08-MPLS Configuration Guide

HomeSupportSwitchesS7500E SeriesConfigure & DeployConfiguration GuidesH3C S7500E Switch Series Configuration Guides-R757X-GL-6W10008-MPLS Configuration Guide
12-MCE configuration
Title Size Download
12-MCE configuration 244.10 KB

Configuring MCE

MCE overview

The Multi-VPN Instance Customer Edge (MCE) feature allows multiple VPNs to share a CE with ensured data security in an MPLS L3VPN network. MCE provides traffic separation between VPNs by distinguishing routes of the VPNs.

MPLS L3VPN problems solved by MCE

MPLS L3VPN is a L3VPN technology used to interconnect geographically dispersed VPN sites. MPLS L3VPN uses BGP to advertise VPN routes and uses MPLS to forward VPN packets over a service provider backbone.

MPLS L3VPN provides flexible networking modes, excellent scalability, and convenient support for MPLS QoS and MPLS TE.

In conventional MPLS L3VPN, a VPN site must exclusively use a CE to connect a PE. With increasing business, a private network must be divided into multiple VPNs and the VPNs must be isolated from one another for data security. Using a CE exclusively for each VPN costs much in buying and maintaining the network devices. Using a common CE for multiple VPNs cannot ensure data security because the VPNs use the same routing table.

The MCE feature offers balance between cost and security. It creates multiple VPN instances on a CE to provide logically separated routing tables and address spaces for the VPNs, so the VPNs can share the CE. This CE is called the MCE device.

Basic MPLS L3VPN architecture

A basic MPLS L3VPN architecture has the following types of devices:

·     Customer edge device—A CE device resides on a customer network and has one or more interfaces directly connected to a service provider network. It does not support MPLS.

·     Provider edge device—A PE device resides at the edge of a service provider network and is connected to one or more CEs. All MPLS VPN services are processed on PEs.

·     Provider device—A P device is a core device on a service provider network. It is not directly connected to any CEs. A P device has only basic MPLS forwarding capability and does not handle VPN routing information.

Figure 1 Basic MPLS L3VPN architecture

 

MCE-related MPLS L3VPN concepts

Site

A site has the following features:

·     A site is a group of IP systems with IP connectivity that does not rely on any service provider networks.

·     The classification of a site depends on the topology relationship of the devices, rather than the geographical positions. However, the devices at a site are, in most cases, adjacent to each other geographically.

·     The devices at a site can belong to multiple VPNs, which means that a site can belong to multiple VPNs.

·     A site is connected to a provider network through one or more CEs. A site can contain multiple CEs, but a CE can belong to only one site.

Sites connected to the same provider network can be classified into different sets by policies. Only the sites in the same set can access each other through the provider network. Such a set is called a VPN.

VPN instance

VPN instances implement route isolation, data independence, and data security for VPNs.

A VPN instance has the following components:

·     A separate Label Forwarding Information Base (LFIB).

·     An IP routing table.

·     Interfaces bound to the VPN instance.

·     VPN instance administration information, including route distinguishers (RDs), route targets (RTs), and route filtering policies.

To associate a site with a VPN instance, bind the VPN instance to the PE's interface connected to the site. A site can be associated with only one VPN instance, and different sites can be associated with the same VPN instance. A VPN instance contains the VPN membership and routing rules of associated sites.

VPN-IPv4 address

Each VPN independently manages its address space. The address spaces of VPNs might overlap. For example, if both VPN 1 and VPN 2 use the addresses on subnet 10.110.10.0/24, address space overlapping occurs.

BGP cannot process overlapping VPN address spaces. For example, if both VPN 1 and VPN 2 use the subnet 10.110.10.0/24 and each advertise a route destined for the subnet, BGP selects only one of them. This results in the loss of the other route.

Multiprotocol BGP (MP-BGP) can solve this problem by advertising VPN-IPv4 addresses (also called VPNv4 addresses).

As shown in Figure 2, a VPN-IPv4 address consists of 12 bytes. The first eight bytes represent the RD, followed by a four-byte IPv4 prefix. The RD and the IPv4 prefix form a unique VPN-IPv4 prefix.

Figure 2 VPN-IPv4 address structure

 

An RD can be in one of the following formats:

·     When the Type field is 0, the Administrator subfield occupies two bytes, the Assigned number subfield occupies four bytes, and the RD format is 16-bit AS number:32-bit user-defined number. For example, 100:1.

·     When the Type field is 1, the Administrator subfield occupies four bytes, the Assigned number subfield occupies two bytes, and the RD format is 32-bit IPv4 address:16-bit user-defined number. For example, 172.1.1.1:1.

·     When the Type field is 2, the Administrator subfield occupies four bytes, the Assigned number subfield occupies two bytes, and the RD format is 32-bit AS number:16-bit user-defined number, where the minimum value of the AS number is 65536. For example, 65536:1.

To guarantee global uniqueness for a VPN-IPv4 address, do not set the Administrator subfield to any private AS number or private IP address.

Route target attribute

MPLS L3VPN uses route target community attributes to control the advertisement of VPN routing information. A VPN instance on a PE supports the following types of route target attributes:

·     Export target attribute—A PE sets the export target attribute for VPN-IPv4 routes learned from directly connected sites before advertising them to other PEs.

·     Import target attribute—A PE checks the export target attribute of VPN-IPv4 routes received from other PEs. If the export target attribute matches the import target attribute of a VPN instance, the PE adds the routes to the routing table of the VPN instance.

Route target attributes define which sites can receive VPN-IPv4 routes, and from which sites a PE can receive routes.

Like RDs, route target attributes can be one of the following formats:

·     16-bit AS number:32-bit user-defined number. For example, 100:1.

·     32-bit IPv4 address:16-bit user-defined number. For example, 172.1.1.1:1.

·     32-bit AS number:16-bit user-defined number, where the minimum value of the AS number is 65536. For example, 65536:1.

MCE working mechanism

As shown in Figure 3, the MCE exchanges private routes with VPN sites and PE 1, and adds the private routes to the routing tables of corresponding VPN instances.

·     Route exchange between MCE and VPN site—Create VPN instances VPN 1 and VPN 2 on the MCE. Bind VLAN-interface 2 to VPN 1, and VLAN-interface 3 to VPN 2. The MCE adds a received route to the routing table of the VPN instance that is bound to the receiving interface.

