H3C Servers AMD Genoa & Bergamo Platform Scenario-Based BIOS Configuration Guide-6W101

HomeSupportConfigure & DeployUser ManualsH3C Servers AMD Genoa & Bergamo Platform Scenario-Based BIOS Configuration Guide-6W101
01-Text
Title Size Download
01-Text 757.16 KB

About the BIOS

In order to meet the diverse needs of users under different workloads, this document introduces configuration guidance for setting BIOS parameters based on the services running on the server, and describes applicable scenarios and configuration instructions for related workload modes.

Introduction

The Basic Input and Output System (BIOS) is a non-volatile firmware stored in the system ROM of a server. It is used to perform hardware initialization during server booting and provide runtime services for the operating systems. As shown in Figure 1, the BIOS interacts between the server hardware and the operating system (OS).

The main functions of BIOS include:

·     Performing POST self-test.

·     Detecting input and output devices and bootable devices, including memory initialization, hardware scanning, finding boot devices, and starting the system.

·     Providing advanced power management ACPI.

·     Configuring RAID.

Figure 1 Layered architecture of a server system

 

Applicable products

This document is applicable to the following products:

·     H3C UniServer R3950 G6

·     H3C UniServer R4950 G6

·     H3C UniServer R5350 G6

·     H3C UniServer R5500 G6 AMD

Applicable versions

The BIOS version applicable to this article is BIOS-6.30.XX.

Using this document

The information in this document is subject to change over time.

The information in this document might differ from your product if it contains custom configuration options or features.


BIOS Recommended Configuration

Introduction

Configuration template is a collection of configuration options that deploys BIOS settings to suit the expected application of the server. BIOS provides multiple sets of configuration templates to help users deploy the most suitable BIOS settings according to different scenarios. The configuration parameters in the templates are suggested values for various application scenarios.

Recommended BIOS parameter configurations for various workload modes

The recommended BIOS parameter configurations for various workload patterns are shown in Table 1, Table 2, Table 3, and Table 4, illustrating the dependencies associated with scenario configuration templates. X indicates no requirement for that option in the configuration template and defaults to the default value of the current model. The meaning of X might vary among different models. When applying a configuration template, X values in the template will be restored to the default values of the current model.

 

IMPORTANT

IMPORTANT:

·     Not all options corresponding to the table are displayed in BIOS, but when using the configuration template, the corresponding option settings will default to the values shown in the table.

·     Selecting a configuration template other than Custom will gray out the relevant options in the template, making them unmodifiable. Modifying associated options using the out-of-band Redfish and in-band SCE tools will also not take effect.

 

For applicable scenarios and configuration explanations of various workload mdoes, see Introduction to workload mode.

