08-Radio Resources Management Configuration Guide

HomeSupportWirelessWA6500 Series Access PointsConfigure & DeployConfiguration GuidesH3C WA6500A Series Access Points Cloud Mode Configuration Guides(E2587P03)-5W10008-Radio Resources Management Configuration Guide
01-Radio management configuration
Title Size Download
01-Radio management configuration 319.71 KB

Contents

Configuring radio management 1

About radio management 1

Radio mode· 1

Channel 1

Transmit power 2

Transmission rate· 2

MCS· 2

VHT-MCS· 5

HE-MCS· 10

Restrictions and guidelines: Radio management configuration· 18

Radio management tasks at a glance· 18

Enabling or disabling a radio interface· 18

Enabling a radio to disable wireless services as scheduled· 19

Specifying a radio mode· 19

Configuring basic radio functions· 20

Specifying a working channel 20

Setting the antenna type· 20

Setting the maximum transmit power 21

Configuring power lock· 21

Setting transmission rates· 22

Setting the beacon interval 22

Setting the DTIM interval 23

Setting the maximum number of clients that can associate with an AP· 23

Configuring access services for 802.11b clients· 24

Setting the maximum transmission distance· 24

Enabling the continuous mode for a radio· 24

Performing on-demand channel usage measurement 25

Setting the channel usage alarm threshold· 25

Configuring 802.11n functions· 26

Configuring the A-MPDU aggregation method· 26

Configuring the A-MSDU aggregation method· 26

Configuring LDPC· 27

Configuring STBC· 27

Setting MCS indexes· 27

Configuring the client dot11n-only feature· 28

Setting the 802.11n bandwidth mode· 28

Specifying a MIMO mode· 29

Configuring energy saving· 29

Configuring 802.11n protection· 30

Configuring 802.11ac functions· 30

Setting NSSs· 30

Configuring the client dot11ac-only feature· 31

Setting the 802.11ac bandwidth mode· 32

Configuring TxBF· 32

Configuring 802.11ax functions· 33

Setting NSSs· 33

Configuring the client dot11ax-only feature· 34

Setting the 802.11ax bandwidth mode· 34

Configuring error packet ratio optimization and retransmission ratio optimization· 35

Setting the radio channel usage threshold· 36

Disabling radar avoidance· 36

Display and maintenance commands for radio management 36

Radio management configuration examples· 37

Example: Configuring basic radio functions· 37

Example: Configuring 802.11n· 38

 


Configuring radio management

About radio management

Radio frequency (RF) is a rate of electrical oscillation in the range of 300 KHz to 300 GHz. WLAN uses the 2.4 GHz band and 5 GHz band radio frequencies as the transmission media. The 2.4 GHz band includes radio frequencies from 2.4 GHz to 2.4835 GHz. The 5 GHz band includes radio frequencies from 5.150 GHz to 5.350 GHz and from 5.725 GHz to 5.850 GHz.

The term "radio frequency" or its abbreviation RF is also used as a synonym for "radio" in wireless communication.

Radio mode

IEEE defines the 802.11a, 802.11b, 802.11g, 802.11n, 802.11ac, and 802.11ax radio modes. H3C defines an 802.11gax radio mode that enable 802.11ax radios to use the 2.4 GHz band.

 

 

NOTE:

In this document, the term "802.11ax" refers to both 802.11ax and 802.11gax, unless otherwise specified.

Table 1 provides a comparison of these radio modes.

Table 1 Comparison of 802.11 standards

IEEE standard

Frequency band

Maximum rate

802.11a

5 GHz

54 Mbps

802.11b

2.4 GHz

11 Mbps

802.11g

2.4 GHz

54 Mbps

802.11n

2.4 GHz or 5 GHz

600 Mbps

802.11ac

5 GHz

6900 Mbps

802.11ax

5 GHz

9600 Mbps

802.11gax

2.4 GHz

6900 Mbps

Channel

A channel is a range of frequencies with a specific bandwidth.

The 2.4 GHz band has 14 channels. The bandwidth for each channel is 20 MHz and each two channels are spaced 5 MHz apart. Among the 14 channels, four groups of non-overlapping channels exist and the most commonly used one contains channels 1, 6, and 11.

The 5 GHz band can provide higher rates and is more immune to interference. There are 24 non-overlapping channels designated to the 5 GHz band. The channels are spaced 20 MHz apart with a bandwidth of 20 MHz. The available channels vary by country.

Transmit power

Transmit power reflects the signal strength of a wireless device. A higher transmit power enables a radio to cover a larger area but it brings more interference to adjacent devices. The signal strength decreases as the transmission distance increases.

Transmission rate

Transmission rate refers to the speed at which wireless devices transmit traffic. It varies by radio mode and spreading, coding, and modulation schemes. The following are rates supported by different types of radios:

·     802.11a—6 Mbps, 9 Mbps, 12 Mbps, 18 Mbps, 24 Mbps, 36 Mbps, 48 Mbps, and 54 Mbps.

·     802.11b—1 Mbps, 2 Mbps, 5.5 Mbps, and 11 Mbps.

·     802.11g—1 Mbps, 2 Mbps, 5.5 Mbps, 6 Mbps, 9 Mbps, 11 Mbps, 12 Mbps, 18 Mbps, 24 Mbps, 36 Mbps, 48 Mbps, and 54 Mbps.

·     802.11n—Rates for 802.11n radios vary by channel bandwidth. For more information, see "MCS."

·     802.11ac—Rates for 802.11ac radios vary by channel bandwidth and number of spatial streams (NSS). For more information, see "VHT-MCS."

·     802.11ax—Rates for 802.11ax radios vary by channel bandwidth and number of spatial streams (NSS). For more information, see "HE-MCS."

MCS

Modulation and Coding Scheme (MCS) defined in IEEE 802.11n-2009 determines the modulation, coding, and number of spatial streams.

MCS types

802.11n MCSs are classified into the following types:

·     Mandatory MCSs—Mandatory MCSs for an AP. To associate with an 802.11n AP, a client must support the mandatory MCSs for the AP.

·     Supported MCSs—MCSs supported by an AP besides the mandatory MCSs. If a client supports both mandatory and supported MCSs, the client can use a supported rate to communicate with the AP.

·     Multicast MCS—MCS for the rate at which an AP transmits multicast frames.

MCS parameters

An MCS is identified by an MCS index, which is represented by an integer in the range of 0 to 76. An MCS index is the mapping from MCS to a data rate.

Table 2 through Table 9 show sample MCS parameters for 20 MHz and 40 MHz.

When the bandwidth mode is 20 MHz, MCS indexes 0 through 15 are mandatory for APs, and MCS indexes 0 through 7 are mandatory for clients.

Table 2 MCS parameters (20 MHz, NSS=1)

MCS index

Number of spatial streams

Modulation

Data rate (Mbps)

800ns GI

400ns GI

0

1

BPSK

6.5

7.2

1

1

QPSK

13.0

14.4

2

1

QPSK

19.5

21.7

3

1

16-QAM

26.0

28.9

4

1

16-QAM

39.0

43.3

5

1

64-QAM

52.0

57.8

6

1

64-QAM

58.5

65.0

7

1

64-QAM

65.0

72.2

Table 3 MCS parameters (20 MHz, NSS=2)

MCS index

Number of spatial streams

Modulation

Data rate (Mbps)

800ns GI

400ns GI

8

2

BPSK

13.0

14.4

9

2

QPSK

26.0

28.9

10

2

QPSK

39.0

43.3

11

2

16-QAM

52.0

57.8

12

2

16-QAM

78.0

86.7

13

2

64-QAM

104.0

115.6

14

2

64-QAM

117.0

130.0

15

2

64-QAM

130.0

144.4

Table 4 MCS parameters (20 MHz, NSS=3)

MCS index

Number of spatial streams

Modulation

Data rate (Mbps)

800ns GI

400ns GI

16

3

BPSK

19.5

21.7

17

3

QPSK

39.0

43.3

18

3

QPSK

58.5

65.0

19

3

16-QAM

78.0

86.7

20

3

16-QAM

117.0

130.0

21

3

64-QAM

156.0

173.3

22

3

64-QAM

175.5

195.0

23

3

64-QAM

195.0

216.7

Table 5 MCS parameters (20 MHz, NSS=4)

