06-Layer 3 - IP Routing Configuration Guide

HomeSupportSwitchesH3C S12500 Switch SeriesConfigure & DeployConfiguration GuidesH3C S12500 Configuration Guide-Release7128-6W71006-Layer 3 - IP Routing Configuration Guide
10-OSPFv3 configuration
Title Size Download
10-OSPFv3 configuration 308.77 KB

Contents

Configuring OSPFv3· 1

OSPFv3 overview·· 1

OSPFv3 packets 1

OSPFv3 LSA types 1

Protocols and standards 2

OSPFv3 configuration task list 2

Enabling OSPFv3· 3

Configuring OSPFv3 area parameters 4

Configuration prerequisites 4

Configuring a stub area· 4

Configuring an OSPFv3 virtual link· 4

Configuring OSPFv3 network types 5

Configuration prerequisites 5

Configuring the OSPFv3 network type for an interface· 5

Configuring an NBMA or P2MP neighbor 6

Configuring OSPFv3 route control 6

Configuration prerequisites 6

Configuring OSPFv3 route summarization· 6

Configuring OSPFv3 inbound route filtering· 6

Configuring Inter-Area-Prefix-LSA filtering· 7

Configuring an OSPFv3 cost for an interface· 7

Configuring the maximum number of OSPFv3 ECMP routes 8

Configuring a preference for OSPFv3· 8

Configuring OSPFv3 route redistribution· 8

Tuning and optimizing OSPFv3 networks 9

Configuration prerequisites 9

Configuring OSPFv3 timers 9

Specifying LSA transmission delay· 10

Specifying SPF calculation interval 10

Specifying the LSA generation interval 11

Configuring a DR priority for an interface· 11

Ignoring MTU check for DD packets 11

Disabling interfaces from receiving and sending OSPFv3 packets 12

Enabling the logging of neighbor state changes 12

Configuring OSPFv3 GR· 12

Configuring GR Restarter 13

Configuring GR Helper 13

Configuring BFD for OSPFv3· 13

Displaying and maintaining OSPFv3· 14

OSPFv3 configuration examples 15

Configuring OSPFv3 areas 15

Configuring OSPFv3 DR election· 19

Configuring OSPFv3 route redistribution· 22

Configuring OSPFv3 GR· 25

Configuring BFD for OSPFv3· 26

 


Configuring OSPFv3

This chapter describes how to configure RFC 5340-compliant Open Shortest Path First version 3 (OSPFv3) for an IPv6 network. For more information about OSPFv2, see "Configuring OSPF".

OSPFv3 overview

OSPFv3 and OSPFv2 have the following in common:

·           32-bit router ID and area ID

·           Hello, Database Description (DD), Link State Request (LSR), Link State Update (LSU), Link State Acknowledgment (LSAck)

·           Mechanisms for finding neighbors and establishing adjacencies

·           Mechanisms for advertising and aging LSAs

OSPFv3 and OSPFv2 have the following differences:

·           OSPFv3 runs on a per-link basis. OSPFv2 runs on a per-IP-subnet basis.

·           OSPFv3 supports running multiple processes on an interface, but OSPFv2 does not support.

·           OSPFv3 identifies neighbors by router ID. OSPFv2 identifies neighbors by IP address.

OSPFv3 packets

OSPFv3 uses the following packet types:

·           Hello—Periodically sent to find and maintain neighbors, containing timer values, information about the DR, BDR, and known neighbors.

·           DD—Describes the digest of each LSA in the LSDB, exchanged between two routers for data synchronization.

·           LSR—Requests needed LSAs from the neighbor. After exchanging the DD packets, the two routers know which LSAs of the neighbor are missing from their LSDBs. They then send an LSR packet to each other, requesting the missing LSAs. The LSA packet contains the digest of the missing LSAs.

·           LSU—Transmits the requested LSAs to the neighbor

·           LSAck—Acknowledges received LSU packets.

OSPFv3 LSA types

OSPFv3 sends routing information in the following types of LSAs as defined in RFC 5340:

·           Router-LSA—Originated by all routers. This LSA describes the collected states of the router's interfaces to an area, and is flooded throughout a single area only.

·           Network-LSA—Originated for broadcast and NBMA networks by the DR. This LSA contains the list of routers connected to the network, and is flooded throughout a single area only.

·           Inter-Area-Prefix-LSA—Originated by ABRs and flooded throughout the LSA's associated area. Each Inter-Area-Prefix-LSA describes a route with IPv6 address prefix to a destination outside the area, yet still inside the AS.

·           Inter-Area-Router-LSA—Originated by ABRs and flooded throughout the LSA's associated area. Each Inter-Area-Router-LSA describes a route to ASBR.

·           AS-external-LSA—Originated by ASBRs, and flooded throughout the AS, except stub and NSSA areas. Each AS-external-LSA describes a route to another AS. A default route can be described by an AS external LSA.

·           Link-LSA—A router originates a separate Link-LSA for each attached link. Link-LSAs have link-local flooding scope. Each Link-LSA describes the IPv6 address prefix of the link and Link-local address of the router.

·           Intra-Area-Prefix-LSAEach Intra-Area-Prefix-LSA contains IPv6 prefix information on a router, stub area, or transit area information, and has area flooding scope. It was introduced because Router-LSAs and Network-LSAs contain no address information.

RFC 5187 defines the Grace-LSA. A Grace-LSA is generated by a GR (Graceful Restart) Restarter at reboot and transmitted on the local link. The restarter describes the cause and interval of the reboot in the Grace-LSA to tell its neighbors that it performs a GR operation.

Protocols and standards

·           RFC 5340, OSPF for IPv6

·           RFC 2328, OSPF Version 2

·           RFC 5187, OSPFv3 Graceful Restart

OSPFv3 configuration task list

 

Tasks at a glance

(Required.) Enabling OSPFv3

(Optional.) Configuring OSPFv3 area parameters:

·       Configuring a stub area

·       Configuring an OSPFv3 virtual link

(Optional.) Configuring OSPFv3 network types:

·       Configuring the OSPFv3 network type for an interface

·       Configuring an NBMA or P2MP neighbor

(Optional.) Configuring OSPFv3 route control:

·       Configuring OSPFv3 route summarization

·       Configuring OSPFv3 inbound route filtering

·       Configuring Inter-Area-Prefix-LSA filtering

·       Configuring an OSPFv3 cost for an interface

·       Configuring the maximum number of OSPFv3 ECMP routes

·       Configuring a preference for OSPFv3

·       Configuring OSPFv3 route redistribution

(Optional.) Tuning and optimizing OSPFv3 networks

·       Configuring OSPFv3 timers

·       Specifying LSA transmission delay

·       Configuring a DR priority for an interface

·       Specifying SPF calculation interval

·       Specifying the LSA generation interval

·       Ignoring MTU check for DD packets

·       Disabling interfaces from receiving and sending OSPFv3 packets

·       Enabling the logging of neighbor state changes

(Optional.) Configuring OSPFv3 GR

·       Configuring GR Restarter

·       Configuring GR Helper

(Optional.) Configuring BFD for OSPFv3

 

Enabling OSPFv3

Before you enable OSPFv3, configure IPv6 addresses for interfaces to ensure IPv6 connectivity between neighboring nodes.

To enable an OSPFv3 process on a router:

·           Enable the OSPFv3 process globally.

