04-Layer 3-IP Routing Configuration Guide

HomeSupportSwitchesS12500X-AF SeriesConfigure & DeployConfiguration GuidesH3C S12500X-AF Switch Series Configuration Guides(R3606)-6W10004-Layer 3-IP Routing Configuration Guide
10-OSPFv3 configuration
Title Size Download
10-OSPFv3 configuration 564.08 KB

Contents

Configuring OSPFv3· 1

About OSPFv3· 1

Comparison of OSPFv3 with OSPFv2· 1

OSPFv3 packets· 1

OSPFv3 LSA types· 1

Protocols and standards· 2

OSPFv3 tasks at a glance· 2

Enabling OSPFv3· 4

Configuring OSPFv3 area parameters· 4

About OSPFv3 areas· 4

Configuring a stub area· 5

Configuring an NSSA area· 5

Configuring an OSPFv3 virtual link· 6

Configuring OSPFv3 network types· 6

Restrictions and guidelines for OSPFv3 network type configuration· 6

Setting the broadcast network type for an OSPFv3 interface· 6

Setting the NBMA network type for an OSPFv3 interface· 7

Setting the P2MP network type for an OSPFv3 interface· 7

Setting the P2P network type for an OSPFv3 interface· 7

Configuring OSPFv3 route control 8

Configuring OSPFv3 inter-area route summarization· 8

Configuring redistributed route summarization· 8

Configuring OSPFv3 received route filtering· 9

Configuring Inter-Area-Prefix LSA filtering· 9

Setting an OSPFv3 cost for an interface· 9

Changing the link cost of a Layer 3 aggregate interface when its bandwidth falls below the threshold  10

Setting the maximum number of OSPFv3 ECMP routes· 11

Setting a preference for OSPFv3· 11

Configuring OSPFv3 route redistribution· 11

Configuring default route redistribution· 12

Advertising OSPFv3 link state information to BGP· 13

Setting OSPFv3 timers· 14

Setting OSPFv3 packet timers· 14

Setting LSA transmission delay· 14

Setting SPF calculation interval 15

Setting the LSA generation interval 15

Setting the LSU transmit rate· 15

Setting a DR priority for an interface· 16

Configuring OSPFv3 packet parameters· 16

Ignoring MTU check for DD packets· 16

Setting the DSCP value for outgoing OSPFv3 packets· 17

Disabling interfaces from receiving and sending OSPFv3 packets· 17

Accelerating OSPFv3 convergence speed· 17

Configuring OSPFv3 ISPF· 17

Configuring prefix suppression· 18

Configuring PIC· 19

Configuring a stub router 20

Configuring OSPFv3 GR· 20

About OSPFv3 GR· 20

Restrictions and guidelines for OSPFv3 GR· 21

Configuring GR restarter 21

Configuring GR helper 21

Triggering OSPFv3 GR· 21

Configuring OSPFv3 NSR· 22

Configuring BFD for OSPFv3· 22

About this task· 22

Enabling BFD for OSPFv3· 22

Enabling OSPFv3 to adjust the interface cost according to the BFD session state· 23

Configuring OSPFv3 FRR· 23

About OSPFv3 FRR· 23

Configuring OSPFv3 FRR to use the LFA algorithm to calculate a backup next hop· 24

Configuring OSPFv3 FRR to use a backup next hop in a routing policy· 24

Configuring BFD control packet mode for OSPFv3 FRR· 25

Configuring BFD echo packet mode for OSPFv3 FRR· 25

Enhancing OSPFv3 security· 26

Configuring OSPFv3 authentication· 26

Applying an IPsec profile for authenticating OSPFv3 packets· 27

Configuring OSPFv3 logging and SNMP notifications· 28

Enabling logging for neighbor state changes· 28

Setting the maximum number of OSPFv3 logs· 29

Configuring OSPFv3 network management 29

Display and maintenance commands for OSPFv3· 30

OSPFv3 configuration examples· 31

Example: Configuring OSPFv3 stub area· 31

Example: Configuring OSPFv3 NSSA area· 37

Example: Configuring OSPFv3 DR election· 40

Example: Configuring OSPFv3 route redistribution· 43

Example: Configuring OSPFv3 route summarization· 46

Example: Configuring OSPFv3 GR· 49

Example: Configuring OSPFv3 NSR· 51

Example: Configuring BFD for OSPFv3· 53

Example: Configuring OSPFv3 FRR· 55

Example: Configuring OSPFv3 IPsec profile· 58

 