Table 1 General-Purpose Workloads and configuration template dependencies

Dependencies

CPU intensive

Java throughput intensive

Java latency sensitive

Power efficiency

SMT Control

Enabled

Enabled

Enabled

Enabled

L1 Stream HW Prefetcher

Enabled

Enabled

Enabled

Enabled

L1 Stride Prefetcher

Enabled

Enabled

Enabled

Enabled

L1 Region Prefetcher

Enabled

Enabled

Enabled

Enabled

L1 Burst Prefetch Mode

Enabled

Enabled

Enabled

Enabled

L2 Stream HW Prefetcher

Enabled

Enabled

Enabled

Enabled

L2 Up/Down Prefetcher

Enabled

Enabled

Enabled

Enabled

BoostFmaxEn

Auto

Auto

Auto

Auto

Power Profile Selection

High Performance Mode

High Performance Mode

High Performance Mode

Efficiency Mode

Determinism Control

Auto

Auto

Auto

Auto

Determinism Enable

X

X

X

X

TDP Control

Manual

Manual

Manual

Manual

TDP

OPN Max

OPN Max

OPN Max

OPN Max

PPT Control

Manual

Manual

Manual

Manual

PPT

OPN Max

OPN Max

OPN Max

OPN Max

CPPC

Auto

Auto

Auto

Auto

ACPI SRAT L3 Cache As NUMA Domain

Disabled

Disabled

Disabled

Enable

NUMA Nodes per Socket

NPS1

NPS4

NPS2

NPS4

Memory Target Speed

DDR4800

DDR4800

DDR4800

DDR4800

Memory Interleaving

Enabled

Enabled

Enabled

Enabled

3-link xGMI max speed

32Gbps

32Gbps

32Gbps

32Gbps

4-link xGMI max speed 

32Gbps

32Gbps

32Gbps

32Gbps

xGMI Link Width Control

Auto

Auto

Auto

Auto

xGMI Max Link Width

X

X

X

X

xGMI Max Link Width Control

X

X

X

X

xGMI Force Link Width Control

X

X

X

X

xGMI Force Link Width

X

X

X

X

APBDIS

0

0

0

1

DF Cstates

Disabled

Disabled

Disabled

Disabled

Local APIC Mode

Auto

Auto

Auto

Auto

PCIE Speed PMM Control

Auto

Auto

Auto

Auto

SRIOV

Disabled

Disabled

Disabled

Disabled

PCIe Ten Bit Tag Support

Enabled

Enabled

Enabled

Enabled

IOMMU

Enabled

Enabled

Enabled

Enabled

TSME

Auto

Auto

Auto

Auto

Note: The OPN Max values of TDP and PPT options are related to the CPU model. For more information about the OPN Max value, see Table 5.

 

Table 2 Memory and I/O Intensive Workloads and configuration template dependencies

Dependencies

Memory throughput intensive

Storage I/O intensive

NIC throughput intensive

NIC latency sensitive

SMT Control

Enabled

Enabled

Disabled

Disabled

L1 Stream HW Prefetcher

Enabled

Enabled

Enabled

Enabled

L1 Stride Prefetcher

Enabled

Enabled

Enabled

Enabled

L1 Region Prefetcher

Enabled

Enabled

Enabled

Enabled

L1 Burst Prefetch Mode

Enabled

Enabled

Enabled

Enabled

L2 Stream HW Prefetcher

Enabled

Enabled

Enabled

Enabled

L2 Up/Down Prefetcher

Enabled

Enabled

Enabled

Enabled

BoostFmaxEn

Auto

Auto

Auto

Auto

Power Profile Selection

High Performance Mode

High Performance Mode

High Performance Mode

High Performance Mode

Determinism Control

Auto

Manual

Manual

Manual

Determinism Enable

X

Power

Performance

Performance

TDP Control

Manual

Auto

Auto

Auto

TDP

OPN Max

X

X

X

PPT Control

Manual

Auto

Auto

Auto

PPT

OPN Max

X

X

X

CPPC

Auto

Auto

Auto

Auto

ACPI SRAT L3 Cache As NUMA Domain

Enabled

Disabled

Disabled

Disabled

NUMA Nodes per Socket

NPS1

NPS1

NPS1

NPS1

Memory Target Speed

DDR4800

DDR4800

DDR4800

DDR4800

Memory Interleaving

Enabled

Enabled

Enabled

Enabled

3-link xGMI max speed

32Gbps

32Gbps

32Gbps

32Gbps

4-link xGMI max speed 

32Gbps

32Gbps

32Gbps

32Gbps

xGMI Link Width Control

Auto

Auto

Auto

Manual

xGMI Max Link Width

X

X

X

2

xGMI Max Link Width Control

X

X

X

Manual

xGMI Force Link Width Control

X

X

X

Unforce

xGMI Force Link Width

X

X

X

X

APBDIS

0

1

0

0

DF Cstates

Disabled

Disabled

Disabled

Disabled

Local APIC Mode

Auto

Auto

Auto

Auto

PCIE Speed PMM Control

Auto

Static Target Link Speed (GEN5)

Static Target Link Speed (GEN5)

Static Target Link Speed (GEN5)

SRIOV

Disabled

Disabled

Disabled

Disabled

PCIe Ten Bit Tag Support

Enabled

Enabled

Enabled

Enabled

IOMMU

Enabled

Enabled

Enabled

Enabled

TSME

Auto

Auto

Auto

Auto

Note: The OPN Max values of TDP and PPT options are related to the CPU model. For more information about the OPN Max value, see Table 5.