·     Route exchange between MCE and PE—The MCE connects to PE 1 through trunk links. On PE 1, create VPN instances for VPN 1 and VPN 2. Bind VLAN-interface 2 to VPN 1, and VLAN-interface 3 to VPN 2. The MCE and PE add a received route to the routing table of the VPN instance that is bound to the receiving interface.

Figure 3 Network diagram for the MCE feature

 

You can configure static routes, RIP, OSPF, IS-IS, EBGP, or IBGP between an MCE and a VPN site and between an MCE and a PE.

 

 

NOTE:

To implement dynamic IP assignment for DHCP clients in private networks, you can configure DHCP server or DHCP relay agent on the MCE. When the MCE functions as the DHCP server, the IP addresses assigned to different private networks cannot overlap.

 

MCE configuration task list

Tasks at a glance

 

Configuring VPN instances:

(Required.) Creating a VPN instance

(Required.) Associating a VPN instance with a Layer 3 interface

(Optional.) Configuring route related attributes for a VPN instance

Configuring routing on an MCE:

(Required.) Configuring routing between an MCE and a VPN site

(Required.) Configuring static routing between an MCE and a PE

 

Configuring VPN instances

VPN instances isolate VPN routes from public network routes and routes among VPNs. This feature allows VPN instances to be used in network scenarios in addition to MPLS L3VPNs.

All VPN instance configurations are performed on PEs or MCEs.

Creating a VPN instance

A VPN instance is a collection of the VPN membership and routing rules of its associated site. A VPN instance might correspond to more than one VPN.

To create and configure a VPN instance:

 

Step

Command

Remarks

1.     Enter system view.

system-view

N/A

2.     Create a VPN instance and enter VPN instance view.

ip vpn-instance vpn-instance-name

By default, no VPN instances exist.

3.     Configure an RD for the VPN instance.

route-distinguisher route-distinguisher

By default, no RD is configured for a VPN instance.

4.     (Optional.) Configure a description for the VPN instance.

description text

By default, no description is configured for a VPN instance.

5.     (Optional.) Configure a VPN ID for the VPN instance.

vpn-id vpn-id

By default, no VPN ID is configured for a VPN instance.

 

Associating a VPN instance with a Layer 3 interface

After creating and configuring a VPN instance, associate the VPN instance with the interface connected to the CE.

To associate a VPN instance with an interface:

 

Step

Command

Remarks

1.     Enter system view.

system-view

N/A

2.     Enter interface view.

interface interface-type interface-number

N/A

3.     Associate a VPN instance with the interface.

ip binding vpn-instance vpn-instance-name

By default, an interface is not associated with a VPN instance and belongs to the public network.

The ip binding vpn-instance command deletes the IP address of the current interface. You must reconfigure an IP address for the interface after configuring the command.

 

Configuring route related attributes for a VPN instance

Step

Command

Remarks

1.     Enter system view.

system-view

N/A

2.     Enter VPN instance view or VPN instance IPv4 VPN view

·     Enter VPN instance view:
ip vpn-instance vpn-instance-name

·     Enter VPN instance IPv4 VPN view:

a.     ip vpn-instance vpn-instance-name

b.     address-family ipv4

IPv4 VPN prefers the configurations in VPN instance IPv4 VPN view over the configurations in VPN instance view.

3.     Configure route targets.

vpn-target vpn-target&<1-8> [ both | export-extcommunity | import-extcommunity ]

By default, no route targets are configured.

4.     Set the maximum number of active routes.

routing-table limit number { warn-threshold | simply-alert }

By default, the number of active routes is not limited.

Setting the maximum number of active routes for a VPN instance can prevent the PE from learning too many routes.

5.     Apply an import routing policy.

import route-policy route-policy

By default, all routes matching the import target attribute are accepted.

The specified routing policy must have been created.

For information about routing policies, see Layer 3—IP Routing Configuration Guide.

6.     Apply an export routing policy.

export route-policy route-policy

By default, routes to be advertised are not filtered.

The specified routing policy must have been created.

For information about routing policies, see Layer 3—IP Routing Configuration Guide.

7.     Apply a tunnel policy to the VPN instance.

tnl-policy tunnel-policy-name

By default, only one tunnel is selected (no load balancing) in this order: LSP tunnel, GRE tunnel, and CR-LSP tunnel.

The specified tunnel policy must have been created.

For information about tunnel policies, see "Configuring tunnel policies."

 

Configuring routing on an MCE

MCE implements service isolation through route isolation. MCE routing configuration includes the following:

·     MCE-VPN site routing configuration.

·     MCE-PE routing configuration.

On the PE, perform the following tasks:

·     Disable routing loop detection to avoid route loss during route calculation.

·     Disable route redistribution between routing protocols to save system resources.

Before you configure routing on an MCE, configure VPN instances, and bind the VPN instances to the interfaces connected to the VPN sites and the PE.

Configuring routing between an MCE and a VPN site

You can configure static routing, RIP, OSPF, IS-IS, EBGP or IBGP between an MCE and a VPN site.

Configuring static routing between an MCE and a VPN site

An MCE can reach a VPN site through a static route. Static routing on a traditional CE is globally effective and does not support address overlapping among VPNs. An MCE supports binding a static route to a VPN instance, so that the static routes of different VPN instances can be isolated from each other.

To configure a static route to a VPN site:

 

Step

Command

Remarks

1.     Enter system view.

system-view

N/A

2.     Configure a static route for a VPN instance.

ip route-static vpn-instance s-vpn-instance-name dest-address { mask-length | mask } { interface-type interface-number [ next-hop-address ] | next-hop-address [ public ] | vpn-instance d-vpn-instance-name next-hop-address }

By default, no static routes are configured.

Perform this configuration on the MCE. On the VPN site, configure a common static route.

3.     (Optional.) Configure the default preference for static routes.

ip route-static default-preference default-preference

The default preference is 60.

 

Configuring RIP between an MCE and a VPN site

A RIP process belongs to the public network or a single VPN instance. If you create a RIP process without binding it to a VPN instance, the process belongs to the public network. Binding RIP processes to VPN instances can isolate routes of different VPNs. For more information about RIP, see Layer 3—IP Routing Configuration Guide.