MCS index

Number of spatial streams

Modulation

Data rate (Mbps)

800ns GI

400ns GI

24

4

BPSK

26.0

28.9

25

4

QPSK

52.0

57.8

26

4

QPSK

78.0

86.7

27

4

16-QAM

104.0

115.6

28

4

16-QAM

156.0

173.3

29

4

64-QAM

208.0

231.1

30

4

64-QAM

234.0

260.0

31

4

64-QAM

260.0

288.9

Table 6 MCS parameters (40 MHz, NSS=1)

MCS index

Number of spatial streams

Modulation

Data rate (Mbps)

800ns GI

400ns GI

0

1

BPSK

13.5

15.0

1

1

QPSK

27.0

30.0

2

1

QPSK

40.5

45.0

3

1

16-QAM

54.0

60.0

4

1

16-QAM

81.0

90.0

5

1

64-QAM

108.0

120.0

6

1

64-QAM

121.5

135.0

7

1

64-QAM

135.0

150.0

Table 7 MCS parameters (40 MHz, NSS=2)

MCS index

Number of spatial streams

Modulation

Data rate (Mbps)

800ns GI

400ns GI

8

2

BPSK

27.0

30.0

9

2

QPSK

54.0

60.0

10

2

QPSK

81.0

90.0

11

2

16-QAM

108.0

120.0

12

2

16-QAM

162.0

180.0

13

2

64-QAM

216.0

240.0

14

2

64-QAM

243.0

270.0

15

2

64-QAM

270.0

300.0

Table 8 MCS parameters (40 MHz, NSS=3)

MCS index

Number of spatial streams

Modulation

Data rate (Mbps)

800ns GI

400ns GI

16

3

BPSK

40.5

45.0

17

3

QPSK

81.0

90.0

18

3

QPSK

121.5

135.0

19

3

16-QAM

162.0

180.0

20

3

16-QAM

243.0

270.0

21

3

64-QAM

324.0

360.0

22

3

64-QAM

364.5

405.0

23

3

64-QAM

405.0

450.0

Table 9 MCS parameters (40 MHz, NSS=4)

MCS index

Number of spatial streams

Modulation

Data rate (Mbps)

800ns GI

400ns GI

24

4

BPSK

54.0

60.0

25

4

QPSK

108.0

120.0

26

4

QPSK

162.0

180.0

27

4

16-QAM

216.0

240.0

28

4

16-QAM

324.0

360.0

29

4

64-QAM

432.0

480.0

30

4

64-QAM

486.0

540.0

31

4

64-QAM

540.0

600.0

 

NOTE:

·     For all the MCS data rate tables, see IEEE 802.11n-2009.

·     Support for MCS indexes depends on the device model.

VHT-MCS

Very High Throughput Modulation and Coding Scheme (VHT-MCS) defined in IEEE 802.11ac determines the wireless data rates.

VHT-MCS types

802.11ac VHT-MCSs are classified into the following types:

·     Mandatory VHT-MCSs—Mandatory VHT-MCSs for an AP. To associate with an 802.11ac AP, a client must support the mandatory VHT-MCSs for the AP.

·     Supported VHT-MCSs—VHT-MCSs supported by an AP besides the mandatory VHT-MCSs. If a client supports both mandatory and supported VHT-MCSs, the client can use a supported rate to communicate with the AP.

·     Multicast VHT-MCS—VHT-MCS for the rate at which an AP transmits multicast frames.

VHT-MCS parameters

A VHT-MCS is identified by a VHT-MCS index, which is represented by an integer in the range of 0 to 9. A VHT-MCS index is the mapping from VHT-MCS to a data rate.

802.11ac supports the 20 MHz, 40 MHz, 80 MHz, and 160 MHz bandwidth modes, and supports a maximum of eight spatial streams.

Table 10 through Table 21 show VHT-MCS parameters that are supported by an AP.

Table 10 VHT-MCS parameters (20 MHz, NSS=1)

VHT-MCS index

Modulation

Data rate (Mbps)

800ns GI

400ns GI

0

BPSK

6.5

7.2

1

QPSK

13.0

14.4

2

QPSK

19.5

21.7

3

16-QAM

26.0

28.9

4

16-QAM

39.0

43.3

5

64-QAM

52.0

57.8

6

64-QAM

58.5

65.0

7

64-QAM

65.0

72.2

8

256-QAM

78.0

86.7

9

Not valid

Table 11 VHT-MCS parameters (20 MHz, NSS=2)

VHT-MCS index

Modulation

Data rate (Mbps)

800ns GI

400ns GI

0

BPSK

13.0

14.4

1

QPSK

26.0

28.9

2

QPSK

39.0

43.3

3

16-QAM

52.0

57.8

4

16-QAM

78.0

86.7

5

64-QAM

104.0

115.6

6

64-QAM

117.0

130.0

7

64-QAM

130.0

144.4

8

256-QAM

156.0

173.3

9

Not valid

Table 12 VHT-MCS parameters (20 MHz, NSS=3)

VHT-MCS index

Modulation

Data rate (Mbps)

800ns GI

400ns GI

0

BPSK

19.5

21.7

1

QPSK

39.0

43.3

2

QPSK

58.5

65.0

3

16-QAM

78.0

86.7

4

16-QAM

117.0

130.0

5

64-QAM

156.0

173.3

6

64-QAM

175.5

195.0

7

64-QAM

195.0

216.7

8

256-QAM

234.0

260.0

9

256-QAM

260.0

288.9

Table 13 VHT-MCS parameters (20 MHz, NSS=4)

VHT-MCS index

Modulation

Data rate (Mbps)

800ns GI

400ns GI

0

BPSK

26.0

28.9

1

QPSK

52.0

57.8

2

QPSK

78.0

86.7

3

16-QAM

104.0

115.6

4

16-QAM

156.0

173.3

5

64-QAM

208.0

231.1

6

64-QAM

234.0

260.0

7

64-QAM

260.0

288.9

8

256-QAM

312.0

346.7

9

Not valid

Table 14 VHT-MCS parameters (40 MHz, NSS=1)

VHT-MCS index

Modulation

Data rate (Mbps)

800ns GI

400ns GI

0

BPSK

13.5

15.0

1

QPSK

27.0

30.0

2

QPSK

40.5

45.0

3

16-QAM

54.0

60.0

4

16-QAM

81.0

90.0

5

64-QAM

108.0

120.0

6

64-QAM

121.5

135.0

7

64-QAM

135.0

150.0

8

256-QAM

162.0

180.0

9

256-QAM

180.0

200.0

Table 15 VHT-MCS parameters (40 MHz, NSS=2)

VHT-MCS index

Modulation

Data rate (Mbps)

800ns GI

400ns GI

0

BPSK

27.0

30.0

1

QPSK

54.0

60.0

2

QPSK

81.0

90.0

3

16-QAM

108.0

120.0

4

16-QAM

162.0

180.0

5

64-QAM

216.0

240.0

6

64-QAM

243.0

270.0

7

64-QAM

270.0

300.0

8

256-QAM

324.0

360.0

9

256-QAM

360.0

400.0

Table 16 VHT-MCS parameters (40 MHz, NSS=3)

VHT-MCS index

Modulation

Data rate (Mbps)

800ns GI

400ns GI

0

BPSK

40.5

45.0

1

QPSK

81.0

90.0

2

QPSK

121.5

135.0

3

16-QAM

162.0

180.0

4

16-QAM

243.0

270.0

5

64-QAM

324.0

360.0

6

64-QAM

364.5

405.0

7

64-QAM

405.0

450.0

8

256-QAM

486.0

540.0

9

256-QAM

540.0

600.0

Table 17 VHT-MCS parameters(40 MHz, NSS=4)

VHT-MCS index

Modulation

Data rate (Mbps)

800ns GI

400ns GI

0

BPSK

54.0

60.0

1

QPSK

108.0

120.0

2

QPSK

162.0

180.0

3

16-QAM

216.0

240.0

4

16-QAM

324.0

360.0

5

64-QAM

432.0

480.0

6

64-QAM

486.0

540.0

7

64-QAM

540.0

600.0

8

256-QAM

648.0

720.0

9

256-QAM

720.0

800.0

Table 18 VHT-MCS parameters (80 MHz, NSS=1)