 

Table 3 Database and Analytics and configuration template dependencies

Dependencies

RDBMS optimized

Big data analytics optimized

AI optimized

IOT gateway

SMT Control

Enabled

Enabled

Enabled

Enabled

L1 Stream HW Prefetcher

Enabled

Enabled

Auto

Enabled

L1 Stride Prefetcher

Enabled

Enabled

Auto

Enabled

L1 Region Prefetcher

Enabled

Enabled

Auto

Enabled

L1 Burst Prefetch Mode

Enabled

Enabled

Auto

Enabled

L2 Stream HW Prefetcher

Enabled

Enabled

Auto

Enabled

L2 Up/Down Prefetcher

Enabled

Enabled

Auto

Enabled

BoostFmaxEn

Auto

Auto

Auto

Auto

Power Profile Selection

Maximum IO Performance Mode

High Performance Mode

High Performance Mode

High Performance Mode

Determinism Control

Manual

Auto

Manual

Auto

Determinism Enable

Power

X

Performance

X

TDP Control

Manual

Auto

Auto

Auto

TDP

OPN Max

X

X

X

PPT Control

Manual

Auto

Auto

Auto

PPT

OPN Max

X

X

X

CPPC

Auto

Auto

Auto

Auto

ACPI SRAT L3 Cache As NUMA Domain

Disabled

Disabled

Auto

Disabled

NUMA Nodes per Socket

NPS1

NPS1

Auto

NPS1

Memory Target Speed

DDR4800

DDR4800

Auto

DDR4800

Memory Interleaving

Enabled

Enabled

Auto

Enabled

3-link xGMI max speed

32Gbps

32Gbps

Auto

32Gbps

4-link xGMI max speed 

32Gbps

32Gbps

Auto

32Gbps

xGMI Link Width Control

Auto

Auto

Auto

Auto

xGMI Max Link Width

X

X

X

X

xGMI Max Link Width Control

X

X

X

X

xGMI Force Link Width Control

X

X

X

X

xGMI Force Link Width

X

X

X

X

APBDIS

1

0

Auto

0

DF Cstates

Disabled

Disabled

Disabled

Disabled

Local APIC Mode

Auto

Auto

Auto

Auto

PCIE Speed PMM Control

Auto

Auto

Auto

Auto

SRIOV

Disabled

Disabled

Auto

Disabled

PCIe Ten Bit Tag Support

Enabled

Enabled

Auto

Enabled

IOMMU

Enabled

Enabled

Auto

Enabled

TSME

Auto

Auto

Auto

Auto

Global C-state Control

N/A

N/A

Disabled

N/A

Note: The OPN Max values of TDP and PPT options are related to the CPU model. For more information about the OPN Max value, see Table 5.

 