·           Assign the OSPFv3 process a router ID.

·           Enable the OSPFv3 process on related interfaces.

The router ID uniquely identifies the router within an AS. If a router runs multiple OSPFv3 processes, you must specify a unique router ID for each process.

An OSPFv3 process ID has only local significance. Process 1 on a router can exchange packets with process 2 on another router.

To enable OSPFv3:

 

Step

Command

Remarks

1.     Enter system view.

system-view

N/A

2.     Enable an OSPFv3 process and enter its view.

ospfv3 [ process-id | vpn-instance vpn-instance-name ] *

By default, no OSPFv3 process is enabled.

3.     Specify a router ID.

router-id router-id

By default, no router ID is configured.

4.     Enter interface view.

interface interface-type interface-number

N/A

5.     Enable an OSPFv3 process on the interface.

ospfv3 process-id area area-id [ instance instance-id ]

No OSPFv3 process is enabled on an interface by default.

 

Configuring OSPFv3 area parameters

OSPFv3 has the same stub area and virtual link features as OSPFv2.

After you split an OSPFv3 AS into multiple areas, the LSA number is reduced and OSPFv3 applications are extended. To further reduce the size of routing tables and the number of LSAs, configure the non-backbone areas at an AS edge as stub areas.

Non-backbone areas exchange routing information through the backbone area, so the backbone and non-backbone areas (including the backbone itself) must be fully meshed. If no connectivity can be achieved, configure virtual links.

Configuration prerequisites

Before you configure OSPFv3 area parameters, enable OSPFv3.

Configuring a stub area

All the routers attached to a stub area must be configured with the stub command. The keyword no-summary is only available on the ABR of the stub area.

If you use the stub command with the keyword no-summary on an ABR, the ABR advertises a default route in an Inter-Area-Prefix-LSA into the stub area. No AS-external-LSA, Inter-Area-Prefix-LSA, or other Inter-Area-Router-LSA is advertised in the area. The stub area of this kind is also known as a "totally stub area."

To configure an OSPFv3 stub area:

 

Step

Command

Remarks

1.     Enter system view.

system-view

N/A

2.     Enter OSPFv3 view.

ospfv3 [ process-id | vpn-instance vpn-instance-name ] *

N/A

3.     Enter OSPFv3 area view.

area area-id

N/A

4.     Configure the area as a stub area.

stub [ default-route-advertise-always | no-summary ] *

By default, no stub area is configured as a stub area.

5.     (Optional.) Specify a cost for the default route advertised to the stub area.

default-cost value

The default setting is 1.

 

Configuring an OSPFv3 virtual link

You can configure a virtual link to maintain connectivity between a non-backbone area and the backbone, or in the backbone itself.

 

IMPORTANT

IMPORTANT:

·       Both ends of a virtual link are ABRs that must be configured with the vlink-peer command.

·       Do not configure virtual links in the areas of a GR-capable process.

 

To configure a virtual link:

 

Step

Command

Remarks

1.     Enter system view.

system-view

N/A

1.     Enter OSPFv3 view.

ospfv3 [ process-id | vpn-instance vpn-instance-name ] *

N/A

2.     Enter OSPFv3 area view.

area area-id

N/A

3.     Configure a virtual link.

vlink-peer router-id [ dead seconds | hello seconds | instance instance-id | retransmit seconds | trans-delay seconds ] *

By default, no virtual link is configured.

 

Configuring OSPFv3 network types

OSPFv3 classifies networks into the following types by the link layer protocol:

·           BroadcastWhen the link layer protocol is Ethernet or FDDI, OSPFv3 considers the network type as broadcast by default.

·           NBMAWhen the link layer protocol is ATM, Frame Relay, or X.25, OSPFv3 considers the network type as NBMA by default.

·           P2PWhen the link layer protocol is PPP, LAPB, HDLC, or POS, OSPFv3 considers the network type as P2P by default.

Follow these guidelines when you change the network type of an OSPFv3 interface:

·           An NBMA network must be fully connected. Any two routers in the network must be directly reachable to each other through a virtual circuit. If no such direct link is available, you must change the network type through a command.

·           If direct connections are not available between some routers in an NBMA network, the type of interfaces associated must be configured as P2MP, or as P2P for interfaces with only one neighbor.

Configuration prerequisites

Before you configure OSPFv3 network types, enable OSPFv3.

Configuring the OSPFv3 network type for an interface

 

Step

Command

Remarks

1.     Enter system view.

system-view

N/A

2.     Enter interface view.

interface interface-type interface-number

N/A

3.     Configure a network type for the OSPFv3 interface.

ospfv3 network-type { broadcast | nbma | p2mp [ unicast ] | p2p } [ instance instance-id ]

By default, the network type of an interface depends on the media type of the interface.

 

Configuring an NBMA or P2MP neighbor

For NBMA and P2MP interfaces (only when in unicast mode), you must specify the link-local IP addresses of their neighbors because these interfaces cannot find neighbors through broadcasting hello packets. For NBMA interfaces, you can also specify DR priorities for neighbors.

To configure an NBMA or P2MP (unicast) neighbor and its DR priority:

 

Step

Command

Remarks

1.     Enter system view.

system-view

N/A

2.     Enter interface view.

interface interface-type interface-number

N/A

3.     Specify an NBMA or P2MP (unicast) neighbor and its DR priority.

ospfv3 peer ipv6-address [ cost value | dr-priority dr-priority ] [ instance instance-id ]

By default, no link-local address is specified for the neighbor interface.

 

Configuring OSPFv3 route control

Configuration prerequisites

Before you configure OSPFv3 route control, complete the following tasks:

·           Configure IPv6 addresses for interfaces to ensure IPv6 connectivity between neighboring nodes.

·           Enable OSPFv3.

Configuring OSPFv3 route summarization

If contiguous network segments exist in an area, you can use the abr-summary command to summarize them into one network segment on the ABR. The ABR will advertise only the summary route. Any LSA falling into the specified network segment will not be advertised, reducing the LSDB size in other areas.

To configure route summarization:

 

Step

Command

Remarks

1.     Enter system view.

system-view

N/A

2.     Enter OSPFv3 view.

ospfv3 [ process-id | vpn-instance vpn-instance-name ] *

N/A

3.     Enter OSPFv3 area view.

area area-id

N/A

4.     Configure route summarization.

abr-summary ipv6-address prefix-length [ not-advertise ] [ cost value ]

By default, route summarization is not configured.

The abr-summary command takes effect only on ABRs.

 

Configuring OSPFv3 inbound route filtering

According to some rules, you can configure OSPFv3 to filter routes calculated using received LSAs.

To configure OSPFv3 to filter routes calculated using received LSAs:

 

Step

Command

Remarks

1.     Enter system view.

system-view

N/A

2.     Enter OSPFv3 view.

ospfv3 [ process-id | vpn-instance vpn-instance-name ] *

N/A

3.     Configure OSPFv3 to filter routes calculated using received LSAs.

filter-policy { acl6-number [ gateway prefix-list-name ] | prefix-list prefix-list-name [ gateway prefix-list-name ] | gateway prefix-list-name | route-policy route-policy-name } import

By default, OSPFv3 accepts all routes calculated using received LSAs.

This command can only filter routes computed by OSPFv3. Only routes not filtered out can be added into the local routing table.