Configuring OSPFv3

About OSPFv3

This chapter describes how to configure RFC 2740-compliant Open Shortest Path First version 3 (OSPFv3) for an IPv6 network.

Comparison of OSPFv3 with OSPFv2

OSPFv3 and OSPFv2 have the following in common:

·     32-bit router ID and area ID.

·     Hello, Database Description (DD), Link State Request (LSR), Link State Update (LSU), Link State Acknowledgment (LSAck).

·     Mechanisms for finding neighbors and establishing adjacencies.

·     Mechanisms for advertising and aging LSAs.

OSPFv3 and OSPFv2 have the following differences:

·     OSPFv3 runs on a per-link basis. OSPFv2 runs on a per-IP-subnet basis.

·     OSPFv3 supports running multiple processes on an interface, but OSPFv2 does not support.

·     OSPFv3 identifies neighbors by router ID. OSPFv2 identifies neighbors by IP address.

For more information about OSPFv2, see "Configuring OSPF."

OSPFv3 packets

OSPFv3 uses the following packet types:

·     Hello—Periodically sent to find and maintain neighbors, containing timer values, information about the DR, BDR, and known neighbors.

·     DD—Describes the digest of each LSA in the LSDB, exchanged between two routers for data synchronization.

·     LSR—Requests needed LSAs from the neighbor. After exchanging the DD packets, the two routers know which LSAs of the neighbor are missing from their LSDBs. They then send an LSR packet to each other, requesting the missing LSAs. The LSA packet contains the digest of the missing LSAs.

·     LSU—Transmits the requested LSAs to the neighbor.

·     LSAck—Acknowledges received LSU packets.

OSPFv3 LSA types

OSPFv3 sends routing information in LSAs. The following LSAs are commonly used:

·     Router LSA—Type-1 LSA, originated by all routers. This LSA describes the collected states of the router's interfaces to an area, and is flooded throughout a single area only.

·     Network LSA—Type-2 LSA, originated by the DR. This LSA contains the list of routers connected to the network, and is flooded throughout a single area only.

·     Inter-Area-Prefix LSA—Type-3 LSA, originated by ABRs and flooded throughout the LSA's associated area. Each Inter-Area-Prefix LSA describes a route with IPv6 address prefix to a destination outside the area, yet still inside the AS.

·     Inter-Area-Router LSA—Type-4 LSA, originated by ABRs and flooded throughout the LSA's associated area. Each Inter-Area-Router LSA describes a route to ASBR.

·     AS External LSA—Type-5 LSA, originated by ASBRs, and flooded throughout the AS, except stub areas and Not-So-Stubby Areas (NSSAs). Each AS External LSA describes a route to another AS. A default route can be described by an AS External LSA.

·     NSSA LSA—Type-7 LSA, originated by ASBRs in NSSAs and flooded throughout a single NSSA. NSSA LSAs describe routes to other ASs.

·     Link LSA—Type-8 LSA. A router originates a separate Link LSA for each attached link. Link LSAs have link-local flooding scope. Each Link LSA describes the IPv6 address prefix of the link and Link-local address of the router.

·     Intra-Area-Prefix LSA—Type-9 LSA. Each Intra-Area-Prefix LSA contains IPv6 prefix information on a router, stub area, or transit area information, and has area flooding scope. It was introduced because Router LSAs and Network LSAs contain no address information.