VHT-MCS index

Modulation

Data rate (Mbps)

800ns GI

400ns GI

0

BPSK

29.3

32.5

1

QPSK

58.5

65.0

2

QPSK

87.8

97.5

3

16-QAM

117.0

130.0

4

16-QAM

175.5

195.0

5

64-QAM

234.0

260.0

6

64-QAM

263.0

292.5

7

64-QAM

292.5

325.0

8

256-QAM

351.0

390.0

9

256-QAM

390.0

433.3

Table 19 VHT-MCS parameters (80 MHz, NSS=2)

VHT-MCS index

Modulation

Data rate (Mbps)

800ns GI

400ns GI

0

BPSK

58.5

65.0

1

QPSK

117.0

130.0

2

QPSK

175.5

195.0

3

16-QAM

234.0

260.0

4

16-QAM

351.0

390.0

5

64-QAM

468.0

520.0

6

64-QAM

526.5

585.0

7

64-QAM

585.0

650.0

8

256-QAM

702.0

780.0

9

256-QAM

780.0

866.7

Table 20 VHT-MCS parameters (80 MHz, NSS=3)

VHT-MCS index

Modulation

Data rate (Mbps)

800ns GI

400ns GI

0

BPSK

87.8

97.5

1

QPSK

175.5

195.0

2

QPSK

263.3

292.5

3

16-QAM

351.0

390.0

4

16-QAM

526.5

585.0

5

64-QAM

702.0

780.0

6

Not valid

7

64-QAM

877.5

975.0

8

256-QAM

1053.0

1170.0

9

256-QAM

1170.0

1300.0

Table 21 VHT-MCS parameters (80 MHz, NSS=4)

VHT-MCS index

Modulation

Data rate (Mbps)

800ns GI

400ns GI

0

BPSK

117.0

130.0

1

QPSK

234.0

260.0

2

QPSK

351.0

390.0

3

16-QAM

468.0

520.0

4

16-QAM

702.0

780.0

5

64-QAM

936.0

1040.0

6

64-QAM

1053.0

1170.0

7

64-QAM

1170.0

1300.0

8

256-QAM

1404.0

1560.0

9

256-QAM

1560.0

1733.3

 

NOTE:

·     For all the VHT-MCS data rate tables, see IEEE 802.11ac-2013.

·     Support for VHT-MCS indexes depends on the AP model.

HE-MCS

High Efficiency Modulation and Coding Scheme (HE-MCS) defined in IEEE 802.11ax determines the wireless data rates.

HE-MCS types

802.11ax HE-MCSs are classified into the following types:

·     Mandatory HE-MCSs—Mandatory HE-MCSs for an AP. To associate with an 802.11ax AP, a client must support the mandatory HE-MCSs for the AP.

·     Supported HE-MCSs—HE-MCSs supported by an AP besides the mandatory HE-MCSs. If a client supports both mandatory and supported HE-MCSs, the client can use a supported rate to communicate with the AP.

·     Multicast HE-MCS—HE-MCS for the rate at which an AP transmits multicast frames.

HE-MCS parameters

An HE-MCS is identified by an HE-MCS index, which is represented by an integer in the range of 0 to 11. An HE-MCS index is the mapping from HE-MCS to a data rate.

802.11ax supports the 20 MHz, 40 MHz, 80 MHz, and 160 MHz (80+80 MHz) bandwidth modes, and supports a maximum of eight spatial streams. 802.11gax supports the 20 MHz and 40 MHz bandwidth modes.

Table 22 through Table 33 show HE-MCS parameters that are supported by an AP.

Table 22 HE-MCS parameters (20 MHz, NSS=1)

HE-MCS index

Spatial streams

Modulation

Data rate (Mbps)

1600ns GI

800ns GI

0

1

BPSK

8

8.6

1

1

QPSK

16

17.2

2

1

QPSK

24

25.8

3

1

16-QAM

33

34.4

4

1

16-QAM

49

51.6

5

1

64-QAM

65

68.8

6

1

64-QAM

73

77.4

7

1

64-QAM

81

86

8

1

256-QAM

98

103.2

9

1

256-QAM

108

114.7

10

1

1024-QAM

122

129

11

1

1024-QAM

135

143.4

Table 23 HE-MCS parameters (20 MHz, NSS=2)

HE-MCS index

Spatial streams

Modulation

Data rate (Mbps)

1600ns GI

800ns GI

0

2

BPSK

16

17.2

1

2

QPSK

32

34.4

2

2

QPSK

48

51.6

3

2

16-QAM

66

68.8

4

2

16-QAM

98

103.2

5

2

64-QAM

130

137.6

6

2

64-QAM

146

154.8

7

2

64-QAM

162

172

8

2

256-QAM

196

206.4

9

2

256-QAM

216

229.4

10

2

1024-QAM

244

258

11

2

1024-QAM

270

286.8

Table 24 HE-MCS parameters (20 MHz, NSS=3)

HE-MCS index

Spatial streams

Modulation

Data rate (Mbps)

1600ns GI

800ns GI

0

3

BPSK

24

25.8

1

3

QPSK

48

51.6

2

3

QPSK

72

77.4

3

3

16-QAM

99

103.2

4

3

16-QAM

147

154.8

5

3

64-QAM

195

206.4

6

3

64-QAM

219

232.2

7

3

64-QAM

243

258

8

3

256-QAM

294

309.6

9

3

256-QAM

324

344.1

10

3

1024-QAM

366

387

11

3

1024-QAM

405

430.2

Table 25 HE-MCS parameters (20 MHz, NSS=4)

HE-MCS index

Spatial streams

Modulation

Data rate (Mbps)

1600ns GI

800ns GI

0

4

BPSK

32

34.4

1

4

QPSK

64

68.8

2

4

QPSK

96

103.2

3

4

16-QAM

132

137.6

4

4

16-QAM

196

206.4

5

4

64-QAM

260

275.2

6

4

64-QAM

292

309.6

7

4

64-QAM

324

344

8

4

256-QAM

392

412.8

9

4

256-QAM

432

458.8

10

4

1024-QAM

488

516

11

4

1024-QAM

540

573.6

Table 26 HE-MCS parameters (40 MHz, NSS=1)

HE-MCS index

Spatial streams

Modulation

Data rate (Mbps)

1600ns GI

800ns GI

0

1

BPSK

16

17.2

1

1

QPSK

33

34.4

2

1

QPSK

49

51.6

3

1

16-QAM

65

68.8

4

1

16-QAM

98

103.2

5

1

64-QAM

130

137.6

6

1

64-QAM

146

154.9

7

1

64-QAM

163

172.1

8

1

256-QAM

195

206.5

9

1

256-QAM

217

229.4

10

1

1024-QAM

244

258.1

11

1

1024-QAM

271

286.8

Table 27 HE-MCS parameters (40 MHz, NSS=2)

HE-MCS index

Spatial streams

Modulation

Data rate (Mbps)

1600ns GI

800ns GI

0

2

BPSK

32

34.4

1

2

QPSK

66

68.8

2

2

QPSK

98

103.2

3

2

16-QAM

130

137.6

4

2

16-QAM

196

206.4

5

2

64-QAM

260

275.2

6

2

64-QAM

292

309.8

7

2

64-QAM

326

344.2

8

2

256-QAM

390

413

9

2

256-QAM

434

458.8

10

2

1024-QAM

488

516.2

11

2

1024-QAM

542

573.6

Table 28 HE-MCS parameters (40 MHz, NSS=3)

HE-MCS index

Spatial streams

Modulation

Data rate (Mbps)

1600ns GI

800ns GI

0

3

BPSK

48

51.6

1

3

QPSK

99

103.2

2

3

QPSK

147

154.8

3

3

16-QAM

195

206.4

4

3

16-QAM

294

309.6

5

3

64-QAM

390

412.8

6

3

64-QAM

438

464.7

7

3

64-QAM

489

516.3

8

3

256-QAM

585

619.5

9

3

256-QAM

651

688.2

10

3

1024-QAM

732

774.3

11

3

1024-QAM

813

860.4

Table 29 HE-MCS parameters(40 MHz, NSS=4)