 

Configuring Inter-Area-Prefix-LSA filtering

 

Step

Command

Remarks

1.     Enter system view.

system-view

N/A

2.     Enter OSPFv3 view.

ospfv3 [ process-id | vpn-instance vpn-instance-name ] *

N/A

3.     Enter OSPFv3 area view.

area area-id

N/A

4.     Configure OSPFv3 to filter Inter-Area-Prefix-LSAs.

filter { acl6-number | prefix-list prefix-list-name | route-policy route-policy-name } { export | import }

By default, OSPFv3 accepts all Inter-Area-Prefix-LSAs.

This command takes effect only on ABRs.

 

Configuring an OSPFv3 cost for an interface

You can configure an OSPFv3 cost for an interface with one of the following methods:

·           Configure the cost value in interface view.

·           Configure a bandwidth reference value for the interface, and OSPFv3 computes the cost automatically based on the bandwidth reference value: Interface OSPFv3 cost = Bandwidth reference value (100 Mbps)/Interface bandwidth (Mbps). If the calculated cost is greater than 65535, the value of 65535 is used; if the calculated cost is smaller than 1, the value of 1 is used.

If no cost is configured for an interface, OSPFv3 automatically computes the cost for the interface.

To configure an OSPFv3 cost for an interface:

 

Step

Command

Remarks

1.     Enter system view.

system-view

N/A

2.     Enter interface view.

interface interface-type interface-number

N/A

3.     Configure an OSPFv3 cost for the interface.

ospfv3 cost value [ instance instance-id ]

By default, the OSPF cost is 1 for a VLAN interface, is 0 for a loopback interface, and is automatically computed according to the interface bandwidth for other interfaces.

 

To configure a bandwidth reference value:

 

Step

Command

Remarks

1.     Enter system view.

system-view

N/A

2.     Enter OSPFv3 view.

ospfv3 [ process-id | vpn-instance vpn-instance-name ] *

N/A

3.     Configure a bandwidth reference value.

bandwidth-reference value

The default setting is 100 Mbps.

 

Configuring the maximum number of OSPFv3 ECMP routes

Perform this task to implement load sharing over ECMP routes.

To configure the maximum number of ECMP routes:

 

Step

Command

Remarks

1.     Enter system view.

system-view

N/A

2.     Enter OSPFv3 view.

ospfv3 [ process-id | vpn-instance vpn-instance-name ] *

N/A

3.     Specify the maximum number of ECMP routes.

maximum load-balancing maximum

By default, the maximum number of ECMP routes is 32.

 

Configuring a preference for OSPFv3

A router can run multiple routing protocols. The system assigns a priority for each protocol. When these routing protocols find the same route, the route found by the protocol with the highest priority is selected.

To configure a preference for OSPFv3:

 

Step

Command

Remarks

1.     Enter system view.

system-view

N/A

2.     Enter OSPFv3 view.

ospfv3 [ process-id | vpn-instance vpn-instance-name ] *

N/A

3.     Configure a preference for OSPFv3.

preference [ ase ] [ route-policy route-policy-name ] preference

By default, the preference of OSPFv3 internal routes is 10, and the priority of OSPFv3 external routes is 150.

 

Configuring OSPFv3 route redistribution

Because OSPFv3 is a link state routing protocol, it cannot directly filter LSAs to be advertised. OSPFv3 filters only redistributed routes. Only routes that are not filtered out can be advertised in LSAs.

Executing the import-route or default-route-advertise command on a router makes it become an ASBR.

To configure OSPFv3 route redistribution:

 

Step

Command

Remarks

1.     Enter system view.

system-view

N/A

2.     Enter OSPFv3 view.

ospfv3 [ process-id | vpn-instance vpn-instance-name ] *

N/A

3.     (Optional.) Specify a default cost for redistributed routes.

default cost value

The default setting is 1.

4.     Configure OSPFv3 to redistribute routes from other routing protocols.

import-route protocol [ process-id | all-processes | allow-ibgp ] [ cost cost | route-policy route-policy-name | type type ] *

By default, route redistribution is disabled.

5.     (Optional.) Configure OSPFv3 to redistribute a default route.

default-route-advertise [ [ always | permit-calculate-other ] | cost cost | route-policy route-policy-name | type type ] *

By default, no default route is redistributed.

This command can only inject and advertise a default route.

6.     (Optional.) Configure OSPFv3 to filter redistributed routes.

filter-policy { acl6-number | prefix-list prefix-list-name } export [ protocol [ process-id ] ]

By default, OSPFv3 accepts all redistributed routes.

This command filters only routes redistributed with the import-route command. If the import-route command is not configured, executing this command does not take effect.

 

Tuning and optimizing OSPFv3 networks

This section describes configurations of OSPFv3 timers, interface DR priority, and the logging of neighbor state changes.

Configuration prerequisites

Before you tune and optimize OSPFv3 networks, complete the following tasks:

·           Configure IPv6 addresses for interfaces to ensure IPv6 connectivity between neighboring nodes.

·           Enable OSPFv3.

Configuring OSPFv3 timers

 

Step

Command

Remarks

1.     Enter system view.

system-view

N/A

2.     Enter interface view.

interface interface-type interface-number

N/A

3.     Configure the hello interval.

ospfv3 timer hello seconds [ instance instance-id ]

By default, the hello interval on P2P and broadcast interfaces is 10 seconds.

4.     Configure the dead interval.

ospfv3 timer dead seconds [ instance instance-id ]

By default, the dead interval on P2P and broadcast interfaces is 40 seconds.

The dead interval set on neighboring interfaces cannot be too short. Otherwise, a neighbor is easily considered down.

5.     Configure the poll interval.

ospfv3 timer poll seconds [ instance instance-id ]

By default, the poll interval is 120 seconds.

6.     Configure the LSA retransmission interval.

ospfv3 timer retransmit interval [ instance instance-id ]

The default setting is 5 seconds.

The LSA retransmission interval cannot be too short. Otherwise, unnecessary retransmissions will occur.

 

Specifying LSA transmission delay

Each LSA in the LSDB has an age that is incremented by 1 every second, but the age does not change during transmission. Therefore, it is necessary to add a transmission delay into the age time, especially for low-speed links.

To specify the LSA transmission delay on an interface:

 

Step

Command

Remarks

1.     Enter system view.

system-view

N/A

2.     Enter interface view.

interface interface-type interface-number

N/A

3.     Specify the LSA transmission delay.

ospf trans-delay seconds [ instance instance-id ]

By default, the LSA transmission delay is 1 second.

 

Specifying SPF calculation interval

LSDB changes result in SPF calculations. When the topology changes frequently, a large amount of network and router resources are occupied by SPF calculation. You can adjust the SPF calculation interval to reduce the impact.

When network changes are not frequent, the minimum-interval is adopted. If network changes become frequent, the SPF calculation interval is incremented by incremental-interval × 2n-2 (n is the number of generation times) each time an SPF calculation occurs until the maximum-interval is reached.

To configure SPF calculation interval:

 

Step

Command

Remarks

1.     Enter system view.

system-view

N/A

2.     Enter OSPFv3 view.

ospfv3 [ process-id | vpn-instance vpn-instance-name ] *

N/A

3.     Specify the SPF calculation interval.

spf-schedule-interval maximum-interval [ minimum-interval [ incremental-interval ] ]

By default:

·       The maximum interval is 5 seconds.