·     Intra-Area-TE LSA—Type-10 LSA, generated by a router configured with an IPv6 router ID or a router in an OSPFv3 area enabled with MPLS TE. Intra-Area-TE LSAs generated by a router configured with an IPv6 router ID contain basic link state information, IPv6 Router ID, neighbor ID, local interface's IPv6 address, and remote interface's IPv6 address. Intra-Area-TE LSAs generated by a router in an OSPFv3 area enabled with MPLS TE contain TE attribute information.

·     Grace LSA—Type-11 LSA, generated by a GR restarter at reboot and transmitted on the local link. The GR restarter describes the cause and interval of the reboot in the Grace LSA to notify its neighbors that it performs a GR operation.

Protocols and standards

·     RFC 2328, OSPF Version 2

·     RFC 3101, OSPF Not-So-Stubby Area (NSSA) Option

·     RFC 4552, Authentication/Confidentiality for OSPFv3

·     RFC 5187, OSPFv3 Graceful Restart

·     RFC 5286, Basic Specification for IP Fast Reroute: Loop-Free Alternates

·     RFC 5329, Traffic Engineering Extensions to OSPF Version 3

·     RFC 5340, OSPF for IPv6

·     RFC 5523, OSPFv3-Based Layer 1 VPN Auto-Discovery

·     RFC 5643, Management Information Base for OSPFv3

·     RFC 6506, Supporting Authentication Trailer for OSPFv3

·     RFC 6565, OSPFv3 as a Provider Edge to Customer Edge (PE-CE) Routing Protocol

·     RFC 6969, OSPFv3 Instance ID Registry Update

·     RFC 7166, Supporting Authentication Trailer for OSPFv3

OSPFv3 tasks at a glance

To configure OSPFv3, perform the following tasks:

1.     Enabling OSPFv3

2.     (Optional.) Configuring OSPFv3 area parameters

¡     Configuring a stub area

¡     Configuring an NSSA area

¡     Configuring an OSPFv3 virtual link

Perform this task on an ABR to create a virtual link when connectivity cannot be maintained between a non-backbone area and the backbone, or within the backbone.

3.     (Optional.) Configuring OSPFv3 network types

¡     Setting the broadcast network type for an OSPFv3 interface

¡     Setting the NBMA network type for an OSPFv3 interface

¡     Setting the P2MP network type for an OSPFv3 interface

¡     Setting the P2P network type for an OSPFv3 interface

4.     (Optional.) Configuring OSPFv3 route control

¡     Configuring OSPFv3 inter-area route summarization

¡     Configuring OSPFv3 received route filtering

¡     Configuring Inter-Area-Prefix LSA filtering

¡     Setting an OSPFv3 cost for an interface

¡     Changing the link cost of a Layer 3 aggregate interface when its bandwidth falls below the threshold

¡     Setting the maximum number of OSPFv3 ECMP routes

¡     Setting a preference for OSPFv3

¡     Configuring OSPFv3 route redistribution

¡     Advertising OSPFv3 link state information to BGP

5.     (Optional.) Setting OSPFv3 timers

¡     Setting OSPFv3 packet timers

¡     Setting LSA transmission delay

¡     Setting SPF calculation interval

¡     Setting the LSA generation interval

¡     Setting the LSU transmit rate

6.     (Optional.) Setting a DR priority for an interface

7.     (Optional.) Configuring OSPFv3 packet parameters

¡     Ignoring MTU check for DD packets

¡     Setting the DSCP value for outgoing OSPFv3 packets

¡     Disabling interfaces from receiving and sending OSPFv3 packets

8.     (Optional.) Accelerating OSPFv3 convergence speed

¡     Configuring OSPFv3 ISPF

¡     Configuring prefix suppression

¡     Configuring PIC

9.     (Optional.) Configuring a stub router

10.     (Optional.) Enhancing OSPFv3 availability

¡     Configuring OSPFv3 GR

¡     Configuring OSPFv3 NSR

¡     Configuring BFD for OSPFv3

¡     Configuring OSPFv3 FRR

11.     (Optional.) Enhancing OSPFv3 security

¡     Configuring OSPFv3 authentication

¡     Applying an IPsec profile for authenticating OSPFv3 packets

12.     (Optional.) Configuring OSPFv3 logging and SNMP notifications

¡     Enabling logging for neighbor state changes

¡     Setting the maximum number of OSPFv3 logs

¡     Configuring OSPFv3 network management

Enabling OSPFv3

About this task

To enable an OSPFv3 process on a router:

1.     Enable the OSPFv3 process globally.

2.     Assign the OSPFv3 process a router ID.

3.     Enable the OSPFv3 process on related interfaces.

An OSPFv3 process ID has only local significance. Process 1 on a router can exchange packets with process 2 on another router.

