HundredGigE1/0/1] ipv6 netstream outbound

[RouterA-HundredGigE1/0/1] quit

# Specify 40::1 as the IP address of the destination host and UDP port 5000 as the export destination port number.

[RouterA] ipv6 netstream export host 40::1 5000

Verifying the configuration

# Display information about IPv6 NetStream entries.

<Sysname> display ipv6 netstream cache

IPv6 NetStream cache information:

  Active flow timeout             : 60 min

  Inactive flow timeout           : 10 sec

  Max number of entries           : 1000

  IPv6 active flow entries        : 2

  MPLS active flow entries        : 0

  IPL2 active flow entries        : 0

  IPv6 flow entries counted       : 10

  MPLS flow entries counted       : 0

  IPL2 flow entries counted       : 0

  Last statistics resetting time  : 01/01/2000 at 00:01:02

 

IPv6 packet size distribution (1103746 packets in total):

1-32   64   96  128  160  192  224  256  288  320  352  384  416  448  480

.249 .694 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000

 

512  544  576 1024 1536 2048 2560 3072 3584 4096 4608 >4608

.000 .000 .027 .000 .027 .000 .000 .000 .000 .000 .000 .000

 

Protocol          Total Packets    Flows  Packets Active(sec) Idle(sec)

                  Flows /sec       /sec   /flow   /flow       /flow

--------------------------------------------------------------------------

TCP-Telnet      2656855     372        4       86        49         27

TCP-FTP         5900082      86        9        9        11         33

TCP-FTPD        3200453    1006        5      193        45         33

TCP-WWW       546778274   11170      887       12         8         32

TCP-other      49148540    3752       79       47        30         32

UDP-DNS       117240379     570      190        3         7         34

UDP-other      45502422    2272       73       30         8         37

ICMP           14837957     125       24        5        12         34

IP-other          77406       5        0       47        52         27

 

 Type DstIP(Port)        SrcIP(Port)      Pro TC  FlowLbl If(Direct)   Pkts

      DstMAC(VLAN)       SrcMAC(VLAN)

      TopLblType(IP/MASK)Lbl-Exp-S-List

--------------------------------------------------------------------------

IP   2001::1(1024)      2002::1(21)        6   0   0x0     GE1/0/1(I)  42996

IP   2002::1(21)        2001::1(1024)      6   0   0x0     GE1/0/1(O)  42996

 # Display information about the IPv6 NetStream data export.

[RouterA] display ipv6 netstream export

IPv6 export information:

  Flow source interface                           : Not specified

  Flow destination VPN instance                   : Not specified

  Flow destination IP address (UDP)               : 40::1 (5000)

  Version 9 exported flow number                  : 10

  Version 9 exported UDP datagram number (failed) : 10 (0)

Example: Configuring IPv6 NetStream aggregation data export

Network configuration

As shown in Figure 4, all routers in the network are running IPv6 EBGP. Configure IPv6 NetStream on Router A to meet the following requirements:

·     Export the IPv6 NetStream traditional data to port 5000 of the NetStream server.

·     Perform the IPv6 NetStream aggregation in the modes of AS, protocol-port, source-prefix, destination-prefix, and prefix.

·     Export the aggregation data of different modes to the UDP ports 2000, 3000, 4000, 6000, and 7000.

Figure 4 Network diagram

Procedure

 

IMPORTANT

IMPORTANT:

By default, interfaces on the device are disabled (in ADM or Administratively Down state). To have an interface operate, you must use the undo shutdown command to enable that interface.