HE-MCS index

Spatial streams

Modulation

Data rate (Mbps)

1600ns GI

800ns GI

0

4

BPSK

64

68.8

1

4

QPSK

132

137.6

2

4

QPSK

196

206.4

3

4

16-QAM

260

275.2

4

4

16-QAM

392

412.8

5

4

64-QAM

520

550.4

6

4

64-QAM

584

619.6

7

4

64-QAM

652

688.4

8

4

256-QAM

780

826

9

4

256-QAM

868

917.6

10

4

1024-QAM

976

1032.4

11

4

1024-QAM

1084

1147.2

Table 30 HE-MCS parameters (80 MHz, NSS=1)

HE-MCS index

Spatial streams

Modulation

Data rate (Mbps)

1600ns GI

800ns GI

0

1

BPSK

34

36

1

1

QPSK

68

72.1

2

1

QPSK

102

108.1

3

1

16-QAM

136

144.1

4

1

16-QAM

204

216.2

5

1

64-QAM

272

288.2

6

1

64-QAM

306

324.4

7

1

64-QAM

340

360.3

8

1

256-QAM

408

432.4

9

1

256-QAM

453

480.4

10

1

1024-QAM

510

540.4

11

1

1024-QAM

567

600.5

Table 31 HE-MCS parameters (80 MHz, NSS=2)

HE-MCS index

Spatial streams

Modulation

Data rate (Mb/s)

1600ns GI

800ns GI

0

2

BPSK

68

72

1

2

QPSK

136

144.2

2

2

QPSK

204

216.2

3

2

16-QAM

272

288.2

4

2

16-QAM

408

432.4

5

2

64-QAM

544

576.4

6

2

64-QAM

612

648.8

7

2

64-QAM

680

720.6

8

2

256-QAM

816

864.8

9

4

256-QAM

906

960.8

10

4

1024-QAM

1020

1080.8

11

4

1024-QAM

1134

1201

Table 32 HE-MCS parameters (80 MHz, NSS=3)

HE-MCS index

Spatial streams

Modulation

Data rate (Mbps)

1600ns GI

800ns GI

0

3

BPSK

102

108

1

3

QPSK

204

216.3

2

3

QPSK

306

324.3

3

3

16-QAM

408

432.3

4

3

16-QAM

612

648.6

5

3

64-QAM

816

864.6

6

3

64-QAM

918

973.2

7

3

64-QAM

1020

1080.9

8

3

256-QAM

1224

1297.2

9

4

256-QAM

1359

1441.2

10

4

1024-QAM

1530

1621.2

11

4

1024-QAM

1701

1801.5

Table 33 HE-MCS parameters (80 MHz, NSS=4)

HE-MCS index

Spatial streams

Modulation

Data rate (Mbps)

1600ns GI

800ns GI

0

4

BPSK

136

144

1

4

QPSK

272

288.4

2

4

QPSK

408

432.4

3

4

16-QAM

544

576.4

4

4

16-QAM

816

864.8

5

4

64-QAM

1088

1152.8

6

4

64-QAM

1224

1297.6

7

4

64-QAM

1360

1441.2

8

4

256-QAM

1632

1729.6

9

4

256-QAM

1812

1921.6

10

4

1024-QAM

2040

2161.6

11

4

1024-QAM

2268

2402

Table 34 HE-MCS parameters (160 MHz/80 MHz+80 MHz, NSS=1)

HE-MCS index

Spatial streams

Modulation

Data rate (Mbps)

1600ns GI

800ns GI

0

1

BPSK

68

72.1

1

1

QPSK

136

144.1

2

1

QPSK

204

216.2

3

1

16-QAM

272

288.2

4

1

16-QAM

408

432.4

5

1

64-QAM

544

576.5

6

1

64-QAM

612

648.5

7

1

64-QAM

681

720.6

8

1

256-QAM

817

864.7

9

1

256-QAM

907

960.7

10

1

1024-QAM

1021

1080.9

11

1

1024-QAM

1134

1201

Table 35 HE-MCS parameters (160 MHz/80 MHz+80 MHz, NSS=2)

HE-MCS index

Spatial streams

Modulation

Data rate (Mbps)

1600ns GI

800ns GI

0

2

BPSK

136

144.1

1

2

QPSK

272

288.2

2

2

QPSK

408

432.4

3

2

16-QAM

544

576.5

4

2

16-QAM

817

864.7

5

2

64-QAM

1089

1152.9

6

2

64-QAM

1225

1297.1

7

2

64-QAM

1361

1441.2

8

2

256-QAM

1633

1729.4

9

4

256-QAM

1815

1921.5

10

4

1024-QAM

2042

2161.8

11

4

1024-QAM

2269

2401.9

Table 36 HE-MCS parameters (160 MHz/80 MHz+80 MHz, NSS=3)

HE-MCS index

Spatial streams

Modulation

Data rate (Mbps)

1600ns GI

800ns GI

0

3

BPSK

204

216.2

1

3

QPSK

408

432.4

2

3

QPSK

613

648.5

3

3

16-QAM

817

864.7

4

3

16-QAM

1225

1297.1

5

3

64-QAM

1633

1729.4

6

3

64-QAM

1838

1945.6

7

3

64-QAM

2042

2161.8

8

3

256-QAM

2450

2594.1

9

4

256-QAM

2722

2882.4

10

4

1024-QAM

3062

3242.6

11

4

1024-QAM

3403

3602.9

Table 37 HE-MCS parameters (160 MHz/80 MHz+80 MHz, NSS=4)

HE-MCS index

Spatial streams

Modulation

Data rate (Mbps)

1600ns GI

800ns GI

0

4

BPSK

272

288.2

1

4

QPSK

544

576.5

2

4

QPSK

817

864.7

3

4

16-QAM

1089

1152.9

4

4

16-QAM

1633

1729.4

5

4

64-QAM

2178

2305.9

6

4

64-QAM

2450

2594.1

7

4

64-QAM

2722

2882.4

8

4

256-QAM

3267

3458.8

9

4

256-QAM

3630

3843.1

10

4

1024-QAM

4083

4323.5

11

4

1024-QAM

4537

4803.9

 

NOTE:

·     For all the HE-MCS data rate tables, see IEEE 802.11ax.

·     Support for HE-MCS indexes depends on the AP model.

Restrictions and guidelines: Radio management configuration

You can configure radios by using the following methods:

·     Configure radios one by one in radio view.

·     Assign APs to an AP group and configure the radios of the AP group in an AP group's radio view.

·     Configure all radios in global configuration view.

For a radio, the settings made in these views for the same parameter take effect in descending order of radio view, an AP group's radio view, and global configuration view.

In a large-sized network, configure AP groups instead of any single AP as a best practice.

Radio management tasks at a glance

To configure radio management, perform the following tasks:

·     Enabling or disabling a radio interface

·     Enabling a radio to disable wireless services as scheduled

·     Specifying a radio mode

·     Configuring basic radio functions

·     (Optional.) Configuring 802.11n functions

·     (Optional.) Configuring 802.11ac functions

·     (Optional.) Configuring 802.11ax functions

·     (Optional.) Configuring error packet ratio optimization and retransmission ratio optimization

·     (Optional.) Setting the radio channel usage threshold

·     (Optional.) Disabling radar avoidance

Enabling or disabling a radio interface

1.     Enter system view.

system-view

2.     Enter radio interface view.

interface wlan-radio interface-number

3.     Enable or disable the radio interface.

¡     Enable the radio interface:
undo shutdown

¡     Disable the radio interface:
shutdown

By default, a radio interface is enabled.

Enabling a radio to disable wireless services as scheduled

1.     Enter system view.

system-view

2.     Enter AP view.

wlan ap ap-name

3.     Enter radio view.

radio radio-id

4.     Enable the radio to disable wireless services as scheduled.

radio scheduled-shutdown time-range range-name

By default, this feature is not configured.

Specifying a radio mode

About this task

Available radio functions vary by radio mode:

·     For 802.11a, 802.11b, and 802.11g radios, you can configure basic radio functions.

·     For 802.11an and 802.11gn radios, you can configure basic radio functions and 802.11n functions.

·     For 802.11ax and 802.11gax radios, you can configure basic radio functions, 802.11n functions, 802.11ac functions, and 802.11ax functions.