Table 4 HPC and Telco settings

Dependencies

HPC optimized

OpenStack NFV

OpenStack for realtime Kernel

SMT Control

Disabled

Enabled

Enabled

L1 Stream HW Prefetcher

Enabled

Enabled

Enabled

L1 Stride Prefetcher

Enabled

Enabled

Enabled

L1 Region Prefetcher

Enabled

Enabled

Enabled

L1 Burst Prefetch Mode

Enabled

Enabled

Enabled

L2 Stream HW Prefetcher

Enabled

Enabled

Enabled

L2 Up/Down Prefetcher

Enabled

Enabled

Enabled

BoostFmaxEn

Auto

Auto

Auto

Power Profile Selection

High Performance Mode

High Performance Mode

High Performance Mode

Determinism Control

Manual

Manual

Manual

Determinism Enable

Performance

Performance

Performance

TDP Control

Manual

Auto

Auto

TDP

OPN Max

X

X

PPT Control

Manual

Auto

Auto

PPT

OPN Max

X

X

CPPC

Auto

Auto

Auto

ACPI SRAT L3 Cache As NUMA Domain

Disabled

Disabled

Disabled

NUMA Nodes per Socket

NPS4

NPS1

NPS1

Memory Target Speed

DDR4800

DDR4800

DDR4800

Memory Interleaving

Enabled

Enabled

Enabled

3-link xGMI max speed

32Gbps

32Gbps

32Gbps

4-link xGMI max speed 

32Gbps

32Gbps

32Gbps

xGMI Link Width Control

Auto

Auto

Auto

xGMI Max Link Width

X

X

X

xGMI Max Link Width Control

X

X

X

xGMI Force Link Width Control

X

X

X

xGMI Force Link Width

X

X

X

APBDIS

0

0

0

DF Cstates

Disabled

Disabled

Disabled

Local APIC Mode

Auto

Auto

Auto

PCIE Speed PMM Control

Auto

Auto

Auto

SRIOV

Disabled

Disabled

Disabled

PCIe Ten Bit Tag Support

Enabled

Enabled

Enabled

IOMMU

Enable

Enabled

Enabled

TSME

Auto

Auto

Auto

Note: The OPN Max value of TDP and PPT options is related to the CPU model. For more information about the OPN Max value, see Table 5.

 

Table 5 OPN MAX comparison table

CPU model

TDP value

PPT value

9654

400

400

9634

300

300

9554

400

400

9534

300

300

9474

400

400

9454

300

300

9374

400

400

9354

300

300

9334

240

240

9274

400

400

9254

240

240

9224

240

240

9174

400

400

9124

240

240

 

Introduction to workload mode

This chapter introduces the applicable scenarios and configuration instructions for each workload mode.

 

IMPORTANT

IMPORTANT:

In this document, the BIOS configuration solutions in different scenarios are general solutions. For special needs, configure it as needed.

 

BIOS provides the following configuration templates.

CPU intensive

CPU intensive mode is applicable to scenarios that require a large amount of processor computational power. Scientific calculations, graphics processing, and game servers all require high CPU performance. As a best practice, use a multi-core CPU with high-speed cache and high-performance memory to improve processing efficiency.

Java throughput intensive

Java throughput intensive mode is applicable to Java applications that require high throughput data processing. Common scenarios include web services, large-scale data processing, and multimedia processing. It typically involves handling numerous requests and completing complex computations or data processing tasks.

Java latency sensitive

Java latency sensitive mode is applicable to Java applications that require quick and accurate response to requests. It requires low-latency storage and network transmission mechanisms to support real-time use cases. It is commonly used in real-time data analysis, online gaming, healthcare, and other fields.

Power efficiency

Power efficiency mode is applicable to scenarios such as data centers, cloud computing, virtualization, and high-performance computing. Its main goal is to provide higher energy efficiency. It involves considering actual needs and hardware devices to maximize server energy efficiency.

Memory throughput intensive

Memory throughput intensive mode is applicable to scenarios that require high memory throughput. These scenarios involve extensive memory operations and data processing.

Common use cases include large-scale data processing, real-time data processing, and streaming and large-scale distributed systems. They require high-performance and high memory throughput hardware, as well as considerations for software architecture and technology.

Storage I/O intensive

Storage I/O intensive mode is applicable to scenarios that involve a large volume of data read and write operations. Common use cases include databases, video processing, and big data analytics. It requires efficient I/O systems to ensure high efficiency and accuracy in data processing.

NIC throughput intensive

NIC throughput intensive mode is applicable to scenarios that require high NIC throughput. These scenarios typically involve handling a large number of I/O operations, concurrent operations, and network operations.

Common use cases include data centers, large-scale cloud service providers, and video streaming, which require high-speed and high-throughput network cards to ensure fast data transmission and efficient network operations.

NIC latency sensitive

NIC latency sensitive mode is applicable to scenarios that have high requirements for network latency/response time. For example, real-time video content delivery, high-frequency trading systems, and online gaming, which require a quick response to requests within a very short time. Any delay in these scenarios can have a negative impact on the system.