·       The minimum interval is 50 milliseconds.

·       The incremental interval is 200 milliseconds.

 

Specifying the LSA generation interval

You can adjust the LSA generation interval to protect network resources and routers from being over consumed by frequent network changes.

When network changes are not frequent, LSAs are generated at the minimum-interval. If network changes become frequent, the LSA generation interval is incremented by incremental-interval × 2n-2 (n is the number of generation times) each time an LSA generation occurs until the maximum-interval is reached.

To configure the LSA generation interval:

 

Step

Command

Remarks

1.     Enter system view.

system-view

N/A

2.     Enter OSPFv3 view.

ospf [ process-id | vpn-instance vpn-instance-name ] *

N/A

3.     Configure the LSA generation interval.

lsa-generation-interval maximum-interval [ minimum-interval [ incremental-interval ] ]

By default, the maximum interval is 5 seconds, the minimum interval is 0 milliseconds, and the incremental interval is 0 milliseconds.

Configuring a DR priority for an interface

The router priority is used for DR election. Interfaces having the priority 0 cannot become a DR or BDR.

To configure a DR priority for an interface:

 

Step

Command

Remarks

1.     Enter system view.

system-view

N/A

2.     Enter interface view.

interface interface-type interface-number

N/A

3.     Configure a router priority.

ospfv3 dr-priority priority [ instance instance-id ]

The default router priority is 1.

 

Ignoring MTU check for DD packets

When LSAs are few in DD packets, it is unnecessary to check the MTU in DD packets to improve efficiency.

To ignore MTU check for DD packets:

 

Step

Command

Remarks

1.     Enter system view.

system-view

N/A

2.     Enter interface view.

interface interface-type interface-number

N/A

3.     Ignore MTU check for DD packets.

ospfv3 mtu-ignore [ instance instance-id ]

By default, OSPFv3 does not ignore MTU check for DD packets.

 

Disabling interfaces from receiving and sending OSPFv3 packets

After an OSPF interface is set to silent, direct routes of the interface can still be advertised in Intra-Area-Prefix-LSAs through other interfaces, but other OSPFv3 packets cannot be advertised. No neighboring relationship can be established on the interface. This feature can enhance the adaptability of OSPFv3 networking.

To disable interfaces from receiving and sending OSPFv3 packets:

 

Step

Command

Remarks

1.     Enter system view.

system-view

N/A

2.     Enter OSPFv3 view.

ospfv3 [ process-id | vpn-instance vpn-instance-name ] *

N/A

3.     Disable interfaces from receiving and sending OSPFv3 packets.

silent-interface { interface-type interface-number | all }

By default, the interfaces are able to receive and send OSPFv3 packets.

This command disables only the interfaces associated with the current process, though multiple OSPFv3 processes can disable the same interface from receiving and sending OSPFv3 packets.

 

Enabling the logging of neighbor state changes

 

Step

Command

Remarks

1.     Enter system view.

system-view

N/A

2.     Enter OSPFv3 view.

ospfv3 [ process-id | vpn-instance vpn-instance-name ] *

N/A

3.     Enable the logging of neighbor state changes.

log-peer-change

By default, this feature is enabled.

 

Configuring OSPFv3 GR

Graceful Restart ensures the continuity of packet forwarding when a routing protocol restarts or an active/standby switchover occurs:

·           GR Restarter—Graceful restarting router. It must be Graceful Restart capable.

·           GR Helper—The neighbor of the GR Restarter. It helps the GR Restarter to complete the GR process.

To prevent service interruption after a master/backup switchover, a GR Restarter running OSPFv3 must complete the following tasks:

·           Keep the GR Restarter forwarding entries stable during reboot.

·           Establish all adjacencies and obtain complete topology information after reboot.

After the active/standby switchover, the GR Restarter sends a Grace-LSA to tell its neighbors that it performs a GR. Upon receiving the Grace-LSA, the neighbors with the GR Helper capability enter the helper mode (and are called "GR Helpers"). Then, the GR Restarter retrieves its adjacencies and LSDB with the help of the GR Helpers.

Configuring GR Restarter

You can configure the GR Restarter capability on a GR Restarter.

To configure GR Restarter:

 

Step

Command

Remarks

1.     Enter system view.

system-view

N/A

2.     Enter OSPFv3 view.

ospfv3 [ process-id | vpn-instance vpn-instance-name ] *

N/A

3.     Enable the GR capability.

graceful-restart enable

By default, OSPFv3 GR Restarter capability is disabled.

4.     (Optional.) Configure the GR interval.

graceful-restart interval interval-value

By default, the GR interval is 120 seconds.

 

Configuring GR Helper

You can configure the GR Helper capability on a GR Helper.

To configure GR Helper

 

Step

Command

Remarks

1.     Enter system view.

system-view

N/A

2.     Enter OSPFv3 view.

ospfv3 [ process-id | vpn-instance vpn-instance-name ] *

N/A

3.     Enable the GR Helper capability.

graceful-restart helper enable

By default, the GR Helper capability is enabled.

4.     Enable strict LSA checking.

graceful-restart helper strict-lsa-checking

By default, strict LSA checking is disabled.

 

Configuring BFD for OSPFv3

Bidirectional forwarding detection (BFD) provides a mechanism to quickly detect the connectivity of links between OSPFv3 neighbors, improving the convergence speed of OSPFv3. For more information about BFD, see High Availability Configuration Guide.

After discovering neighbors by sending hello packets, OSPFv3 notifies BFD of the neighbor addresses, and BFD uses these addresses to establish sessions. Before a BFD session is established, it is in the down state. In this state, BFD control packets are sent at an interval of no less than 1 second to reduce BFD control packet traffic. After the BFD session is established, BFD control packets are sent at the negotiated interval, thereby implementing fast fault detection.

To configure BFD for OSPFv3, you need to configure OSPFv3 first.

To configure BFD for OSPFv3:

 

Step

Command

Remarks

1.     Enter system view.

system-view

N/A

2.     Enter OSPFv3 view.

ospfv3 [ process-id | vpn-instance vpn-instance-name ] *

N/A

3.     Specify a router ID.

router-id router-id

N/A

4.     Quit the OSPFv3 view.

quit

N/A

5.     Enter interface view.

interface interface-type interface-number

N/A

6.     Enable an OSPFv3 process on the interface.

ospfv3 process-id area area-id [ instance instance-id ]

N/A

7.     Enable BFD on the interface.

ospfv3 bfd enable [ instance instance-id ]

By default, BFD on the interface is disabled.

 

Displaying and maintaining OSPFv3

Execute display commands in any view.