OSPFv3 requires you to manually specify a router ID for each router in an AS. Make sure all assigned router IDs in the AS are unique.

Restrictions and guideline

If a router runs multiple OSPFv3 processes, you must specify a unique router ID for each process.

Procedure

1.     Enter system view.

system-view

2.     Enable an OSPFv3 process and enter its view.

ospfv3 [ process-id | vpn-instance vpn-instance-name ] *

By default, no OSPFv3 processes are enabled.

3.     Specify a router ID.

router-id router-id

By default, no router ID is configured.

4.     Enter interface view.

interface interface-type interface-number

5.     Enable an OSPFv3 process on the interface.

ospfv3 process-id area area-id [ instance instance-id ]

By default, no OSPFv3 processes are enabled on an interface.

Configuring OSPFv3 area parameters

About OSPFv3 areas

OSPFv3 has the same stub area, NSSA area, and virtual link features as OSPFv2.

After you split an OSPFv3 AS into multiple areas, the LSA number is reduced and OSPFv3 applications are extended. To further reduce the size of routing tables and the number of LSAs, configure the non-backbone areas at an AS edge as stub areas.

A stub area cannot import external routes, but an NSSA area can import external routes into the OSPFv3 routing domain while retaining other stub area characteristics.

Non-backbone areas exchange routing information through the backbone area, so the backbone and non-backbone areas (including the backbone itself) must be fully meshed. If no connectivity can be achieved, configure virtual links.

Configuring a stub area

Restrictions and guidelines

To configure a stub area, you must perform this task on all routers attached to the area.

Procedure

1.     Enter system view.

system-view

2.     Enter OSPFv3 view.

ospfv3 [ process-id | vpn-instance vpn-instance-name ] *

3.     Enter OSPFv3 area view.

area area-id

4.     Configure the area as a stub area.

stub [ default-route-advertise-always | no-summary ] *

By default, no area is configured as a stub area.

The no-summary keyword is only available on the ABR of a stub area. If you specify the no-summary keyword, the ABR only advertises a default route in an Inter-Area-Prefix LSA into the stub area.

5.     (Optional.) Set a cost for the default route advertised to the stub area.

default-cost cost-value

By default, the cost for the default route advertised to the stub area is 1.

Configuring an NSSA area

Restrictions and guidelines

To configure an NSSA area, you must perform this task on all routers attached to the area.

Procedure

1.     Enter system view.

system-view

2.     Enter OSPFv3 view.

ospfv3 [ process-id | vpn-instance vpn-instance-name ] *

3.     Enter OSPFv3 area view.

area area-id

4.     Configure the area as an NSSA area.

nssa [ default-route-advertise [ cost cost-value | nssa-only | route-policy route-policy-name | tag tag | type type ] * | no-import-route | no-summary | [ translate-always | translate-never ] | suppress-fa | translator-stability-interval value ] *

By default, no area is configured as an NSSA area.

To configure a totally NSSA area, execute the nssa no-summary command on the ABR. The ABR of a totally NSSA area does not advertise inter-area routes into the area.

5.     (Optional.) Set a cost for the default route advertised to the NSSA area.

default-cost cost-value

By default, the cost for the default route advertised to the NSSA area is 1.

This command takes effect only on the ABR/ASBR of an NSSA or totally NSSA area.

Configuring an OSPFv3 virtual link

About this task

You can configure a virtual link to maintain connectivity between a non-backbone area and the backbone, or in the backbone itself.