To configure RIP between an MCE and a VPN site:

 

Step

Command

Remarks

1.     Enter system view.

system-view

N/A

2.     Create a RIP process for a VPN instance and enter RIP view.

rip [ process-id ] vpn-instance vpn-instance-name

Perform this configuration on the MCE. On a VPN site, create a common RIP process.

3.     Enable RIP on the interface attached to the specified network.

network network-address [ wildcard-mask ]

By default, RIP is disabled on an interface.

4.     Redistribute remote site routes advertised by the PE into RIP.

import-route protocol [ as-number ] [ process-id | all-processes | allow-ibgp ] [ allow-direct | cost cost-value | route-policy route-policy-name | tag tag ] *

By default, no route is redistributed into RIP.

 

Configuring OSPF between an MCE and a VPN site

An OSPF process belongs to the public network or a single VPN instance. If you create an OSPF process without binding it to a VPN instance, the process belongs to the public network.

Binding OSPF processes to VPN instances can isolate routes of different VPNs. For more information about OSPF, see Layer 3—IP Routing Configuration Guide.

To configure OSPF between an MCE and a VPN site:

 

Step

Command

Remarks

1.     Enter system view.

system-view

N/A

2.     Create an OSPF process for a VPN instance and enter OSPF view.

ospf [ process-id | router-id router-id | vpn-instance vpn-instance-name ] *

Perform this configuration on the MCE. On a VPN site, create a common OSPF process.

An OSPF process bound to a VPN instance does not use the public network router ID configured in system view. Therefore, configure a router ID for the OSPF process.

An OSPF process can belong to only one VPN instance, but one VPN instance can use multiple OSPF processes to advertise VPN routes.

3.     Redistribute remote site routes advertised by the PE into OSPF.

import-route protocol [ as-number ] [ process-id | all-processes | allow-ibgp ] [ allow-direct | cost cost-value | nssa-only | route-policy route-policy-name | tag tag | type type ] *

By default, no routes are redistributed into OSPF.

4.     Create an OSPF area and enter OSPF area view.

area area-id

By default, no OSPF areas exist.

5.     Enable OSPF on the interface attached to the specified network in the area.

network ip-address wildcard-mask

By default, an interface neither belongs to any area nor runs OSPF.

 

Configuring IS-IS between an MCE and a VPN site

An IS-IS process belongs to the public network or a single VPN instance. If you create an IS-IS process without binding it to a VPN instance, the process belongs to the public network.

Binding IS-IS processes to VPN instances can isolate routes of different VPNs. For more information about IS-IS, see Layer 3—IP Routing Configuration Guide.

To configure IS-IS between an MCE and a VPN site:

 

Step

Command

Remarks

1.     Enter system view.

system-view

N/A

2.     Create an IS-IS process for a VPN instance and enter IS-IS view.

isis [ process-id ] vpn-instance vpn-instance-name

Perform this configuration on the MCE. On a VPN site, configure a common IS-IS process.

3.     Configure a network entity title.

network-entity net

By default, no NET is configured.

4.     Create the IS-IS IPv4 unicast address family and enter its view.

address-family ipv4 [ unicast ]

By default, the IS-IS IPv4 unicast address family is not created.

5.     Redistribute remote site routes advertised by the PE into IS-IS.

import-route protocol [ as-number ] [ process-id | all-processes | allow-ibgp ] [ allow-direct | cost cost-value | cost-type { external | internal } | [ level-1 | level-1-2 | level-2 ] | route-policy route-policy-name | tag tag ] *

By default, IS-IS does not redistribute routes from any other routing protocol.

If you do not specify the route level in the command, the command redistributes routes to the level-2 routing table by default.

6.     Return to system view.

quit

N/A

7.     Enter interface view.

interface interface-type interface-number

N/A

8.     Enable the IS-IS process on the interface.

isis enable [ process-id ]

By default, no IS-IS process is enabled on the interface.

 

Configuring EBGP between an MCE and a VPN site

To run EBGP between an MCE and a VPN site, you must configure a BGP peer for each VPN instance on the MCE, and redistribute the IGP routes of each VPN instance on the VPN site.

1.     Configure the MCE:

 

Step

Command

Remarks

1.     Enter system view.

system-view

N/A

2.     Enter BGP instance view.

bgp as-number [ instance instance-name ] [ multi-session-thread ]

By default, BGP is not enabled.

3.     Enter BGP-VPN instance view.

ip vpn-instance vpn-instance-name

Configuration commands in BGP-VPN instance view are the same as those in BGP instance view. For more information, see Layer 3—IP Routing Configuration Guide.

4.     Configure an EBGP peer.

peer { group-name | ipv4-address [ mask-length ] } as-number as-number

By default, no BGP peers or peer groups exist.

5.     Enter BGP-VPN IPv4 unicast address family view.

address-family ipv4 [ unicast ]

N/A

6.     Enable BGP to exchange IPv4 unicast routes with the peer.

peer { group-name | ipv4-address [ mask-length ] } enable

By default, BGP does not exchange IPv4 unicast routes with any peer.

7.     Allow the local AS number to appear in the AS_PATH attribute of routes received from the peer, and set the maximum number of repetitions.

peer { group-name | ipv4-address [ mask-length ] } allow-as-loop [ number ]

By default, BGP discards incoming route updates that contain the local AS number.

8.     Redistribute remote site routes advertised by the PE into BGP.

import-route protocol [ { process-id | all-processes } [ allow-direct | med med-value | route-policy route-policy-name ] * ]

By default, no routes are redistributed into BGP.

 

2.     Configure a VPN site:

 

Step

Command

Remarks

1.     Enter system view.

system-view

N/A

2.     Enter BGP instance view.

bgp as-number [ instance instance-name ] [ multi-session-thread ]

By default, BGP is not enabled.

3.     Configure the MCE as an EBGP peer.

peer { group-name | ipv4-address [ mask-length ] } as-number as-number

By default, no BGP peers or peer groups exist.