 

Purpose

Command

Display information about the routes to OSPFv3 ABR and ASBR.

display ospfv3 [ process-id ] abr-asbr

Display brief OSPFv3 process information.

display ospfv3 [ process-id ] brief

Display GR status of the specified OSPFv3 process.

display ospfv3 [ process-id ] graceful-restart status

Display OSPFv3 interface information.

display ospfv3 [ process-id ] interface [ interface-type interface-number | verbose ]

Display OSPFv3 LSDB information.

display ospfv3 [ process-id ] lsdb [ { external | grace | inter-prefix | inter-router | intra-prefix | link | network | router | unknown [ type ] } [ link-state-id ] [ originate-router router-id | self-originate ] | statistics | total ]

Display OSPFv3 neighbor information.

display ospfv3 [ process-id ] [ area area-id ] peer [ [ interface-type interface-number ] [ verbose ] | peer-router-id | statistics ]

Display OSPFv3 request list information.

display ospfv3 [ process-id ] [ area area-id ] request-queue [ interface-type interface-number ] [ neighbor-id ]

Display OSPFv3 retransmission list information.

display ospfv3 [ process-id ] [ area area-id ] retrans-queue [ interface-type interface-number ] [ neighbor-id ]

Display OSPFv3 routing information.

display ospfv3 [ process-id ] routing [ ipv6-address prefix-length ]

Display OSPFv3 statistics.

display ospfv3 [ process-id ] statistics

Display OSPFv3 virtual link information.

display ospfv3 [ process-id ] vlink

 

OSPFv3 configuration examples

By default, Ethernet, VLAN, and aggregate interfaces are down. To configure such an interface, bring the interface up by executing the undo shutdown command.

Configuring OSPFv3 areas

Network requirements

As shown in Figure 1:

·           Enable OSPFv3 on all switches.

·           Split the AS into three areas.

·           Configure Switch B and Switch C as ABRs to forward routing information between areas.

·           Configure Area 2 as a stub area to reduce LSAs in the area without affecting route reachability.

Figure 1 Network diagram

 

Configuration procedure

1.      Configure IPv6 addresses for interfaces. (Details not shown.)

2.      Configure basic OSPFv3:

# Configure Switch A: enable OSPFv3 and specify the router ID as 1.1.1.1.

<SwitchA> system-view

[SwitchA] ospfv3

[SwitchA-ospfv3-1] router-id 1.1.1.1

[SwitchA-ospfv3-1] quit

[SwitchA] interface vlan-interface 300

[SwitchA-Vlan-interface300] ospfv3 1 area 1

[SwitchA-Vlan-interface300] quit

[SwitchA] interface vlan-interface 200

[SwitchA-Vlan-interface200] ospfv3 1 area 1

[SwitchA-Vlan-interface200] quit

# Configure Switch B: enable OSPFv3 and specify the router ID as 2.2.2.2.

<SwitchB> system-view

[SwitchB] ospfv3

[SwitchB-ospf-1] router-id 2.2.2.2

[SwitchB-ospf-1] quit

[SwitchB] interface vlan-interface 100

[SwitchB-Vlan-interface100] ospfv3 1 area 0

[SwitchB-Vlan-interface100] quit

[SwitchB] interface vlan-interface 200

[SwitchB-Vlan-interface200] ospfv3 1 area 1

[SwitchB-Vlan-interface200] quit

# Configure Switch C: enable OSPFv3 and specify the router ID as 3.3.3.3.

<SwitchC> system-view

[SwitchC] ospfv3

[SwitchC-ospfv3-1] router-id 3.3.3.3

[SwitchC-ospfv3-1] quit

[SwitchC] interface vlan-interface 100

[SwitchC-Vlan-interface100] ospfv3 1 area 0

[SwitchC-Vlan-interface100] quit

[SwitchC] interface vlan-interface 400

[SwitchC-Vlan-interface400] ospfv3 1 area 2

[SwitchC-Vlan-interface400] quit

# Configure Switch D: enable OSPFv3 and specify the router ID as 4.4.4.4.

<SwitchD> system-view

[SwitchD] ospfv3

[SwitchD-ospfv3-1] router-id 4.4.4.4

[SwitchD-ospfv3-1] quit

[SwitchD] interface vlan-interface 400

[SwitchD-Vlan-interface400] ospfv3 1 area 2

[SwitchD-Vlan-interface400] quit

# Display OSPFv3 neighbors on Switch B.

[SwitchB] display ospfv3 peer

 

               OSPFv3 Process 1 with Router ID 2.2.2.2

 

 Area: 0.0.0.0

-------------------------------------------------------------------------

 Router ID       Pri State             Dead-Time Interface         Inst ID

 3.3.3.3         1   Full/Backup       00:00:40  Vlan100           0

 

 Area: 0.0.0.1

-------------------------------------------------------------------------

 Router ID       Pri State             Dead-Time Interface         Inst ID

 1.1.1.1         1   Full/DR           00:00:40  Vlan200           0

# Display OSPFv3 neighbors on Switch C.

[SwitchC] display ospfv3 peer

 

               OSPFv3 Process 1 with Router ID 3.3.3.3

 

 Area: 0.0.0.0

-------------------------------------------------------------------------

 Router ID       Pri State             Dead-Time Interface         Inst ID

 2.2.2.2         1   Full/DR           00:00:40  Vlan100           0

 

 Area: 0.0.0.2

-------------------------------------------------------------------------

 Router ID       Pri State             Dead-Time Interface         Inst ID

 4.4.4.4         1   Full/Backup       00:00:40  Vlan400           0

# Display OSPFv3 routing table information on Switch D.

[SwitchD] display ospfv3 routing

 

               OSPFv3 Process 1 with Router ID 4.4.4.4

-------------------------------------------------------------------------

 E1 - Type 1 external route,  IA - Inter area route,  I - Intra area route

 E2 - Type 2 external route,  *  - Selected route

 

*Destination: 2001::/64

  Type       : IA                                        Cost     : 2

  NextHop    : FE80::F40D:0:93D0:1                       Interface: Vlan400

 

 *Destination: 2001:1::/64

  Type       : IA                                        Cost     : 3

  NextHop    : FE80::F40D:0:93D0:1                       Interface: Vlan400

 

 *Destination: 2001:2::/64

  Type       : I                                         Cost     : 1

  NextHop    : directly-connected                        Interface: Vlan400

 

 *Destination: 2001:3::/64

  Type       : IA                                        Cost     : 4

  NextHop    : FE80::F40D:0:93D0:1                       Interface: Vlan400

 

 Total: 4

 Intra area: 1         Inter area: 3         ASE: 0

3.      Configure Area 2 as a stub area:

# Configure Switch D

[SwitchD] ospfv3

[SwitchD-ospfv3-1] area 2

[SwitchD-ospfv3-1-area-0.0.0.2] stub

# Configure Switch C, and specify the cost of the default route sent to the stub area as 10.

[SwitchC] ospfv3

[SwitchC-ospfv3-1] area 2

[SwitchC-ospfv3-1-area-0.0.0.2] stub

[SwitchC-ospfv3-1-area-0.0.0.2] default-cost 10

# Display OSPFv3 routing table information on Switch D.

[SwitchD] display ospfv3 routing

 

               OSPFv3 Process 1 with Router ID 4.4.4.4

-------------------------------------------------------------------------

 E1 - Type 1 external route,  IA - Inter area route,  I - Intra area route

 E2 - Type 2 external route,  *  - Selected route

 

 *Destination: ::/0

  Type       : IA                                       Cost     : 11

  NextHop    : FE80::F40D:0:93D0:1                      Interface: Vlan400

 

 *Destination: 2001::/64

  Type       : IA                                       Cost     : 2

  NextHop    : FE80::F40D:0:93D0:1                      Interface: Vlan400

 

 *Destination: 2001:1::/64

  Type       : IA                                       Cost     : 3

  NextHop    : FE80::F40D:0:93D0:1                      Interface: Vlan400

 

 *Destination: 2001:2::/64

  Type       : I                                        Cost     : 1

  NextHop    : directly-connected                       Interface: Vlan400

 

 *Destination: 2001:3::/64

  Type       : IA                                       Cost     : 4

  NextHop    : FE80::F40D:0:93D0:1                      Interface: Vlan400

 

 Total: 5

 Intra area: 1         Inter area: 4         ASE: 0

The output shows that a default route is added, and its cost is the cost of a direct route plus the configured cost.