Restrictions and guidelines

Both ends of a virtual link are ABRs that must be configured with the vlink-peer command.

Procedure

1.     Enter system view.

system-view

2.     Enter OSPFv3 view.

ospfv3 [ process-id | vpn-instance vpn-instance-name ] *

3.     Enter OSPFv3 area view.

area area-id

4.     Configure a virtual link.

vlink-peer router-id [ dead seconds | hello seconds | instance instance-id | ipsec-profile profile-name | keychain keychain-name | retransmit seconds | trans-delay seconds ] *

Configuring OSPFv3 network types

Restrictions and guidelines for OSPFv3 network type configuration

Based on the link layer protocol, OSPFv3 classifies networks into different types, including broadcast, NBMA, P2MP, and P2P.

·     If any routers in a broadcast network do not support multicasting, change the network type to NBMA.

·     If a network has only two routers running OSPFv3, you can change the network type to P2P to save costs.

Setting the broadcast network type for an OSPFv3 interface

1.     Enter system view.

system-view

2.     Enter interface view.

interface interface-type interface-number

3.     Set the network type to broadcast for the OSPFv3 interface.

ospfv3 network-type broadcast [ instance instance-id ]

By default, the network type of an interface depends on the media type of the interface.

Setting the NBMA network type for an OSPFv3 interface

Restrictions and guidelines

For NBMA interfaces, you must specify the link-local IP addresses and DR priorities for their neighbors because these interfaces cannot find neighbors by broadcasting hello packets.

Procedure

1.     Enter system view.

system-view

2.     Enter interface view.

interface interface-type interface-number

3.     Set the network type to NBMA for the OSPFv3 interface.

ospfv3 network-type nbma [ instance instance-id ]

By default, the network type of an interface depends on the media type of the interface.

4.     (Optional.) Set the router priority for the interface

ospfv3 dr-priority priority

By default, an interface has a router priority of 1.

An interface's router priority determines its privilege in DR/BDR selection.

5.     Specify an NBMA neighbor.

ospfv3 peer ipv6-address [ cost cost-value | dr-priority priority ] [ instance instance-id ]

By default, no link-local address is specified for the neighbor interface.

Setting the P2MP network type for an OSPFv3 interface

Restrictions and guidelines

For P2MP interfaces (only when in unicast mode), you must specify the link-local IP addresses of their neighbors because these interfaces cannot find neighbors by broadcasting hello packets.

Procedure

1.     Enter system view.

system-view

2.     Enter interface view.

interface interface-type interface-number

3.     Set the network type to P2MP for the OSPFv3 interface.

ospfv3 network-type p2mp [ unicast ] [ instance instance-id ]

By default, the network type of an interface depends on the media type of the interface.

4.     Specify a P2MP unicast neighbor.

ospfv3 peer ipv6-address [ cost cost-value | dr-priority priority ] [ instance instance-id ]

By default, no link-local address is specified for the neighbor interface.

Setting the P2P network type for an OSPFv3 interface

1.     Enter system view.

system-view

2.     Enter interface view.

interface interface-type interface-number

3.     Set the network type to P2P for the OSPFv3 interface.

ospfv3 network-type p2p [ instance instance-id ]

By default, the network type of an interface depends on the media type of the interface.

Configuring OSPFv3 route control

Configuring OSPFv3 inter-area route summarization

About this task

If contiguous network segments exist in an area, you can summarize them into one network segment on the ABR. The ABR will advertise only the summary route. Any LSA on the specified network segment will not be advertised, reducing the LSDB size in other areas.

Procedure

1.     Enter system view.

system-view

2.     Enter OSPFv3 view.

ospfv3 [ process-id | vpn-instance vpn-instance-name ] *

3.     Enter OSPFv3 area view.

area area-id

4.     Configure route summarization on the ABR.

abr-summary ipv6-address prefix-length [ not-advertise ] [ cost cost-value ]

By default, route summarization is not configured on an ABR.

Configuring redistributed route summarization

About this task

Perform this task to enable an ASBR to summarize external routes within the specified address range into a single route.