RDBMS optimized

Relational Database Management Systems (RDBMS) are often a critical component of data centers. Efficient RDBMS services are crucial for organizations handling massive data like large enterprises, financial institutions, and healthcare facilities. RDBMS optimization improves server configuration to enhance system performance and reliability in these scenarios.

Big data analytics optimized

The application of big data analytics optimized mode requires meeting the demands of data storage, data processing, data visualization, and other aspects. By appropriately adjusting server parameters in line with the characteristics of this scenario, performance improvements can be achieved in the aspect of Big Data analytics processing.

IOT gateway

IoT gateway is a crucial component of the IoT architecture, commonly used for data exchange, data collection, data processing, and more between IoT devices and cloud platforms.

HPC optimized

HPC Optimized is a mode that is optimized for high-performance computing (HPC) applications. HPC is commonly used in scenarios involving intensive computations, such as handling multiple concurrent tasks. As a best practice, enable hyper-threading technology for better CPU performance in this HPC scenario.

OpenStack NFV

OpenStack NFV provides higher scalability, flexibility, security and integration for telecom networks. It virtualizes network functions using virtualization and cloud computing technologies, providing operators with an advanced network management tool to meet evolving market demands.

OpenStack for realtime kernel

OpenStack for realtime kernel mode uses real-time kernel to make applications on OpenStack more real-time. This helps applications to quickly respond and process real-time data, thereby improving system performance and usability. Additionally, real-time kernel ensures a higher quality application experience.

AI Optimized

The AI Optimized mode is used for application scenarios that perform artificial intelligence inference or training on large-scale computational resources to meet performance requirements.

Similar to the high performance computing template, this mode boosts server performance in scenarios involving artificial intelligence inference or training by locking the CPU to its highest performance level.

Custom

Custom mode utilizes the default BIOS settings or the values of the most recent configuration template. Users can customize various parameters based on this template. For specific description of each option, see the user guide for the default BIOS settings.

Configure the template

The options for the scenario configuration template is called Workload Profile Configuration and can be found on the Miscellaneous Configuration tab within the Advanced page. The specific steps for configuring this option are described below.

Access to the BIOS Setup page

1.     Connect the keyboard, mouse, and monitor to the server, or access the remote console through the HDM web interface. For more information about detailed instructions on launching the remote console, see HDM user guide.

2.     Start or restart the server. Once you access to the BIOS startup interface, press Del or Esc.

Figure 2 Starting BIOS

 

3.     Enter the startup password in the dialog box that opens.

Figure 3 Entering the startup password

 

4.     If a BIOS administrator and user password is set, you can select the login role first when entering the BIOS Setup page. Only the BIOS administrator role can configure BIOS.

Figure 4 Selecting the login role

 

5.     Enter the password corresponding to the selected role.

Figure 5 Entering the password

 

6.     Enter the BIOS Setup page.

Figure 6 Entering the BIOS Setup page

 

Access to the Miscellaneous Configuration page

Click Miscellaneous Configuratio under the Advanced tab, and click Enter.

Figure 7 Miscellaneous Configuration

 

Selet a configuration template

Click the drop-down box and select a required workload configuration template as needed.

Figure 8 Selecting a configuration template

 

Restart to take effect

After you complete the settings, press F4. Click OK in the dialog box that opens, and save the settings and exit the BIOS interface. The settings will take effect after you restart the server.

  • Cloud & AI
  • InterConnect
  • Intelligent Computing
  • Intelligent Storage
  • Security
  • SMB Products
  • Intelligent Terminal Products
  • Product Support Services
  • Technical Service Solutions
All Services
  • Resource Center
  • Policy
  • Online Help
  • Technical Blogs
All Support
  • Become A Partner
  • Partner Policy & Program
  • Global Learning
  • Partner Sales Resources
  • Partner Business Management
  • Service Business
All Partners
  • Profile
  • News & Events
  • Online Exhibition Center
  • Contact Us
All About Us
新华三官网