4.      Configure Area 2 as a totally stub area:

# Configure Area 2 as a totally stub area on Switch C.

[SwitchC-ospfv3-1-area-0.0.0.2] stub no-summary

# Display OSPFv3 routing table information on Switch D.

[SwitchD] display ospfv3 routing

 

               OSPFv3 Process 1 with Router ID 4.4.4.4

-------------------------------------------------------------------------

 E1 - Type 1 external route,  IA - Inter area route,  I - Intra area route

 E2 - Type 2 external route,  *  - Selected route

 

 *Destination: ::/0

  Type       : IA                                       Cost     : 11

  NextHop    : FE80::F40D:0:93D0:1                      Interface: Vlan400

 

 *Destination: 2001:2::/64

  Type       : I                                        Cost     : 1

  NextHop    : directly-connected                       Interface: Vlan400

 

 Total: 2

 Intra area: 1         Inter area: 1         ASE: 0

The output shows that route entries are reduced. All indirect routes are removed, except the default route.

Configuring OSPFv3 DR election

Network requirements

·           Configure router priority 100 for Switch A, the highest priority on the network, so it will become the DR.

·           Configure router priority 2 for Switch C, the second highest priority on the network, so it will become the BDR.

·           Configure router priority 0 for Switch B, so it cannot become a DR or BDR.

·           Switch D uses the default router priority 1.

Figure 2 Network diagram

 

Configuration procedure

1.      Configure IPv6 addresses for interfaces. (Details not shown.)

2.      Configure basic OSPFv3:

# Configure Switch A: enable OSPFv3 and specify the router ID as 1.1.1.1.

<SwitchA> system-view

[SwitchA] ospfv3

[SwitchA-ospfv3-1] router-id 1.1.1.1

[SwitchA-ospfv3-1] quit

[SwitchA] interface vlan-interface 100

[SwitchA-Vlan-interface100] ospfv3 1 area 0

[SwitchA-Vlan-interface100] quit

# Configure Switch B: enable OSPFv3 and specify the router ID as 2.2.2.2.

<SwitchB> system-view

[SwitchB] ospfv3

[SwitchB-ospfv3-1] router-id 2.2.2.2

[SwitchB-ospfv3-1] quit

[SwitchB] interface vlan-interface 200

[SwitchB-Vlan-interface200] ospfv3 1 area 0

[SwitchB-Vlan-interface200] quit

# Configure Switch C: enable OSPFv3 and specify the router ID as 3.3.3.3.

<SwitchC> system-view

[SwitchC] ospfv3

[SwitchC-ospfv3-1] router-id 3.3.3.3

[SwitchC-ospfv3-1] quit

[SwitchC] interface vlan-interface 100

[SwitchC-Vlan-interface100] ospfv3 1 area 0

[SwitchC-Vlan-interface100] quit

# Configure Switch D: enable OSPFv3 and specify the router ID as 4.4.4.4.

<SwitchD> system-view

[SwitchD] ospfv3

[SwitchD-ospfv3-1] router-id 4.4.4.4

[SwitchD-ospfv3-1] quit

[SwitchD] interface vlan-interface 200

[SwitchD-Vlan-interface200] ospfv3 1 area 0

[SwitchD-Vlan-interface200] quit

# Display neighbor information on Switch A. The switches have the same default DR priority 1, so Switch D (the switch with the highest Router ID) is elected as the DR, and Switch C is the BDR.

[SwitchA] display ospfv3 peer

 

               OSPFv3 Process 1 with Router ID 1.1.1.1

 

 Area: 0.0.0.0

-------------------------------------------------------------------------

 Router ID       Pri State             Dead-Time Interface         Inst ID

 2.2.2.2         1   2-Way/DROther     00:00:36  Vlan200           0

 3.3.3.3         1   Full/Backup       00:00:35  Vlan100           0

 4.4.4.4         1   Full/DR           00:00:33  Vlan200           0

# Display neighbor information on Switch D. The neighbor states are all full.

[SwitchD] display ospfv3 peer

 

               OSPFv3 Process 1 with Router ID 4.4.4.4

 

 Area: 0.0.0.0

-------------------------------------------------------------------------

 Router ID       Pri State             Dead-Time Interface         Inst ID

 1.1.1.1         1   Full/DROther      00:00:30  Vlan100           0

 2.2.2.2         1   Full/DROther      00:00:37  Vlan200           0

 3.3.3.3         1   Full/Backup       00:00:31  Vlan100           0

3.      Configure router priorities for interfaces:

# Configure the router priority of VLAN-interface 100 as 100 on Switch A.

[SwitchA] interface Vlan-interface 100

[SwitchA-Vlan-interface100] ospfv3 dr-priority 100

[SwitchA-Vlan-interface100] quit

# Configure the router priority of VLAN-interface 200 as 0 on Switch B.

[SwitchB] interface vlan-interface 200

[SwitchB-Vlan-interface200] ospfv3 dr-priority 0

[SwitchB-Vlan-interface200] quit

# Configure the router priority of VLAN-interface 100 of Switch C as 2.

[SwitchC] interface Vlan-interface 100

[SwitchC-Vlan-interface100] ospfv3 dr-priority 2

[SwitchC-Vlan-interface100] quit

# Display neighbor information on Switch A. Router priorities have been updated, but the DR and BDR are not changed.

[SwitchA] display ospfv3 peer

 

               OSPFv3 Process 1 with Router ID 1.1.1.1

 

 Area: 0.0.0.0

-------------------------------------------------------------------------

 Router ID       Pri State             Dead-Time Interface         Inst ID

 2.2.2.2         0   2-Way/DROther     00:00:36  Vlan200           0

 3.3.3.3         2   Full/Backup       00:00:35  Vlan200           0

 4.4.4.4         1   Full/DR           00:00:33  Vlan200           0

# Display neighbor information on Switch D. Switch D is still the DR.

[SwitchD] display ospfv3 peer

 

               OSPFv3 Process 1 with Router ID 4.4.4.4

 

 Area: 0.0.0.0

-------------------------------------------------------------------------

 Router ID       Pri State             Dead-Time Interface         Inst ID

 1.1.1.1         100 Full/DROther      00:00:30  Vlan100           0

 2.2.2.2         0   Full/DROther      00:00:37  Vlan200           0

 3.3.3.3         2   Full/Backup       00:00:31  Vlan100           0

4.      Restart DR and BDR election:

# Use the shutdown and undo shutdown commands on interfaces to restart DR and BDR election. (Details not shown.)

# Display neighbor information on Switch A. The output shows that Switch C becomes the BDR.

[SwitchA] display ospfv3 peer

 

               OSPFv3 Process 1 with Router ID 1.1.1.1

 

 Area: 0.0.0.0

-------------------------------------------------------------------------

 Router ID       Pri State             Dead-Time Interface         Inst ID

 2.2.2.2         0   Full/DROther      00:00:36  Vlan200           0

 3.3.3.3         2   Full/Backup       00:00:35  Vlan100           0

 4.4.4.4         1   Full/DROther      00:00:33  Vlan200           0

# Display neighbor information on Switch D.

[SwitchD] display ospfv3 peer

 

               OSPFv3 Process 1 with Router ID 4.4.4.4

 

 Area: 0.0.0.0

-------------------------------------------------------------------------

 Router ID       Pri State             Dead-Time Interface         Inst ID

 1.1.1.1         100 Full/DR           00:00:30  Vlan100           0

 2.2.2.2         0   2-Way/DROther     00:00:37  Vlan200           0

 3.3.3.3         2   Full/Backup       00:00:31  Vlan100           0

The output shows that Switch A becomes the DR.