Restrictions and guidelines

Support for channels and transmit powers depends on the radio mode. When you change the mode of a radio, the system automatically adjusts the channel and power parameters for the radio.

Procedure

1.     Enter system view.

system-view

2.     Enter radio interface view.

interface wlan-radio interface-number

3.     Specify a radio mode.

type { dot11a | dot11ac | dot11an | dot11ax | dot11b | dot11g | dot11gax | dot11gn }

For more information about the default setting for this command, see the command reference.

Configuring basic radio functions

Specifying a working channel

About this task

Perform this task to reduce interference from both wireless and non-wireless devices. You can manually specify a channel or configure the system to automatically select a channel for a radio.

When radar signals are detected on the working channel of a radio, one of the following events occurs:

·     If the channel is automatically assigned, the radio changes its channel.

·     If the channel is manually specified, the radio changes its channel, and switches back to the specified channel after 30 minutes and then starts the quiet timer. If no radar signals are detected within the quiet time, the radio starts to use the channel. If radar signals are detected within the quiet time, the radio changes it channel again.

Restrictions and guidelines

If you manually specify a channel in the range of 36 to 64, whether the 5.1 GHz band can be used outdoors depends on the device region.

·     For outdoor devices that use the 5150 to 5250 Hz band:

¡     China—Not supported.

¡     EU—Not supported.

¡     US—Supported if the maximum effective isotropic radiated power (EIRP) at any elevation angle above 30 degrees does not exceed 125mW and you are to deploy 1000 or fewer devices at a time. To install over 1000 devices at one deployment, contact Federal Communications Commission (FCC) and reduce the total transmit power.

¡     Canada—Not supported.

·     For outdoor devices that use the 5250 to 5350 Hz band:

¡     China—Not supported.

¡     EU—Not supported.

¡     US—Supported if Depth First Search (DFS) is used.

¡     Canada—Supported if Depth First Search (DFS) is used.

Procedure

1.     Enter system view.

system-view

2.     Enter radio interface view.

interface wlan-radio interface-number

3.     Specify a working channel.

channel { channel-number | auto }

By default, the AP automatically selects a working channel for a radio interface.

Setting the antenna type

About this task

You can use this command to specify an H3C antenna or a third-party antenna for an AP:

·     When you specify an H3C antenna for an AP, make sure the antenna type setting is consistent with the type of the antenna used on the AP.

·     When you specify a third-party antenna for an AP, make sure the antenna gain setting is consistent with the gain of the antenna used on the AP.

Procedure

1.     Enter system view.

system-view

2.     Enter radio interface view.

interface wlan-radio interface-number

3.     Set the antenna type.

antenna type { antenna-type | custom gain custom-gain }

By default, the antenna type is internal.

Setting the maximum transmit power

Restrictions and guidelines

The transmit power range supported by a radio varies by region code, channel, AP model, radio mode, antenna type, and bandwidth mode. If you change these attributes for a radio after you set the maximum transmit power, the configured maximum transmit power might be out of the supported transmit power range. If this happens, the system automatically adjusts the maximum transmit power to a valid value.

If you enable power lock, the locked power becomes the maximum transmit power. For more information about power lock, see "Configuring power lock."

Procedure

1.     Enter system view.

system-view

2.     Enter radio interface view.

interface wlan-radio interface-number

3.     Set the maximum transmit power.

max-power radio-power

By default, a radio interface uses the supported maximum transmit power.

Configuring power lock

About this task

If you enable power lock, the current power is locked and becomes the maximum transmit power. The locked power still takes effect after the AC restarts.

If you enable power lock, the current power is locked and becomes the maximum transmit power. The locked power still takes effect after the AP restarts.

If a radio enabled with power lock switches to a new channel that provides lower power than the locked power, the maximum power supported by the new channel takes effect.

Procedure

1.     Enter system view.

system-view

2.     Enter radio interface view.

interface wlan-radio interface-number

3.     Configure power lock.

power-lock { disable | enable }

By default, power lock is disabled.

Setting transmission rates

About this task

Transmission rates are classified into the following types:

·     Prohibited rates—Rates that cannot be used by an AP.

·     Mandatory rates—Rates that the clients must support to associate with an AP.

·     Supported rates—Rates that an AP supports. After a client associates with an AP, the client can select a higher rate from the supported rates to communicate with the AP. The AP automatically decreases or increases the transmission rate as interference signals, retransmission packets, or dropped packets increase or decrease.

·     Multicast rate—Rate at which an AP transmits multicasts and broadcasts. The multicast rate must be selected from the mandatory rates.

Procedure

1.     Enter system view.

system-view

2.     Enter radio interface view.

interface wlan-radio interface-number

3.     Set the transmission rates for the radio.

rate { multicast { auto | rate-value } | { disabled | mandatory | supported } rate-value }

The default settings are as follows:

¡     802.11a/802.11an/802.11ac/802.11ax radios:

-     Prohibited rates—None.

-     Mandatory rates—6, 12, and 24.

-     Multicast rate—Selected from the mandatory rates.

-     Supported rates—9, 18, 36, 48, and 54.

¡     802.11b radios:

-     Prohibited rates—None.

-     Mandatory rates—1 and 2.

-     Multicast rate—Selected from the mandatory rates.

-     Supported rates—5.5, and 11.

¡     802.11g/802.11gn/802.11gac/802.11gax radios:

-     Prohibited rates—None.

-     Mandatory rates—1, 2, 5.5, and 11.

-     Multicast rate—Selected from the mandatory rates.

-     Supported rates—6, 9, 12, 18, 24, 36, 48, and 54.

Setting the beacon interval

About this task

Perform this task to enable an AP to broadcast beacon frames at the specified interval. A short beacon interval enables clients to easily detect the AP but consumes more system resources.

Procedure

1.     Enter system view.

system-view

2.     Enter radio interface view.

interface wlan-radio interface-number

3.     Set the beacon interval.

beacon-interval interval

By default, the beacon interval is 100 TU.

Setting the DTIM interval

About this task

An AP periodically broadcasts a beacon compliant with the Delivery Traffic Indication Map (DTIM). After the AP broadcasts the beacon, it sends buffered broadcast and multicast frames based on the value of the DTIM interval. For example, if you set the DTIM interval to 5, the AP sends buffered broadcast and multicast frames every five beacon frames.

Procedure

1.     Enter system view.

system-view

2.     Enter radio interface view.

interface wlan-radio interface-number

3.     Set the DTIM interval.

dtim counter

By default, the DTIM interval is 1.

Setting the maximum number of clients that can associate with an AP

About this task

When the maximum number of clients is reached on an AP, the AP stops accepting new clients and the SSID will be automatically hidden. This prevents the AP from being overloaded.

Procedure

1.     Enter system view.

system-view

2.     Enter radio interface view.

interface wlan-radio interface-number

3.     Set the maximum number of clients that can associate with the AP.

client max-count max-number

By default, no limit is set for the number of clients that can associate with an AP.

Configuring access services for 802.11b clients

About this task

To prevent low-speed 802.11b clients from decreasing wireless data transmission performance, you can enable an 802.11g, 802.11gac, or 802.11gn radio to disable access services for 802.11b clients.

Procedure

1.     Enter system view.

system-view

2.     Enter radio interface view.

interface wlan-radio interface-number

3.     Configure access services for 802.11b clients.

client dot11b-forbidden { disable | enable }

By default, the AP accepts 802.11b clients.

Setting the maximum transmission distance

About this task

The strength of wireless signals gradually degrades as the transmission distance increases. The maximum transmission distance of wireless signals depends on the surrounding environment and on whether an external antenna is used.

·     Without an external antenna—About 300 meters (984.25 ft).

·     With an external antenna—30 km (18.64 miles) to 50 km (31.07 miles).

·     In an area with obstacles—35 m (114.83 ft) to 50 m (164.04 ft).

Procedure

1.     Enter system view.

system-view

2.     Enter radio interface view.

interface wlan-radio interface-number

3.     Set the maximum transmission distance.

distance distance

By default, the maximum transmission distance is 1 km (0.62 miles).

Enabling the continuous mode for a radio

About this task

This feature is used for network testing only. Do not use it under any other circumstances.