# Assign an IP address to each interface, as shown in Figure 4. (Details not shown.)

# Enable IPv6 NetStream for incoming and outgoing traffic on HundredGigE 1/0/1.

<RouterA> system-view

[RouterA] interface hundredgige 1/0/1

[RouterA-HundredGigE1/0/1] ipv6 netstream inbound

[RouterA-HundredGigE1/0/1] ipv6 netstream outbound

[RouterA-HundredGigE1/0/1] quit

# Specify 40::1 as the IP address of the destination host and UDP port 5000 as the export destination port number.

[RouterA] ipv6 netstream export host 40::1 5000

# Set the aggregation mode to AS, and specify the destination host for the aggregation data export.

[RouterA] ipv6 netstream aggregation as

[RouterA-ns6-aggregation-as] enable

[RouterA-ns6-aggregation-as] ipv6 netstream export host 40::1 2000

[RouterA-ns6-aggregation-as] quit

# Set the aggregation mode to protocol-port, and specify the destination host for the aggregation data export.

[RouterA] ipv6 netstream aggregation protocol-port

[RouterA-ns6-aggregation-protport] enable

[RouterA-ns6-aggregation-protport] ipv6 netstream export host 40::1 3000

[RouterA-ns6-aggregation-protport] quit

# Set the aggregation mode to source-prefix, and specify the destination host for the aggregation data export.

[RouterA] ipv6 netstream aggregation source-prefix

[RouterA-ns6-aggregation-srcpre] enable

[RouterA-ns6-aggregation-srcpre] ipv6 netstream export host 40::1 4000

[RouterA-ns6-aggregation-srcpre] quit

# Set the aggregation mode to destination-prefix, and specify the destination host for the aggregation data export.

[RouterA] ipv6 netstream aggregation destination-prefix

[RouterA-ns6-aggregation-dstpre] enable

[RouterA-ns6-aggregation-dstpre] ipv6 netstream export host 40::1 6000

[RouterA-ns6-aggregation-dstpre] quit

# Set the aggregation mode to prefix, and specify the destination host for the aggregation data export.

[RouterA] ipv6 netstream aggregation prefix

[RouterA-ns6-aggregation-prefix] enable

[RouterA-ns6-aggregation-prefix] ipv6 netstream export host 40::1 7000

[RouterA-ns6-aggregation-prefix] quit

Verifying the configuration

# Display information about the IPv6 NetStream data export.

[RouterA] display ipv6 netstream export

protocol-port aggregation export information:

  Flow source interface                           : Not specified

  Flow destination VPN instance                   : Not specified

  Flow destination IP address (UDP)               : 40::1 (3000)

  Version 9 exported flow number                  : 0

  Version 9 exported UDP datagram number (failed) : 0 (0)

 

source-prefix aggregation export information:

  Flow source interface                           : Not specified

  Flow destination VPN instance                   : Not specified

  Flow destination IP address (UDP)               : 40::1 (4000)

  Version 9 exported flow number                  : 0

  Version 9 exported UDP datagram number (failed) : 0 (0)

 

destination-prefix aggregation export information:

  Flow source interface                           : Not specified

  Flow destination VPN instance                   : Not specified

  Flow destination IP address (UDP)               : 40::1 (6000)

  Version 9 exported flow number                  : 0

  Version 9 exported UDP datagram number (failed) : 0 (0)

 

prefix aggregation export information:

  Flow source interface                           : Not specified

  Flow destination VPN instance                   : Not specified

  Flow destination IP address (UDP)               : 40::1 (7000)

  Version 9 exported flow number                  : 0

  Version 9 exported UDP datagram number (failed) : 0 (0)

 

IPv6 export information:

  Flow source interface                           : Not specified

  Flow destination VPN instance                   : Not specified

  Flow destination IP address (UDP)               : 40::1 (5000)

  Version 9 exported flow number                  : 0

  Version 9 exported UDP datagram number (failed) : 0 (0)

 

  • Cloud & AI
  • InterConnect
  • Intelligent Computing
  • Security
  • SMB Products
  • Intelligent Terminal Products
  • Product Support Services
  • Technical Service Solutions
All Services
  • Resource Center
  • Policy
  • Online Help
All Support
  • Become a Partner
  • Partner Resources
  • Partner Business Management
All Partners
  • Profile
  • News & Events
  • Online Exhibition Center
  • Contact Us
All About Us
新华三官网