An ASBR can summarize routes in the following LSAs:

·     Type-5 LSAs.

·     Type-7 LSAs in an NSSA area.

·     Type-5 LSAs translated from Type-7 LSAs in an NSSA area if the ASBR (also an ABR) is a translator. If the ASBR is not a translator, it cannot summarize routes in Type-5 LSAs translated from Type-7 LSAs.

Procedure

1.     Enter system view.

system-view

2.     Enter OSPFv3 view.

ospfv3 [ process-id | vpn-instance vpn-instance-name ] *

3.     Configure route summarization on an ASBR.

asbr-summary ipv6-address prefix-length [ cost cost-value | not-advertise | nssa-only | tag tag ] *

By default, route summarization is not configured on an ASBR.

Configuring OSPFv3 received route filtering

About this task

This task allows you to filter routes calculated by using received LSAs.

Procedure

1.     Enter system view.

system-view

2.     Enter OSPFv3 view.

ospfv3 [ process-id | vpn-instance vpn-instance-name ] *

3.     Configure OSPFv3 to filter routes calculated by using received LSAs.

filter-policy { ipv6-acl-number [ gateway prefix-list-name ] | prefix-list prefix-list-name [ gateway prefix-list-name ] | gateway prefix-list-name | route-policy route-policy-name } import

By default, OSPFv3 accepts all routes calculated by using received LSAs.

This command can only filter routes computed by OSPFv3. Only routes not filtered out can be added into the local routing table.

Configuring Inter-Area-Prefix LSA filtering

Restrictions and guidelines

The filter command takes effect only on ABRs.

Procedure

1.     Enter system view.

system-view

2.     Enter OSPFv3 view.

ospfv3 [ process-id | vpn-instance vpn-instance-name ] *

3.     Enter OSPFv3 area view.

area area-id

4.     Configure OSPFv3 to filter Inter-Area-Prefix LSAs.

filter { ipv6-acl-number | prefix-list prefix-list-name | route-policy route-policy-name } { export | import }

By default, OSPFv3 accepts all Inter-Area-Prefix LSAs.

Setting an OSPFv3 cost for an interface

 

About this task

You can set an OSPFv3 cost for an interface with one of the following methods:

·     Set the cost value in interface view.

·     Set a bandwidth reference value for the interface, and OSPFv3 computes the cost automatically based on the bandwidth reference value by using the following formula:

Interface OSPFv3 cost = Bandwidth reference value (100 Mbps) / Interface bandwidth (Mbps)

¡     If the calculated cost is greater than 65535, the value of 65535 is used.

¡     If the calculated cost is smaller than 1, the value of 1 is used.

·     If no cost is set for an interface, OSPFv3 automatically computes the cost for the interface.

Setting a cost in interface view

1.     Enter system view.

system-view

2.     Enter interface view.

interface interface-type interface-number

3.     Set an OSPFv3 cost for the interface.

ospfv3 cost cost-value [ instance instance-id ]

By default, the OSPFv3 cost is 0 for a loopback interface. The OSPFv3 cost is automatically computed according to the interface bandwidth for other interfaces.

Setting a bandwidth reference value

1.     Enter system view.

system-view

2.     Enter OSPFv3 view.

ospfv3 [ process-id | vpn-instance vpn-instance-name ] *

3.     Set a bandwidth reference value.

bandwidth-reference value

The default bandwidth reference value is 100 Mbps.

Changing the link cost of a Layer 3 aggregate interface when its bandwidth falls below the threshold

About this task

When a member port of a Layer 3 aggregate interface goes down, the bandwidth of the aggregate interface decreases and services might be interrupted. To resolve this issue, perform this task to change the link cost of a Layer 3 aggregate interface as follows:

·     When the bandwidth of the Layer 3 aggregate interface falls below the specified threshold, the aggregate interface uses the specified link cost. Make sure the link cost you specified is larger than the original link cost, so that OSPFv3 can select an optimal path for traffic forwarding.