4.     Enter BGP-VPN IPv4 unicast address family view.

address-family ipv4 [ unicast ]

N/A

5.     Enable BGP to exchange IPv4 unicast routes with the peer.

peer { group-name | ipv4-address [ mask-length ] } enable

By default, BGP does not exchange IPv4 unicast routes with any peer.

6.     Redistribute the IGP routes of the VPN into BGP.

import-route protocol [ { process-id | all-processes } [ allow-direct | med med-value | route-policy route-policy-name ] * ]

By default, no routes are redistributed into BGP.

A VPN site must advertise the VPN network addresses it can reach to the connected MCE.

 

Configuring IBGP between MCE and VPN site

To run IBGP between an MCE and a VPN site, you must configure a BGP peer for each VPN instance on the MCE, and redistribute the IGP routes of each VPN instance on the VPN site.

1.     Configure the MCE:

 

Step

Command

Remarks

1.     Enter system view.

system-view

N/A

2.     Enter BGP instance view.

bgp as-number [ instance instance-name ] [ multi-session-thread ]

By default, BGP is not enabled.

3.     Enter BGP-VPN instance view.

ip vpn-instance vpn-instance-name

N/A

4.     Configure an IBGP peer.

peer { group-name | ipv4-address [ mask-length ] } as-number as-number

By default, no BGP peers or peer groups exist.

5.     Enter BGP-VPN IPv4 unicast address family view.

address-family ipv4 [ unicast ]

N/A

6.     Enable BGP to exchange IPv4 unicast routes with the peer.

peer { group-name | ipv4-address [ mask-length ] } enable

By default, BGP does not exchange IPv4 unicast routes with any peer.

7.     (Optional.) Configure the system to be the RR, and specify the peer as the client of the RR.

peer { group-name | ipv4-address [ mask-length ] } reflect-client

By default, no RR or RR client is configured.

After you configure a VPN site as an IBGP peer, the MCE does not advertise the BGP routes learned from the VPN site to other IBGP peers, including VPNv4 peers. The MCE advertises routes learned from a VPN site only when you configure the VPN site as a client of the RR (the MCE).

8.     Redistribute remote site routes advertised by the PE into BGP.

import-route protocol [ process-id | all-processes ] [ allow-direct | med med-value | route-policy route-policy-name ] *

By default, no routes are redistributed into BGP.

 

2.     Configure a VPN site:

 

Step

Command

Remarks

1.     Enter system view.

system-view

N/A

2.     Enter BGP instance view.

bgp as-number [ instance instance-name ] [ multi-session-thread ]

By default, BGP is not enabled.

3.     Configure the MCE as an IBGP peer.

peer { group-name | ipv4-address [ mask-length ] } as-number as-number

By default, no BGP peers or peer groups exist.

4.     Enter BGP-VPN IPv4 unicast address family view.

address-family ipv4 [ unicast ]

N/A

5.     Enable BGP to exchange IPv4 unicast routes with the peer.

peer { group-name | ipv4-address [ mask-length ] } enable

By default, BGP does not exchange IPv4 unicast routes with any peer.

6.     Redistribute the IGP routes of the VPN into BGP.

import-route protocol [ { process-id | all-processes } [ allow-direct | med med-value | route-policy route-policy-name ] * ]

By default, no routes are redistributed into BGP.

A VPN site must advertise VPN network addresses to the connected MCE.

 

Configuring routing between an MCE and a PE

MCE-PE routing configuration includes these tasks:

·     Binding the MCE-PE interfaces to VPN instances.

·     Performing route configurations.

·     Redistributing VPN routes into the routing protocol running between the MCE and the PE.

Perform the following configurations on the MCE. Configure the PE in the same way that you configure a PE in a basic MPLS L3VPN. For more information about configuring the PE, see "Configuring MPLS L3VPN."

Configuring static routing between an MCE and a PE

Step

Command

Remarks

1.     Enter system view.

system-view

N/A

2.     Configure a static route for a VPN instance.

ip route-static vpn-instance s-vpn-instance-name dest-address { mask-length | mask } { interface-type interface-number [ next-hop-address ] | next-hop-address [ public ] | vpn-instance d-vpn-instance-name next-hop-address }

By default, no static routes are configured.

3.     (Optional.) Set the default preference for static routes.

ip route-static default-preference default-preference

The default preference is 60.

 

Configuring RIP between an MCE and a PE

Step

Command

Remarks

1.     Enter system view.

system-view

N/A

2.     Create a RIP process for a VPN instance and enter RIP view.

rip [ process-id ] vpn-instance vpn-instance-name

N/A

3.     Enable RIP on the interface attached to the specified network.

network network-address [ wildcard-mask ]

By default, RIP is disabled on an interface.

4.     Redistribute the VPN routes.

import-route protocol [ as-number ] [ process-id | all-processes | allow-ibgp ] [ allow-direct | cost cost-value | route-policy route-policy-name | tag tag ] *

By default, no routes are redistributed into RIP.

 

Configuring OSPF between an MCE and a PE

Step

Command

Remarks

1.     Enter system view.

system-view

N/A

2.     Create an OSPF process for a VPN instance and enter OSPF view.

ospf [ process-id | router-id router-id | vpn-instance vpn-instance-name ] *

N/A

3.     Disable routing loop detection.

vpn-instance-capability simple

By default, routing loop detection is enabled.

You must disable routing loop detection for a VPN OSPF process on the MCE. Otherwise, the MCE does not receive OSPF routes from the PE.

4.     Redistribute the VPN routes.

import-route protocol [ as-number ] [ process-id | all-processes | allow-ibgp ] [ allow-direct | cost cost-value | nssa-only | route-policy route-policy-name | tag tag | type type ] *

By default, no routes are redistributed into OSPF.

5.     Create an OSPF area and enter OSPF area view.

area area-id

By default, no OSPF areas exist.

6.     Enable OSPF on the interface attached to the specified network in the area.

network ip-address wildcard-mask

By default, an interface neither belongs to any area nor runs OSPF.

 

Configuring IS-IS between an MCE and a PE

Step

Command

Remarks

1.     Enter system view.

system-view

N/A

2.     Create an IS-IS process for a VPN instance and enter IS-IS view.

isis [ process-id ] vpn-instance vpn-instance-name

N/A

3.     Configure a network entity title.

network-entity net

By default, no NET is configured.