Configuring OSPFv3 route redistribution

Network requirements

As shown in Figure 3:

·           Switch A, Switch B, and Switch C are in Area 2.

·           OSPFv3 process 1 and OSPFv3 process 2 run on Switch B. Switch B communicates with Switch A and Switch C through OSPFv3 process 1 and OSPFv3 process 2.

·           Configure OSPFv3 process 2 to redistribute direct routes and the routes from OSPFv3 process 1 on Switch B, and set the default metric for redistributed routes to 3. Switch C can then learn the routes destined for 1::0/64 and 2::0/64, and Switch A cannot learn the routes destined for 3::0/64 or 4::0/64.

Figure 3 Network diagram

 

Configuration procedure

1.      Configure IPv6 addresses for interfaces. (Details not shown.)

2.      Configure basic OSPFv3:

# Enable OSPFv3 process 1 on Switch A.

<SwitchA> system-view

[SwitchA] ospfv3 1

[SwitchA-ospfv3-1] router-id 1.1.1.1

[SwitchA-ospfv3-1] quit

[SwitchA] interface vlan-interface 100

[SwitchA-Vlan-interface100] ospfv3 1 area 2

[SwitchA-Vlan-interface100] quit

[SwitchA] interface vlan-interface 200

[SwitchA-Vlan-interface200] ospfv3 1 area 2

[SwitchA-Vlan-interface200] quit

# Enable OSPFv3 process 1 and OSPFv3 process 2 on Switch B.

<SwitchB> system-view

[SwitchB] ospfv3 1

[SwitchB-ospfv3-1] router-id 2.2.2.2

[SwitchB-ospfv3-1] quit

[SwitchB] interface vlan-interface 100

[SwitchB-Vlan-interface100] ospfv3 1 area 2

[SwitchB-Vlan-interface100] quit

[SwitchB] ospfv3 2

[SwitchB-ospfv3-2] router-id 3.3.3.3

[SwitchB-ospfv3-2] quit

[SwitchB] interface vlan-interface 300

[SwitchB-Vlan-interface300] ospfv3 2 area 2

[SwitchB-Vlan-interface300] quit

# Enable OSPFv3 process 2 on Switch C.

<SwitchC> system-view

[SwitchC] ospfv3 2

[SwitchC-ospfv3-2] router-id 4.4.4.4

[SwitchC-ospfv3-2] quit

[SwitchC] interface vlan-interface 300

[SwitchC-Vlan-interface300] ospfv3 2 area 2

[SwitchC-Vlan-interface300] quit

[SwitchC] interface vlan-interface 400

[SwitchC-Vlan-interface400] ospfv3 2 area 2

[SwitchC-Vlan-interface400] quit

# Display the routing table on Switch C.

[SwitchC] display ipv6 routing-table

 

Destinations : 7 Routes : 7

 

Destination: ::1/128                                     Protocol  : Direct

NextHop    : ::1                                         Preference: 0

Interface  : InLoop0                                     Cost      : 0

 

Destination: 3::/64                                      Protocol  : Direct

NextHop    : 3::2                                        Preference: 0

Interface  : Vlan300                                     Cost      : 0

 

Destination: 3::2/128                                    Protocol  : Direct

NextHop    : ::1                                         Preference: 0

Interface  : InLoop0                                     Cost      : 0

 

Destination: 4::/64                                      Protocol  : Direct

NextHop    : 4::1                                        Preference: 0

Interface  : Vlan400                                     Cost      : 0

 

Destination: 4::1/128                                    Protocol  : Direct

NextHop    : ::1                                         Preference: 0

Interface  : InLoop0                                     Cost      : 0

 

Destination: FE80::/10                                   Protocol  : Direct

NextHop    : ::                                          Preference: 0

Interface  : NULL0                                       Cost      : 0

 

Destination: FF00::/8                                    Protocol  : Direct

NextHop    : ::                                          Preference: 0

Interface  : NULL0

3.      Configure OSPFv3 route redistribution:

# Configure OSPFv3 process 2 to redistribute direct routes and the routes from OSPFv3 process 1 on Switch B.

[SwitchB] ospfv3 2

[SwitchB-ospfv3-2] default cost 3

[SwitchB-ospfv3-2] import-route ospfv3 1

[SwitchB-ospfv3-2] import-route direct

[SwitchB-ospfv3-2] quit

# Display the routing table on Switch C.

[SwitchC] display ipv6 routing-table

 

Destinations : 9 Routes : 9

 

Destination: ::1/128                                     Protocol  : Direct

NextHop    : ::1                                         Preference: 0

Interface  : InLoop0                                     Cost      : 0

 

Destination: 1::/64                                      Protocol  : OSPFv3

NextHop    : FE80::200:CFF:FE01:1C03                     Preference: 150

Interface  : Vlan300                                     Cost      : 3

 

Destination: 2::/64                                      Protocol  : OSPFv3

NextHop    : FE80::200:CFF:FE01:1C03                     Preference: 150

Interface  : Vlan300                                     Cost      : 3

 

Destination: 3::/64                                      Protocol  : Direct

NextHop    : 3::2                                        Preference: 0

Interface  : Vlan300                                     Cost      : 0

 

Destination: 3::2/128                                    Protocol  : Direct

NextHop    : ::1                                         Preference: 0

Interface  : InLoop0                                     Cost      : 0

 

Destination: 4::/64                                      Protocol  : Direct

NextHop    : 4::1                                        Preference: 0

Interface  : Vlan400                                     Cost      : 0

 

Destination: 4::1/128                                    Protocol  : Direct

NextHop    : ::1                                         Preference: 0

Interface  : InLoop0                                     Cost      : 0

 

Destination: FE80::/10                                   Protocol  : Direct

NextHop    : ::                                          Preference: 0

Interface  : NULL0                                       Cost      : 0

 

Destination: FF00::/8                                    Protocol  : Direct

NextHop    : ::                                          Preference: 0

Interface  : NULL0

Configuring OSPFv3 GR

Network requirements

·           As shown in Figure 4, Switch A, Switch B, and Switch C that reside in the same AS and the same OSPFv3 routing domain are GR capable.

·           Switch A acts as the GR Restarter. Switch B and Switch C act as the GR Helpers, and synchronize their LSDBs with Switch A through out-of-band (OOB) communication of GR.