·     When the bandwidth of the Layer 3 aggregate interface is equal to or larger than the bandwidth threshold, the aggregate interface uses the original link cost.

For more information about OSPFv3 link cost, see "Setting an OSPFv3 cost for an interface."

Restrictions and guidelines

This feature applies to only Layer 3 aggregate interfaces and Layer 3 aggregate subinterfaces.

Procedure

1.     Enter system view.

system-view

2.     Enter interface view.

interface interface-type interface-number

3.     Change the link cost of the interface to the specified value when the bandwidth of the interface falls below the specified threshold.

ospfv3 cost-fallback cost-value threshold bandwidth-value [ instance instance-id ]

By default, an aggregate interface uses the original link cost.

Setting the maximum number of OSPFv3 ECMP routes

About this task

OSPFv3 might find multiple equal-cost routes to the same destination, which can be used to share the traffic load. This task allows you to set the maximum number of ECMP routes.

Procedure

1.     Enter system view.

system-view

2.     Enter OSPFv3 view.

ospfv3 [ process-id | vpn-instance vpn-instance-name ] *

3.     Set the maximum number of ECMP routes.

maximum load-balancing number

By default, the maximum number of OSPFv3 ECMP routes equals the maximum number of ECMP routes.

Setting a preference for OSPFv3

About this task

A router can run multiple routing protocols. The system assigns a priority for each protocol. When these routing protocols find the same route, the route found by the protocol with the highest priority is selected.

Procedure

1.     Enter system view.

system-view

2.     Enter OSPFv3 view.

ospfv3 [ process-id | vpn-instance vpn-instance-name ] *

3.     Set a preference for OSPFv3.

preference [ ase ] { preference | route-policy route-policy-name } *

By default, the preference of OSPFv3 internal routes is 10, and the preference of OSPFv3 external routes is 150.

Configuring OSPFv3 route redistribution

Restrictions and guidelines

Because OSPFv3 is a link state routing protocol, it cannot directly filter LSAs to be advertised. OSPFv3 filters only redistributed routes. Only routes that are not filtered out can be advertised in LSAs.

Procedure

1.     Enter system view.

system-view

2.     Enter OSPFv3 view.

ospfv3 [ process-id | vpn-instance vpn-instance-name ] *

3.     Configure OSPFv3 to redistribute routes from other routing protocols.

import-route bgp4+ [ as-number ] [ allow-ibgp ] [ cost cost-value | inherit-cost ] | nssa-only | route-policy route-policy-name | tag tag | type type ] *

import-route { direct | static | unr } [ cost cost-value | inherit-cost ] | nssa-only | route-policy route-policy-name | tag tag | type type ] *

import-route { isisv6 | ospfv3 | ripng } [ process-id | all-processes ] [ allow-direct | [ cost cost-value | inherit-cost ] | nssa-only | route-policy route-policy-name | tag tag | type type ] *

By default, route redistribution is disabled.

The import-route bgp4+ command redistributes only EBGP routes. The import-route bgp4+ allow-ibgp command redistributes both EBGP and IBGP routes, which might cause routing loops. There, use the import-route bgp4+ allow-ibgp command with caution.

4.     (Optional.) Configure OSPFv3 to filter redistributed routes.

filter-policy { ipv6-acl-number | prefix-list prefix-list-name } export [ bgp4+ | direct | { isisv6 | ospfv3 | ripng } [ process-id ] | static | unr ]

By default, OSPFv3 accepts all redistributed routes.

This command filters only routes redistributed by the import-route command. If no routes are redistributed by the import-route command, this command does not take effect.

5.     Set a tag for redistributed routes.

default tag tag

By default, the tag of redistributed routes is 1.

Configuring default route redistribution

About this task

The import-route command cannot redistribute a default external route. To redistribute a default route, perform this task.

Procedure

1.     Enter system view.

system-view

2.     Enter OSPFv3 view.

ospfv3 [ process-id | vpn-instance vpn-instance-name ] *

3.     Redistribute a default route.

default-route-advertise [ [ always | permit-calculate-other ] | cost cost-value | route-policy route-policy-name | tag tag | type type ] *

By default, no default route is redistributed.