4.     Create the IS-IS IPv4 unicast address family and enter its view.

address-family ipv4 [ unicast ]

By default, the IS-IS IPv4 unicast address family is not created.

5.     Redistribute VPN routes.

import-route protocol [ as-number ] [ process-id | all-processes | allow-ibgp ] [ allow-direct | cost cost-value | cost-type { external | internal } | [ level-1 | level-1-2 | level-2 ] | route-policy route-policy-name | tag tag ] *

By default, IS-IS does not redistribute routes from any other routing protocol.

If you do not specify the route level in the command, the command redistributes routes to the level-2 routing table by default.

6.     Return to system view.

quit

N/A

7.     Enter interface view.

interface interface-type interface-number

N/A

8.     Enable the IS-IS process on the interface.

isis enable [ process-id ]

By default, no IS-IS process is enabled on the interface.

 

Configuring EBGP between an MCE and a PE

Step

Command

Remarks

1.     Enter system view.

system-view

N/A

2.     Enter BGP instance view.

bgp as-number [ instance instance-name ] [ multi-session-thread ]

By default, BGP is not enabled.

3.     Enter BGP-VPN instance view.

ip vpn-instance vpn-instance-name

N/A

4.     Configure the PE as an EBGP peer.

peer { group-name | ipv4-address [ mask-length ] } as-number as-number

By default, no BGP peers or peer groups exist.

5.     Enter BGP-VPN IPv4 unicast address family view.

address-family ipv4 [ unicast ]

N/A

6.     Enable BGP to exchange IPv4 unicast routes with the peer.

peer { group-name | ipv4-address [ mask-length ] } enable

By default, BGP does not exchange IPv4 unicast routes with any peer.

7.     Redistribute the VPN routes of the VPN site.

import-route protocol [ process-id | all-processes ] [ allow-direct | med med-value | route-policy route-policy-name ] *

By default, no routes are redistributed into BGP.

 

Configuring IBGP between an MCE and a PE

Step

Command

Remarks

1.     Enter system view.

system-view

N/A

2.     Enter BGP instance view.

bgp as-number [ instance instance-name ] [ multi-session-thread ]

By default, BGP is not enabled.

3.     Enter BGP-VPN instance view.

ip vpn-instance vpn-instance-name

N/A

4.     Configure the PE as an IBGP peer.

peer { group-name | ipv4-address [ mask-length ] } as-number as-number

By default, no BGP peers or peer groups exist.

5.     Enter BGP-VPN IPv4 unicast address family view.

address-family ipv4 [ unicast ]

N/A

6.     Enable BGP to exchange IPv4 unicast routes with the peer.

peer { group-name | ipv4-address [ mask-length ] } enable

By default, BGP does not exchange IPv4 unicast routes with any peer.

7.     Redistribute the VPN routes of the VPN site.

import-route protocol [ process-id | all-processes ] [ allow-direct | med med-value | route-policy route-policy-name ] *

By default, no routes are redistributed into BGP.

 

Displaying and maintaining MCE

Execute display commands in any view.

 

Task

Command

Display VPN instance information.

display ip vpn-instance [ instance-name vpn-instance-name ]

 

For commands that display routing tables for VPN instances, see Layer 3—IP Routing Command Reference.

MCE configuration examples

Configuring the MCE that uses OSPF to advertise VPN routes to the PE

Network requirements

As shown in Figure 4, VPN 2 runs OSPF. Configure the MCE device to separate routes from different VPNs and to advertise the VPN routes to PE 1 through OSPF.

Figure 4 Network diagram

 

Configuration procedure

Assume that the system name of the MCE device is MCE, the system names of the edge devices of VPN 1 and VPN 2 are VR 1 and VR 2, respectively, and the system name of PE 1 is PE1.

1.     Configure the VPN instances on the MCE and PE 1:

# On the MCE, configure VPN instances vpn1 and vpn2, and specify an RD and route targets for each VPN instance.

<MCE> system-view

[MCE] ip vpn-instance vpn1

[MCE-vpn-instance-vpn1] route-distinguisher 10:1

[MCE-vpn-instance-vpn1] vpn-target 10:1

[MCE-vpn-instance-vpn1] quit

[MCE] ip vpn-instance vpn2

[MCE-vpn-instance-vpn2] route-distinguisher 20:1

[MCE-vpn-instance-vpn2] vpn-target 20:1

[MCE-vpn-instance-vpn2] quit

# Bind VLAN-interface 10 to VPN instance vpn1, and configure an IP address for the VLAN interface.

[MCE] interface vlan-interface 10

[MCE-Vlan-interface10] ip binding vpn-instance vpn1

[MCE-Vlan-interface10] ip address 10.214.10.3 24

[MCE-Vlan-interface10] quit

# Bind VLAN-interface 20 to VPN instance vpn2, and configure an IP address for the VLAN interface.

[MCE] interface vlan-interface 20

[MCE-Vlan-interface20] ip binding vpn-instance vpn2

[MCE-Vlan-interface20] ip address 10.214.20.3 24

[MCE-Vlan-interface20] quit

# On PE 1, configure VPN instances vpn1 and vpn2, and specify an RD and route targets for each VPN instance.

<PE1> system-view

[PE1] ip vpn-instance vpn1

[PE1-vpn-instance-vpn1] route-distinguisher 10:1

[PE1-vpn-instance-vpn1] vpn-target 10:1

[PE1-vpn-instance-vpn1] quit

[PE1] ip vpn-instance vpn2

[PE1-vpn-instance-vpn2] route-distinguisher 20:1

[PE1-vpn-instance-vpn2] vpn-target 20:1

[PE1-vpn-instance-vpn2] quit

2.     Configure routing between the MCE and VPN sites:

The MCE is connected to VPN 1 directly, and no routing protocol is enabled in VPN 1. Therefore, you can configure static routes.

# On VR 1, assign IP address 10.214.10.2/24 to the interface connected to MCE and 192.168.0.1/24 to the interface connected to VPN 1. Add ports to VLANs correctly. (Details not shown.)

# On VR 1, configure a default route with the next hop being 10.214.10.3.

<VR1> system-view

[VR1] ip route-static 0.0.0.0 0.0.0.0 10.214.10.3

# On the MCE, configure a static route to 192.168.0.0/24 with the next hop 10.214.10.2. Bind the static route to VPN instance vpn1.