The feature enables continuous data packet sending at the specified rate. When the feature is enabled, do not perform any other operations except for changing the transmit rate.

For an 802.11a, 802.11b, or 802.11g radio, set the transmit rate. For an 802.11n radio, set the transmit rate or MCS index. For an 802.11ac radio, set the transmit rate, MCS index, or VHT-MCS index.

Procedure

1.     Enter system view.

system-view

2.     Enter radio interface view.

interface wlan-radio interface-number

3.     Enable the continuous mode for the radio interface.

continuous-mode { mcs mcs-index | nss nss-index vht-mcs vhtmcs-index | rate rate-value }

By default, the continuous mode is disabled.

Performing on-demand channel usage measurement

About this task

This feature enables an AP to scan supported channels and display the channel usage after scanning. It takes about one second to scan a channel.

Procedure

1.     Enter system view.

system-view

2.     Enter radio interface view.

interface wlan-radio interface-number

3.     Perform on-demand channel usage measurement.

channel-usage measure

Setting the channel usage alarm threshold

About this task

If the actual channel usage exceeds the threshold, the device reports an alarm to the information center.

Procedure

1.     Enter system view.

system-view

2.     Enter AP view or an AP group's AP model view.

¡     Enter AP view.

wlan ap ap-name

¡     Execute the following commands in sequence to enter an AP group's AP model view:

wlan ap-group group-name

ap-model ap-model

3.     Enter radio view.

radio radio-id

4.     Set the channel usage alarm threshold.

channel-usage threshold threshold

By default:

¡     In radio view, a radio uses the configuration in an AP group's radio view.

¡     In an AP group's radio view, the channel usage alarm threshold is 90%.

Configuring 802.11n functions

 

NOTE:

802.11n functions are applicable only to 802.11an, 802.11gn, 802.11ac, 802.11gac, 802.11ax, and 802.11gax radios.

Configuring the A-MPDU aggregation method

About this task

A MAC Protocol Data Unit (MPDU) is a data frame in 802.11 format. MPDU aggregation aggregates multiple MPDUs into one aggregate MPDU (A-MPDU) to reduce additional information, ACK frames, and Physical Layer Convergence Procedure (PLCP) header overhead. This improves network throughput and channel efficiency.

All MPDUs in an A-MPDU must have the same QoS priority, source address, and destination address.

Procedure

1.     Enter system view.

system-view

2.     Enter radio interface view.

interface wlan-radio interface-number

3.     Configure the A-MPDU aggregation method.

a-mpdu { disable | enable }

By default, the A-MPDU aggregation method is enabled.

Configuring the A-MSDU aggregation method

About this task

MSDU aggregation aggregates multiple MSDUs into one aggregate MSDU (A-MSDU) to reduce PLCP preamble, PLCP header, and MAC header overheads. This improves network throughput and frame forwarding efficiency.

All MSDUs in an A-MSDU must have the same QoS priority, source address, and destination address. When a device receives an A-MSDU, it restores the A-MSDU to multiple MSDUs for processing.

Procedure

1.     Enter system view.

system-view

2.     Enter radio interface view.

interface wlan-radio interface-number

3.     Configure the A-MSDU aggregation method.

a-msdu { disable | enable }

By default, the A-MSDU aggregation method is enabled.

Configuring LDPC

About this task

802.11n introduces the Low-Density Parity Check (LDPC) mechanism to increase the signal-to-noise ratio and enhance transmission quality. LDPC takes effect only when both ends support LDPC.

Procedure

1.     Enter system view.

system-view

2.     Enter radio interface view.

interface wlan-radio interface-number

3.     Configure LDPC.

ldpc { disable | enable }

By default, LDPC is enabled.

Configuring STBC

About this task

The Space-Time Block Coding (STBC) mechanism enhances the reliability of data transmission and does not require clients to have high transmission rates.

Procedure

1.     Enter system view.

system-view

2.     Enter radio interface view.

interface wlan-radio interface-number

3.     Configure STBC.

stbc { disable | enable }

By default, STBC is enabled.

Setting MCS indexes

About this task

802.11n clients use the rate corresponding to the MCS index to send unicast frames. 802.11a/b/g clients use the 802.11a/b/g rate to send unicast frames.

If you do not set a multicast MCS index, 802.11n clients and the AP use the 802.11a/b/g multicast rate to send multicast frames. If you set a multicast MCS index, one of following events occurs:

·     The AP and clients use the rate corresponding to the multicast MCS index to send multicast frames if only 802.11n and 802.11ac clients exist.

·     The AP and clients use the 802.11a/b/g multicast rate to send multicast frames if any 802.11a/b/g clients exist.

When you set the maximum mandatory or supported MCS index, you are specifying a range. For example, if you set the maximum mandatory MCS index to 5, rates corresponding to MCS indexes 0 through 5 are configured as 802.11n mandatory rates.

Restrictions and guidelines

The multicast MCS index cannot be greater than the maximum mandatory MCS index.

The maximum supported MCS index cannot be smaller than the maximum mandatory MCS index.

Procedure

1.     Enter system view.

system-view

2.     Enter radio interface view.

interface wlan-radio interface-number

3.     Set the maximum mandatory MCS index.

dot11n mandatory maximum-mcs index

By default, no maximum mandatory MCS index is set.

4.     Set the maximum supported MCS index.

dot11n support maximum-mcs index

By default, the maximum supported MCS index is 76.

5.     Set the multicast MCS index.

dot11n multicast-mcs index

By default, no multicast MCS index is set.

Configuring the client dot11n-only feature

About this task

To prevent low-speed 802.11a/b/g clients from decreasing wireless data transmission performance, you can enable the client dot11n-only feature for an AP to accept only 802.11n, 802.11ac, and 802.11ax clients.

Procedure

1.     Enter system view.

system-view

2.     Enter radio interface view.

interface wlan-radio interface-number

3.     Configure the client dot11n-only feature.

client dot11n-only { disable | enable }

By default, the client dot11n-only feature is disabled.

Setting the 802.11n bandwidth mode

About this task

802.11n uses the channel structure of 802.11a/b/g, but it increases the number of data subchannels in each 20 MHz channel to 52. This improves data transmission rate.

802.11n binds two adjacent 20 MHz channels to form a 40 MHz channel (one primary channel and one secondary channel). This provides a simple way to double the data rate.

If the current channel of a radio does not support the specified bandwidth mode, the radio clears the channel configuration and selects another channel.

If the bandwidth mode is set to 40 MHz, the radio uses the 40 MHz bandwidth if two adjacent channels that can be bound together exist. If there are no adjacent channels that can be bound together, the radio uses the 20 MHz bandwidth.

Procedure

1.     Enter system view.

system-view

2.     Enter radio interface view.

interface wlan-radio interface-number

3.     Set the 802.11n bandwidth mode.

channel band-width { 20 | 40 [ auto-switch ] }

By default, the bandwidth mode is 40 MHz for 802.11an radios and 20 MHz for 802.11gn radios.

Only 802.11gn radios support the auto-switch keyword.

Specifying a MIMO mode

 

NOTE:

The number of spatial streams supported by a radio varies by AP model.

About this task

Multiple-input and multiple-output (MIMO) enables a radio to send and receive wireless signals through multiple spatial streams. This improves system capacity and spectrum usage without requiring higher bandwidth.

A radio can operate in one of the following MIMO modes:

·     1x1—Sends and receives wireless signals through one spatial stream.

·     2x2—Sends and receives wireless signals through two spatial streams.

·     3x3—Sends and receives wireless signals through three spatial streams.

·     4x4—Sends and receives wireless signals through four spatial streams.

·     5x5—Sends and receives wireless signals through five spatial streams.

·     6x6—Sends and receives wireless signals through six spatial streams.

·     7x7—Sends and receives wireless signals through seven spatial streams.

·     8x8—Sends and receives wireless signals through eight spatial streams.

Procedure

1.     Enter system view.

system-view

2.     Enter radio interface view.

interface wlan-radio interface-number

3.     Specify a MIMO mode.

mimo { 1x1 | 2x2 | 3x3 | 4x4 | 5x5 | 6x6 | 7x7 | 8x8 }

The default MIMO mode for a radio varies by device model.