Figure 4 Network diagram

Configuration procedure

1.      Configure IPv6 addresses for interfaces. (Details not shown.)

2.      Configure basic OSPFv3:

# On Switch A, enable OSPFv3 process 1, enable GR, and set the router ID to 1.1.1.1.

<SwitchA> system-view

[SwitchA] ospfv3 1

[SwitchA-ospfv3-1] router-id 1.1.1.1

[SwitchA-ospfv3-1] graceful-restart enable

[SwitchA-ospfv3-1] quit

[SwitchA] interface vlan-interface 100

[SwitchA-Vlan-interface100] ospfv3 1 area 1

[SwitchA-Vlan-interface100] quit

# On Switch B, enable OSPFv3 and set the router ID to 2.2.2.2. (By default, GR helper is enabled on Switch B.)

<SwitchB> system-view

[SwitchB] ospfv3 1

[SwitchB-ospfv3-1] router-id 2.2.2.2

[SwitchB-ospfv3-1] quit

[SwitchB] interface vlan-interface 100

[SwitchB-Vlan-interface100] ospfv3 1 area 1

[SwitchB-Vlan-interface100] quit

# On Switch C, enable OSPFv3 and set the router ID to 3.3.3.3. (By default, GR helper is enabled on Switch C.)

<SwitchC> system-view

[SwitchC] ospfv3 1

[SwitchC-ospfv3-1] router-id 3.3.3.3

[SwitchC-ospfv3-1] quit

[SwitchC] interface vlan-interface 100

[SwitchC-Vlan-interface100] ospfv3 1 area 1

[SwitchC-Vlan-interface100] quit

Verifying the configuration

After all switches function properly, perform a master/backup switchover on Switch A to trigger an OSPFv3 GR operation.

Configuring BFD for OSPFv3

Network requirements

As shown in Figure 5:

·           Configure OSPFv3 on Switch A, Switch B and Switch C and configure BFD over the link Switch A<—>L2 Switch<—>Switch B.

·           After the link Switch A<—>L2 Switch<—>Switch B fails, BFD can quickly detect the failure and notify OSPFv3 of the failure. Then Switch A and Switch B communicate through Switch C.

Figure 5 Network diagram

Device

Interface

IPv6 address

Device

Interface

IPv6 address

Switch A

Vlan-int10

2001::1/64

Switch B

Vlan-int10

2001::2/64

 

Vlan-int11

2001:2::1/64

 

Vlan-int13

2001:3::2/64

Switch C

Vlan-int11

2001:2::2/64

 

 

 

 

Vlan-int13

2001:3::1/64

 

 

 

 

Configuration procedure

1.      Configure IP addresses for the interfaces. (Details not shown.)

2.      Configure basic OSPF:

# On Switch A, enable OSPFv3 and specify the router ID as 1.1.1.1.

<SwitchA> system-view

[SwitchA] ospfv3

[SwitchA-ospfv3-1] router-id 1.1.1.1

[SwitchA-ospfv3-1] quit

[SwitchA] interface vlan-interface 10

[SwitchA-Vlan-interface10] ospfv3 1 area 0

[SwitchA-Vlan-interface10] quit

[SwitchA] interface vlan-interface 11

[SwitchA-Vlan-interface11] ospfv3 1 area 0

[SwitchA-Vlan-interface11] quit

# On Switch B, enable OSPFv3 and specify the router ID as 2.2.2.2.

<SwitchB> system-view

[SwitchB] ospfv3

[SwitchB-ospf-1] router-id 2.2.2.2

[SwitchB-ospf-1] quit

[SwitchB] interface vlan-interface 10

[SwitchB-Vlan-interface10] ospfv3 1 area 0

[SwitchB-Vlan-interface10] quit

[SwitchB] interface vlan-interface 13

[SwitchB-Vlan-interface13] ospfv3 1 area 0

[SwitchB-Vlan-interface13] quit

# On Switch C, enable OSPFv3 and configure the router ID as 3.3.3.3.

<SwitchC> system-view

[SwitchC] ospfv3

[SwitchC-ospfv3-1] router-id 3.3.3.3

[SwitchC-ospfv3-1] quit

[SwitchC] interface vlan-interface 11

[SwitchC-Vlan-interface11] ospfv3 1 area 0

[SwitchC-Vlan-interface11] quit

[SwitchC] interface vlan-interface 13

[SwitchC-Vlan-interface13] ospfv3 1 area 0

[SwitchC-Vlan-interface13] quit

3.      Configure BFD:

# Enable BFD and configure BFD parameters on Switch A.

[SwitchA] bfd session init-mode active

[SwitchA] interface vlan-interface 10

[SwitchA-Vlan-interface10] ospfv3 bfd enable

[SwitchA-Vlan-interface10] bfd min-transmit-interval 500

[SwitchA-Vlan-interface10] bfd min-receive-interval 500

[SwitchA-Vlan-interface10] bfd detect-multiplier 7

[SwitchA-Vlan-interface10] return

# Enable BFD and configure BFD parameters on Switch B.

[SwitchB] bfd session init-mode active

[SwitchB] interface vlan-interface 10

[SwitchB-Vlan-interface10] ospfv3 bfd enable

[SwitchB-Vlan-interface10] bfd min-transmit-interval 500

[SwitchB-Vlan-interface10] bfd min-receive-interval 500

[SwitchB-Vlan-interface10] bfd detect-multiplier 6

Verifying the configuration

# Display the BFD information of Switch A.

<SwitchA> display bfd session

 

 Total Session Num: 1            Init Mode: Active

 

 IPv6 Session Working Under Ctrl Mode:

 

     Local Discr: 1441                Remote Discr: 1450

       Source IP: FE80::20F:FF:FE00:1202 (link-local address of VLAN-interface 10 on Switch A)

  Destination IP: FE80::20F:FF:FE00:1200 (link-local address of VLAN-interface 10 on Switch B)

   Session State: Up                     Interface: Vlan10

       Hold Time: 2319ms

# Display routes destined for 2001:4::0/64 on Switch A.

<SwitchA> display ipv6 routing-table 2001:4::0 64

 

Summary Count : 1

 

Destination: 2001:4::/64                                 Protocol  : OSPFv3

NextHop    : FE80::20F:FF:FE00:1200                      Preference: 10

Interface  : Vlan10                                      Cost      : 1

The output information shows that Switch A communicates with Switch B through VLAN-interface 10. Then the link over VLAN-interface 10 fails.

# Display routes to 2001:4::0/64 on Switch A.

<SwitchA> display ipv6 routing-table 2001:4::0 64

 

Summary Count : 1

 

Destination: 2001:4::/64                                 Protocol  : OSPFv3

NextHop    : FE80::BAAF:67FF:FE27:DCD0                   Preference: 10

Interface  : Vlan11                                      Cost      : 2

The output shows that Switch A communicates with Switch B through VLAN-interface 11.

 

  • Cloud & AI
  • InterConnect
  • Intelligent Computing
  • Intelligent Storage
  • Security
  • SMB Products
  • Intelligent Terminal Products
  • Product Support Services
  • Technical Service Solutions
All Services
  • Resource Center
  • Policy
  • Online Help
  • Technical Blogs
All Support
  • Become A Partner
  • Partner Policy & Program
  • Global Learning
  • Partner Sales Resources
  • Partner Business Management
  • Service Business
All Partners
  • Profile
  • News & Events
  • Online Exhibition Center
  • Contact Us
All About Us
新华三官网