[MCE] ip route-static vpn-instance vpn1 192.168.0.0 24 10.214.10.2

# On the MCE, display the routing information maintained for VPN instance vpn1.

[MCE] display ip routing-table vpn-instance vpn1

 

Destinations : 13        Routes : 13

 

Destination/Mask   Proto   Pre Cost        NextHop         Interface

0.0.0.0/32         Direct  0   0           127.0.0.1       InLoop0

10.214.10.0/24     Direct  0   0           10.214.10.3     Vlan10

10.214.10.0/32     Direct  0   0           10.214.10.3     Vlan10

10.214.10.3/32     Direct  0   0           127.0.0.1       InLoop0

10.214.10.255/32   Direct  0   0           10.214.10.3     Vlan10

127.0.0.0/8        Direct  0   0           127.0.0.1       InLoop0

127.0.0.0/32       Direct  0   0           127.0.0.1       InLoop0

127.0.0.1/32       Direct  0   0           127.0.0.1       InLoop0

127.255.255.255/32 Direct  0   0           127.0.0.1       InLoop0

192.168.0.0/24     Static  60  0           10.214.10.2     Vlan10

224.0.0.0/4        Direct  0   0           0.0.0.0         NULL0

224.0.0.0/24       Direct  0   0           0.0.0.0         NULL0

255.255.255.255/32 Direct  0   0           127.0.0.1       InLoop0

The output shows that the MCE has a static route for VPN instance vpn1.

# Run OSPF in VPN 2. Create OSPF process 20 and bind it to VPN instance vpn2 on the MCE, so that the MCE can learn the routes of VPN 2 and add them to the routing table of VPN instance vpn2.

[MCE] ospf 2 vpn-instance vpn2

# Advertise subnet 10.214.20.0.

[MCE-ospf-2] area 0

[MCE-ospf-2-area-0.0.0.0] network 10.214.20.0 0.0.0.255

[MCE-ospf-2-area-0.0.0.0] quit

[MCE-ospf-2] quit

# On VR 2, assign IP address 10.214.20.2/24 to the interface connected to MCE and 192.168.10.1/24 to the interface connected to VPN 2. (Details not shown.)

# Configure OSPF process 2, and advertise subnets 192.168.10.0 and 10.214.20.0.

<VR2> system-view

[VR2] ospf 2

[VR2-ospf-2] area 0

[VR2-ospf-2-area-0.0.0.0] network 192.168.10.0 0.0.0.255

[VR2-ospf-2-area-0.0.0.0] network 10.214.20.0 0.0.0.255

[VR2-ospf-2-area-0.0.0.0] quit

[VR2-ospf-2] quit

# On the MCE, display the routing information maintained for VPN instance vpn2.

[MCE] display ip routing-table vpn-instance vpn2

 

Destinations : 13        Routes : 13

 

Destination/Mask   Proto   Pre Cost        NextHop         Interface

0.0.0.0/32         Direct  0   0           127.0.0.1       InLoop0

10.214.20.0/24     Direct  0   0           10.214.20.3     Vlan20

10.214.20.0/32     Direct  0   0           10.214.20.3     Vlan20

10.214.20.3/32     Direct  0   0           127.0.0.1       InLoop0

10.214.20.255/32   Direct  0   0           10.214.20.3     Vlan20

127.0.0.0/8        Direct  0   0           127.0.0.1       InLoop0

127.0.0.0/32       Direct  0   0           127.0.0.1       InLoop0

127.0.0.1/32       Direct  0   0           127.0.0.1       InLoop0

127.255.255.255/32 Direct  0   0           127.0.0.1       InLoop0

192.168.10.0/24    O_INTRA 10  2           10.214.20.2     Vlan20

224.0.0.0/4        Direct  0   0           0.0.0.0         NULL0

224.0.0.0/24       Direct  0   0           0.0.0.0         NULL0

255.255.255.255/32 Direct  0   0           127.0.0.1       InLoop0

The output shows that the MCE has learned the private routes of VPN 2. The MCE maintains the routes of VPN 1 and those of VPN2 in two different routing tables. In this way, routes from different VPNs are separated.

3.     Configure routing between the MCE and PE 1:

# On the MCE, bind VLAN-interface 30 to VPN instance vpn1, and configure an IP address for the VLAN interface.

[MCE] interface vlan-interface 30

[MCE-Vlan-interface30] ip binding vpn-instance vpn1

[MCE-Vlan-interface30] ip address 30.1.1.1 24

[MCE-Vlan-interface30] quit

# Bind VLAN-interface 40 to VPN instance vpn2, and configure an IP address for the VLAN interface.

[MCE] interface vlan-interface 40

[MCE-Vlan-interface40] ip binding vpn-instance vpn2

[MCE-Vlan-interface40] ip address 40.1.1.1 24

[MCE-Vlan-interface40] quit

# On PE 1, bind VLAN-interface 30 to VPN instance vpn1, and configure an IP address for the VLAN interface.

[PE1] interface vlan-interface 30

[PE1-Vlan-interface30] ip binding vpn-instance vpn1

[PE1-Vlan-interface30] ip address 30.1.1.2 24

[PE1-Vlan-interface30] quit

# Bind VLAN-interface 40 to VPN instance vpn2, and configure an IP address for the VLAN interface.

[PE1] interface vlan-interface 40

[PE1-Vlan-interface40] ip binding vpn-instance vpn2

[PE1-Vlan-interface40] ip address 40.1.1.2 24

[PE1-Vlan-interface40] quit

# Configure the IP address of the interface Loopback 0 as 101.101.10.1 for the MCE and as 100.100.10.1 for PE 1. Specify the loopback interface address as the router ID for the MCE and PE 1. (Details not shown.)