Configuring energy saving

About this task

After you enable the energy-saving feature, the MIMO mode of a radio automatically changes to 1x1 if no clients associate with the radio and the radio is not enabled with WIPS.

Procedure

1.     Enter system view.

system-view

2.     Enter radio interface view.

interface wlan-radio interface-number

3.     Configure energy saving.

green-energy-management { disable | enable }

By default, energy saving is disabled.

Configuring 802.11n protection

About this task

When both 802.11n and non-802.11n clients exist in a WLAN, transmission collision might occur because they use different modulation modes.

802.11n devices send RTS/CTS or CTS-to-self packets before sending data only when non-802.11n signals are detected on the channel.

802.11n protection automatically takes effect when non-802.11n clients associate with an 802.11n, 802.11ac, or 802.11ax AP.

 

 

NOTE:

802.11n devices refer to 802.11n, 802.11ac, and 802.11ax devices.

Procedure

1.     Enter system view.

system-view

2.     Enter radio interface view.

interface wlan-radio interface-number

3.     Configure 802.11n protection.

dot11n protection { disable | enable }

By default, 802.11n protection is disabled.

Configuring 802.11ac functions

 

NOTE:

802.11ac functions are applicable only to 802.11ac, 802.11gac, 802.11ax, and 802.11gax radios.

Setting NSSs

About this task

If the AP supports an NSS, it supports all VHT-MCS indexes for the NSS. 802.11ac clients use the rate corresponding to the VHT-MCS index for the NSS to send unicast frames. Non-802.11ac clients use the 802.11a/b/g/n rate to send unicast frames.

If you do not set a multicast NSS, 802.11ac clients and the AP use the 802.11a/b/g/n multicast rate to send multicast frames. If you set a multicast NSS and specify a VHT-MCS index, the following situations occur:

·     The AP and clients use the rate corresponding to the VHT-MCS index to send multicast frames if all clients are 802.11ac clients.

·     The AP and clients use the 802.11a/b/g/n multicast rate to send multicast frames if any non-802.11ac clients exist.

The maximum mandatory NSS or supported NSS determines a range of 802.11 rates. For example, if the maximum mandatory NSS is 5, rates corresponding to VHT-MCS indexes for NSSs 1 through 5 will be 802.11ac mandatory rates.

Restrictions and guidelines

The maximum supported NSS cannot be smaller than the maximum mandatory NSS and the multicast NSS cannot be greater than the maximum mandatory NSS.

Procedure

1.     Enter system view.

system-view

2.     Enter radio interface view.

interface wlan-radio interface-number

3.     Set the maximum mandatory NSS.

dot11ac mandatory maximum-nss nss-number

By default, no maximum mandatory NSS is set.

4.     Set the maximum supported NSS.

dot11ac support maximum-nss nss-number

By default, the maximum supported NSS is 8.

5.     Set the multicast NSS and specify a VHT-MCS index.

dot11ac multicast-nss nss-number vht-mcs index

By default, no multicast NSS is set.

Configuring the client dot11ac-only feature

About this task

To prevent low-speed 802.11a/b/g/n clients from decreasing wireless data transmission performance, you can enable the client dot11ac-only feature for an AP to accept only 802.11ac and 802.11ax clients.

Procedure

1.     Enter system view.

system-view

2.     Enter radio interface view.

interface wlan-radio interface-number

3.     Configure the client dot11ac-only feature.

client dot11ac-only { disable | enable }

By default, the client dot11ac-only feature is disabled.

Setting the 802.11ac bandwidth mode

About this task

802.11ac uses the channel structure of 802.11n and increases the maximum bandwidth from 40 MHz to 160 MHz. 802.11ac can bind two adjacent 20/40/80 MHz channels to form a 40/80/160 MHz channel.

The radio uses the specified 40/80/160 MHz bandwidth if adjacent channels can be bound to form a 40/80/160 channel. If adjacent channels cannot form a 40/80/160 channel, the radio uses the next available bandwidth less than the specified one.

If the working channel is specified and the actual working bandwidth is 160 MHz, the device automatically selects a secondary channel. The working channel forwards all packets and the secondary channel forwards only data packets.

If the current channel of a radio does not support the specified bandwidth mode, the radio clears the channel configuration and selects another channel.

Figure 1 802.11ac bandwidth modes

Procedure

1.     Enter system view.

system-view

2.     Enter radio interface view.

interface wlan-radio interface-number

3.     Set the 802.11ac bandwidth mode:

channel band-width { 20 | 40 | 80 | 160 }

Execute this command in the view of a 5 GHz radio interface.

By default, the bandwidth mode is 80 MHz for 802.11ac radios.

4.     Set the 802.11gac bandwidth mode:

channel band-width { 20 | 40 [ auto-switch ] }

Execute this command in the view of a 2.4 GHz radio interface.

By default, the bandwidth mode is 20 MHz for 802.11gac radios.

Configuring TxBF

About this task

Transmit beamforming (TxBF) enables an AP to adjust transmitting parameters based on the channel information to focus RF signals on intended clients. This feature improves the RF signal quality. TxBF includes single-user TxBF and multi-user TxBF.

·     Single-user TxBF—Single-user TxBF enables an AP to improve the signal to one intended client. Single-user TxBF is applicable to WLANs that have widely spread clients, poor network quality, and serious signal attenuation.

·     Multi-user TxBF—Multi-user TxBF is part of 802.11ac Wave2. Multi-user TxBF enables an AP to focus different RF signals on their intended clients to reduce interference and transmission delay. This improves traffic throughput and bandwidth usage. Multi-user TxBF is applicable to WLANs that have a large number of clients and require high bandwidth usage and low transmission delay.

Procedure

1.     Enter system view.

system-view

2.     Enter radio interface view.

interface wlan-radio interface-number

3.     Configure single-user TxBF.

su-txbf { disable | enable }

By default, single-user TxBF is disabled.

4.     Configure multi-user TxBF.

mu-txbf { disable | enable }

By default, multi-user TxBF is disabled.

Multi-user TxBF takes effect only when single-user TxBF is enabled.

Configuring 802.11ax functions

 

NOTE:

802.11ax functions are applicable only to 802.11ax and 802.11gax radios.

 

Setting NSSs

About this task

If an AP supports an NSS, it supports all HE-MCS indexes for the NSS. 802.11ax clients that use the rate corresponding to the HE-MCS index for the NSS to send unicast frames. Non-802.11ax clients use the 802.11a/b/g/n/ac rate to send unicast frames.

If you do not set a multicast NSS, 802.11ax clients and the AP use the 802.11a/b/g/n/ac multicast rate to send multicast frames. If you set a multicast NSS and specify an HE-MCS index, the following situations occur:

·     The AP and clients use the rate corresponding to the HE-MCS index to send multicast frames if all clients are 802.11ax clients.

·     The AP and clients use the 802.11a/b/g/n/ac multicast rate to send multicast frames if any non-802.11ax clients exist.

The maximum mandatory NSS or supported NSS determines a range of 802.11 rates. For example, if the maximum mandatory NSS is 5, rates corresponding to HE-MCS indexes for NSSs 1 through 5 will be 802.11ax mandatory rates.

Restrictions and guidelines

The maximum supported NSS cannot be smaller than the maximum mandatory NSS and the multicast NSS cannot be greater than the maximum mandatory NSS.

Procedure

1.     Enter system view.

system-view

2.     Enter radio interface view.

interface wlan-radio interface-number

3.     Set the maximum mandatory NSS.

dot11ax mandatory maximum-nss nss-number

By default, no maximum mandatory NSS is set.

4.     Set the maximum supported NSS.

dot11ax support maximum-nss nss-number

By default, the maximum supported NSS is 8.

5.     Set the multicast NSS and specify an HE-MCS index.

dot11ax multicast-nss nss-number he-mcs index

By default, no multicast NSS is set.

Configuring the client dot11ax-only feature

About this task

To prevent low-speed 802.11a/b/g/n/ac clients from decreasing wireless data transmission performance, you can enable the client dot11ax-only feature for an AP to accept only 802.11ax clients.

Procedure

1.     Enter system view.

system-view

2.     Enter radio interface view.

interface wlan-radio interface-number

3.     Configure the client dot11ax-only feature.

client dot11ax-only { disable | enable }

By default, the client dot11ax-only feature is disabled.