# Enable OSPF process 10 on the MCE, and bind the process to VPN instance vpn1.

[MCE] ospf 10 router-id 101.101.10.1 vpn-instance vpn1

# Disable OSPF routing loop detection for the VPN instance.

[MCE-ospf-10] vpn-instance-capability simple

# Set the domain ID to 10.

[MCE-ospf-10] domain-id 10

# On the MCE, advertise subnet 30.1.1.0 in area 0, and redistribute the static route of VPN 1.

[MCE-ospf-10] area 0

[MCE-ospf-10-area-0.0.0.0] network 30.1.1.0 0.0.0.255

[MCE-ospf-10-area-0.0.0.0] quit

[MCE-ospf-10] import-route static

# On PE 1, enable OSPF process 10, and bind the process to VPN instance vpn1.

[PE1] ospf 10 router-id 100.100.10.1 vpn-instance vpn1

# Set the domain ID to 10.

[PE1-ospf-10] domain-id 10

# Advertise subnet 30.1.1.0 in area 0.

[PE1-ospf-10] area 0

[PE1-ospf-10-area-0.0.0.0] network 30.1.1.0 0.0.0.255

[PE1-ospf-10-area-0.0.0.0] quit

[PE1-ospf-10] quit

# Use similar procedures to configure OSPF process 20 between MCE and PE 1 and redistribute VPN 2's routing information. (Details not shown.)

Verifying the configuration

# Verify that PE 1 has learned the static route of VPN 1 through OSPF.

[PE1] display ip routing-table vpn-instance vpn1

 

Destinations : 13        Routes : 13

 

Destination/Mask   Proto   Pre Cost        NextHop         Interface

0.0.0.0/32         Direct  0   0           127.0.0.1       InLoop0

30.1.1.0/24        Direct  0   0           30.1.1.2        Vlan30

30.1.1.0/32        Direct  0   0           30.1.1.2        Vlan30

30.1.1.2/32        Direct  0   0           127.0.0.1       InLoop0

30.1.1.255/32      Direct  0   0           30.1.1.2        Vlan30

127.0.0.0/8        Direct  0   0           127.0.0.1       InLoop0

127.0.0.0/32       Direct  0   0           127.0.0.1       InLoop0

127.0.0.1/32       Direct  0   0           127.0.0.1       InLoop0

127.255.255.255/32 Direct  0   0           127.0.0.1       InLoop0

192.168.0.0/24     O_ASE2  150 1           30.1.1.1        Vlan30

224.0.0.0/4        Direct  0   0           0.0.0.0         NULL0

224.0.0.0/24       Direct  0   0           0.0.0.0         NULL0

255.255.255.255/32 Direct  0   0           127.0.0.1       InLoop0

# Verify that PE 1 has learned the routes of OSPF process 20 in VPN 2 through OSPF.

[PE1] display ip routing-table vpn-instance vpn2

 

Destinations : 13        Routes : 13

 

Destination/Mask   Proto   Pre Cost        NextHop         Interface

0.0.0.0/32         Direct  0   0           127.0.0.1       InLoop0

40.1.1.0/24        Direct  0   0           40.1.1.2        Vlan40

40.1.1.0/32        Direct  0   0           40.1.1.2        Vlan40

40.1.1.2/32        Direct  0   0           127.0.0.1       InLoop0

40.1.1.255/32      Direct  0   0           40.1.1.2        Vlan40

127.0.0.0/8        Direct  0   0           127.0.0.1       InLoop0

127.0.0.0/32       Direct  0   0           127.0.0.1       InLoop0

127.0.0.1/32       Direct  0   0           127.0.0.1       InLoop0

127.255.255.255/32 Direct  0   0           127.0.0.1       InLoop0

192.168.10.0/24    O_ASE2  150 1           40.1.1.1        Vlan40

224.0.0.0/4        Direct  0   0           0.0.0.0         NULL0

224.0.0.0/24       Direct  0   0           0.0.0.0         NULL0

255.255.255.255/32 Direct  0   0           127.0.0.1       InLoop0

The routing information for the two VPNs has been redistributed into the routing tables on PE 1.

Configuring the MCE that uses EBGP to advertise VPN routes to the PE

Network requirements

As shown in Figure 5, configure the MCE to advertise the routes of VPNs 1 and 2 to PE 1, so that the sites of each VPN can communicate with each other over the MPLS backbone.

Run OSPF in both VPN 1 and VPN 2. Run EBGP between the MCE and PE 1.

Figure 5 Network diagram

 

Configuration procedure

1.     Create VPN instances on the MCE and PE 1, and bind the VPN instances to VLAN interfaces. For the configuration procedure, see "Configuring the MCE that uses OSPF to advertise VPN routes to the PE."

2.     Configure routing between the MCE and VPN sites:

# Enable an OSPF process on the devices in the two VPNs, and advertise the subnets. (Details not shown.)

# Configure OSPF on the MCE, and bind OSPF process 10 to VPN instance vpn1 to learn the routes of VPN 1.

<MCE> system-view

[MCE] ospf 10 router-id 10.10.10.1 vpn-instance vpn1

[MCE-ospf-10] area 0

[MCE-ospf-10-area-0.0.0.0] network 10.214.10.0 0.0.0.255

[MCE-ospf-10-area-0.0.0.0] quit

[MCE-ospf-10] quit

# Display the routing table of VPN 1 on the MCE.

[MCE] display ip routing-table vpn-instance vpn1

 

Destinations : 13        Routes : 13

 

Destination/Mask   Proto   Pre Cost        NextHop         Interface

0.0.0.0/32         Direct  0   0           127.0.0.1       InLoop0

10.214.10.0/24     Direct  0   0           10.214.10.3     Vlan10

10.214.10.0/32     Direct  0   0           10.214.10.3     Vlan10

10.214.10.3/32     Direct  0   0           127.0.0.1       InLoop0

10.214.10.255/32   Direct  0   0           10.214.10.3     Vlan10

127.0.0.0/8        Direct  0   0           127.0.0.1       InLoop0

127.0.0.0/32       Direct  0   0           127.0.0.1       InLoop0

127.0.0.1/32       Direct  0   0           127.0.0.1       InLoop0

127.255.255.255/32 Direct  0   0           127.0.0.1       InLoop0

192.168.0.0/24     O_INTRA 10  2           10.214.10.2     Vlan10

224.0.0.0/4        Direct  0   0           0.0.0.0         NULL0

224.0.0.0/24       Direct  0   0           0.0.0.0         NULL0

255.255.255.255/32 Direct  0   0           127.0.0.1       InLoop0

The output shows that the MCE has learned the private route of VPN 1 through OSPF process 10.