Setting the 802.11ax bandwidth mode

About this task

802.11ax uses the channel structure of 802.11n and increases the maximum bandwidth from 40 MHz to 160 MHz. 802.11ax can bind two adjacent 20/40/80 MHz channels to form a 40/80/160 MHz channel.

The radio uses the specified 40/80/160 MHz bandwidth if adjacent channels can be bound to form a 40/80/160 channel. If adjacent channels cannot form a 40/80/160 channel, the radio uses the next available bandwidth lower than the specified one.

If a working channel is specified for the 160 MHz bandwidth mode, the device automatically selects a secondary channel. The working channel forwards all packets and the secondary channel forwards only data packets.

If the current channel of a radio does not support the specified bandwidth mode, the radio clears the channel configuration and selects another channel.

Figure 2 802.11ax bandwidth modes

Restrictions and guidelines

802.11gax supports only the 20 MHz and 40 MHz bandwidth modes.

Procedure

1.     Enter system view.

system-view

2.     Enter radio interface view.

interface wlan-radio interface-number

3.     Set the 802.11ax bandwidth mode:

channel band-width { 20 | 40 | 80 | 160 }

Execute this command in the view of a 5 GHz radio interface.

By default, the bandwidth mode is 80 MHz for 802.11ax radios.

4.     Set the 802.11gax bandwidth mode:

channel band-width { 20 | 40 [ auto-switch ] }

Execute this command in the view of a 2.4 GHz radio interface.

By default, the bandwidth mode is 20 MHz for 802.11gax radios.

Configuring error packet ratio optimization and retransmission ratio optimization

About this task

This feature enables the device to recalculate the error packet ratio and retransmission ratio by using the specified indexes to get smaller ratio values.

Procedure

1.     Enter system view.

system-view

2.     Set the index for optimizing the error packet ratio.

wlan error-frame optimization value

By default, the index for optimizing the error packet ratio is not set.

3.     Set the index for optimizing the retransmission ratio.

wlan retransmit-frame optimization value

By default, the index for optimizing the retransmission ratio is not set.

Setting the radio channel usage threshold

About the radio channel usage threshold

CAUTION

CAUTION:

Adjusting the radio usage threshold might affect online clients. Please use this feature with caution. A small threshold might cause channel resource waste and a large threshold might result in radio overload and affect WLAN performance.

The system hides the SSID of a radio when the radio's channel usage exceeds the threshold. To associate with the radio when the SSID is hidden, clients must perform active scanning.

Procedure

1.     Enter system view.

system-view

2.     Enter radio interface view.

interface wlan-radio interface-number

3.     Set the radio channel usage threshold.

sacp ssid-hide channel-usage-threshold threshold

By default, the radio channel usage threshold is 90%.

Disabling radar avoidance

About this task

Radar avoidance enables a radio to change its working channel or keep silent when radar signals are detected on the working channel, avoiding interference on radars. After 30 minutes, the radio switches back to the previous working channel or restarts transmission. If radar signals can still be detected, the radio changes its working channel or keeps silent again.

With radar avoidance disabled, radios continue to transmit or receive traffic on the working channels even if radar signals are detected on the channels.

Restrictions and guidelines

Disable radar avoidance only when you perform device debugging.

Procedure

1.     Enter system view.

system-view

2.     Enter radio interface view.

interface wlan-radio interface-number

3.     Disable radar avoidance.

radar-detect disable

By default, radar avoidance is enabled.

Display and maintenance commands for radio management

Execute display commands in any view.

 

Task

Command

Display client information.

display wlan client [ interface interface-type interface-number | mac-address mac-address | service-template service-template-name ] [ verbose ]

Display radio information.

display wlan radio radio-id

Radio management configuration examples

The parameters configured in this example are for reference only. To achieve the best performance,configure the parameters based on your actural network requirements.

Example: Configuring basic radio functions

Network configuration

As shown in Figure 3, set the radio mode, working channel, and maximum transmit power to 802.11b, channel 36, and 19 dBm, respectively.

Figure 3 Network diagram

Procedure

# Enter radio interface view.

<AP> system-view

[AP] interface wlan-radio 1/0/1

# Set the radio mode to dot11b.

[AP-WLAN-Radio1/0/1] type dot11b

# Configure the radio to work on channel 36.

[AP-WLAN-Radio1/0/1] channel 36

# Set the maximum transmit power to 19 dBm.

[AP-WLAN-Radio1/0/1] max-power 19

Verifying the configuration

# Verify that the online clients are 802.11b clients.

[AP-WLAN-Radio1/0/1] display wlan client verbose

Total number of clients: 1

 

MAC address                        : 000f-e265-6400

IPv4 address                       : 10.1.1.114

IPv6 address                       : 2001::1234:5678:0102:0304

Username                           : N/A

AID                                : 1

AP ID                              : 1

AP name                            : ap1

Radio ID                           : 1

SSID                               : office

BSSID                              : 0026-3e08-1150

VLAN ID                            : 1

Power save mode                    : Active

Wireless mode                      : 802.11b

Supported rates                    : 1, 2 Mbps

QoS mode                           : WMM

Listen interval                    : 10

RSSI                               : 62

Rx/Tx rate                         : 130/11

Authentication method              : Open system

Security mode                      : PRE-RSNA

AKM mode                           : N/A

Cipher suite                       : N/A

User authentication mode           : Bypass

Authorization ACL ID               : 3001(Not effective)

Authorization user profile         : N/A

Authorization CAR                  : N/A

Roam status                        : N/A

Key derivation                     : SHA1

PMF status                         : Enabled

Forward policy                     : N/A

Online time                        : 0hr 1min 13sec

FT status                          : Inactive

Example: Configuring 802.11n

Network configuration

As shown in Figure 4, specify the radio as an 802.11an radio, and enable the A-MSDU and A-MPDU aggregation methods on the radio.

Figure 4 Network diagram

Procedure

# Enter radio interface view.

<AP> system-view

[AP] interface wlan-radio 1/0/1

# Set the radio mode to dot11an.

[AP-WLAN-Radio1/0/1] type dot11an

# Enable the A-MSDU and A-MPDU aggregation methods.

[AP-WLAN-Radio1/0/1] a-mpdu enable

[AP-WLAN-Radio1/0/1] a-msdu enable

# Enable the radio.

[AP-WLAN-Radio1/0/1] undo shutdown

Verifying the configuration

# Display client information.

[AP-WLAN-Radio1/0/1] display wlan client verbose

Total number of clients: 1

MAC address                        : 000f-e265-6400

IPv4 address                       : 10.1.1.114

IPv6 address                       : 2001::1234:5678:0102:0304

Username                           : N/A

AID                                : 1

AP ID                              : 1

AP name                            : ap1

Radio ID                           : 1

SSID                               : office

BSSID                              : 0026-3e08-1150

VLAN ID                            : 1

Power save mode                    : Active

Wireless mode                      : 802.11an

Supported rates                    : 1, 2 Mbps

QoS mode                           : WMM

Listen interval                    : 10

RSSI                               : 62

Rx/Tx rate                         : 130/11

Authentication method              : Open system

Security mode                      : PRE-RSNA

AKM mode                           : N/A

Cipher suite                       : N/A

User authentication mode           : Bypass

Authorization ACL ID               : 3001(Not effective)

Authorization user profile         : N/A

Authorization CAR                  : N/A

Roam status                        : N/A

Key derivation                     : SHA1

PMF status                         : Enabled

Forward policy                     : N/A

Online time                        : 0hr 1min 13sec

FT status                          : Inactive

  • Cloud & AI
  • InterConnect
  • Intelligent Computing
  • Intelligent Storage
  • Security
  • SMB Products
  • Intelligent Terminal Products
  • Product Support Services
  • Technical Service Solutions
All Services
  • Resource Center
  • Policy
  • Online Help
  • Technical Blogs
All Support
  • Become A Partner
  • Partner Policy & Program
  • Global Learning
  • Partner Sales Resources
  • Partner Business Management
  • Service Business
All Partners
  • Profile
  • News & Events
  • Online Exhibition Center
  • Contact Us
All About Us
新华三官网