# On the MCE, bind OSPF process 20 to VPN instance vpn2 to learn the routes of VPN 2. The configuration procedure is similar to that for OSPF process 10.

The output shows that the MCE has learned the private route of VPN 2 through OSPF.

[MCE] display ip routing-table vpn-instance vpn2

 

Destinations : 13        Routes : 13

 

Destination/Mask   Proto   Pre Cost        NextHop         Interface

0.0.0.0/32         Direct  0   0           127.0.0.1       InLoop0

10.214.20.0/24     Direct  0   0           10.214.20.3     Vlan20

10.214.20.0/32     Direct  0   0           10.214.20.3     Vlan20

10.214.20.3/32     Direct  0   0           127.0.0.1       InLoop0

10.214.20.255/32   Direct  0   0           10.214.20.3     Vlan20

127.0.0.0/8        Direct  0   0           127.0.0.1       InLoop0

127.0.0.0/32       Direct  0   0           127.0.0.1       InLoop0

127.0.0.1/32       Direct  0   0           127.0.0.1       InLoop0

127.255.255.255/32 Direct  0   0           127.0.0.1       InLoop0

192.168.10.0/24    O_INTRA 10  2           10.214.20.2     Vlan20

224.0.0.0/4        Direct  0   0           0.0.0.0         NULL0

224.0.0.0/24       Direct  0   0           0.0.0.0         NULL0

255.255.255.255/32 Direct  0   0           127.0.0.1       InLoop0

3.     Configure routing between the MCE and PE 1:

# Configure the ports between the MCE and PE 1 as trunk ports. The configuration procedure is similar to that described in "Configuring the MCE that uses OSPF to advertise VPN routes to the PE." (Details not shown.)

# Enable BGP in AS 100 on the MCE.

[MCE] bgp 100

# Enter the BGP-VPN instance view of VPN instance vpn1.

[MCE-bgp-default] ip vpn-instance vpn1

# Specify the EBGP peer PE 1 in AS 200.

[MCE-bgp-default-vpn1] peer 30.1.1.2 as-number 200

# Activate the EBGP VPNv4 peer PE 1, and redistribute routing information from OSPF process 10 to BGP.

[MCE-bgp-default-vpn1] address-family ipv4

[MCE-bgp-default-ipv4-vpn1] peer 30.1.1.2 enable

[MCE-bgp-default-ipv4-vpn1] import-route ospf 10

# On PE 1, enable BGP in AS 200, and specify the MCE as its EBGP peer.

[PE1] bgp 200

[PE1-bgp-default] ip vpn-instance vpn1

[PE1-bgp-default-vpn1] peer 30.1.1.1 as-number 100

[PE1-bgp-default-vpn1] address-family ipv4

[PE1-bgp-default-ipv4-vpn1] peer 30.1.1.1 enable

[PE1-bgp-default-ipv4-vpn1] quit

[PE1-bgp-default-vpn1] quit

[PE1-bgp-default] quit

# Use similar procedures to configure VPN 2 settings on MCE and PE 1. (Details not shown.)

Verifying the configuration

# Verify that PE 1 has learned the OSPF route of VPN 1 through BGP.

[PE1] display ip routing-table vpn-instance vpn1

 

Destinations : 13        Routes : 13

 

Destination/Mask   Proto   Pre Cost        NextHop         Interface

0.0.0.0/32         Direct  0   0           127.0.0.1       InLoop0

30.1.1.0/24        Direct  0   0           30.1.1.2        Vlan30

30.1.1.0/32        Direct  0   0           30.1.1.2        Vlan30

30.1.1.2/32        Direct  0   0           127.0.0.1       InLoop0

30.1.1.255/32      Direct  0   0           30.1.1.2        Vlan30

127.0.0.0/8        Direct  0   0           127.0.0.1       InLoop0

127.0.0.0/32       Direct  0   0           127.0.0.1       InLoop0

127.0.0.1/32       Direct  0   0           127.0.0.1       InLoop0

127.255.255.255/32 Direct  0   0           127.0.0.1       InLoop0

192.168.0.0/24     BGP     255 3           30.1.1.1        Vlan30

224.0.0.0/4        Direct  0   0           0.0.0.0         NULL0

224.0.0.0/24       Direct  0   0           0.0.0.0         NULL0

255.255.255.255/32 Direct  0   0           127.0.0.1       InLoop0

# Verify that PE 1 has learned the OSPF route of VPN 2 through BGP.

[PE1] display ip routing-table vpn-instance vpn2

 

Destinations : 13        Routes : 13

 

Destination/Mask   Proto   Pre Cost        NextHop         Interface

0.0.0.0/32         Direct  0   0           127.0.0.1       InLoop0

40.1.1.0/24        Direct  0   0           40.1.1.2        Vlan40

40.1.1.0/32        Direct  0   0           40.1.1.2        Vlan40

40.1.1.2/32        Direct  0   0           127.0.0.1       InLoop0

40.1.1.255/32      Direct  0   0           40.1.1.2        Vlan40

127.0.0.0/8        Direct  0   0           127.0.0.1       InLoop0

127.0.0.0/32       Direct  0   0           127.0.0.1       InLoop0

127.0.0.1/32       Direct  0   0           127.0.0.1       InLoop0

127.255.255.255/32 Direct  0   0           127.0.0.1       InLoop0

192.168.10.0/24    BGP     255 3           40.1.1.1        Vlan40

224.0.0.0/4        Direct  0   0           0.0.0.0         NULL0

224.0.0.0/24       Direct  0   0           0.0.0.0         NULL0

255.255.255.255/32 Direct  0   0           127.0.0.1       InLoop0

The MCE has redistributed the OSPF routes of the two VPN instances into the EBGP routing tables of PE 1.

  • Cloud & AI
  • InterConnect
  • Intelligent Computing
  • Security
  • SMB Products
  • Intelligent Terminal Products
  • Product Support Services
  • Technical Service Solutions
All Services
  • Resource Center
  • Policy
  • Online Help
All Support
  • Become a Partner
  • Partner Resources
  • Partner Business Management
All Partners
  • Profile
  • News & Events
  • Online Exhibition Center
  • Contact Us
All About Us
新华三官网