4.     Set a tag for redistributed routes.

default tag tag

By default, the tag of redistributed routes is 1.

Advertising OSPFv3 link state information to BGP

About this task

After the device advertises OSPFv3 link state information to BGP, BGP can advertise the information for intended applications. For more information about BGP LS, see "Configuring BGP."

Advertising OSPFv3 link state information to BGP

1.     Enter system view.

system-view

2.     Enter OSPFv3 view.

ospfv3 [ process-id ]

3.     Advertise OSPFv3 link state information to BGP.

distribute bgp-ls [ instance-id instance-id ]

By default, the device does not advertise OSPFv3 link state information to BGP.

Advertising OSPFv3 link state information containing MPLS TE attributes to BGP

1.     Enter system view.

system-view

2.     Enter OSPFv3 view.

ospfv3 [ process-id ]

3.     Advertise OSPFv3 link state information to BGP.

distribute bgp-ls [ instance-id instance-id ]

By default, the device does not advertise OSPFv3 link state information to BGP.

4.     Configure an IPv6 Router ID for the device.

te-router-id ipv6-address

By default, no IPv6 Router ID is configured for a device.

After you execute this command, OSPFv3 generates Intra-Area-TE LSAs containing basic link state information, IPv6 Router ID, neighbor ID, local interface's IPv6 address, and remote interface's IPv6 address.

5.     Enable OSPFv3 to generate Intra-Area-TE LSAs containing TE attribute information.

a.     Return to system view.

quit

b.     Enable MPLS TE and enter MPLS TE view.

mpls te

By default, MPLS TE is disabled.

For more information about MPLS TE, see MPLS TE configuration in MPLS Configuration Guide.

c.     Enter OSPFv3 view.

ospfv3 [ process-id | vpn-instance vpn-instance-name ] *

d.     Enter OSPFv3 area view.

area area-id

e.     Enable MPLS TE for the OSPFv3 area.

mpls te enable

By default, MPLS TE is disabled for an OSPFv3 area.

After you execute this command, OSPFv3 generates Intra-Area-TE LSAs containing basic link state information and TE attribute information.

Setting OSPFv3 timers

Setting OSPFv3 packet timers

1.     Enter system view.

system-view

2.     Enter interface view.

interface interface-type interface-number

3.     Set the hello interval.

ospfv3 timer hello seconds [ instance instance-id ]

The default hello interval on P2P and broadcast interfaces is 10 seconds. The default hello interval on P2MP and NBMA interfaces is 30 seconds.

4.     Set the dead interval.

ospfv3 timer dead seconds [ instance instance-id ]

The default dead interval on P2P and broadcast interfaces is 40 seconds. The default dead interval on P2MP and NBMA interfaces is 120 seconds.

The dead interval set on neighboring interfaces cannot be too short. If the interval is too short, a neighbor is easily down.

5.     Set the poll interval.

ospfv3 timer poll seconds [ instance instance-id ]

By default, the poll interval is 120 seconds.

6.     Set the LSA retransmission interval.

ospfv3 timer retransmit interval [ instance instance-id ]

The default LSA retransmission interval is 5 seconds.

The LSA retransmission interval cannot be too short. If the interval is too short, unnecessary retransmissions will occur.

Setting LSA transmission delay

About this task

Each LSA in the LSDB has an age that is incremented by 1 every second, but the age does not change during transmission. Therefore, it is necessary to add a transmission delay into the age time, especially for low-speed links.

Procedure

1.     Enter system view.

system-view

2.     Enter interface view.

interface interface-type interface-number

3.     Set the LSA transmission delay.

ospfv3 trans-delay seconds [ instance instance-id ]

By default, the LSA transmission delay is 1 second.

Setting SPF calculation interval

About this task

LSDB changes result in SPF calculations. When the topology changes frequently, a large amount of network and router resources are occupied by SPF calculation. You can adjust the SPF calculation interval to reduce the impact.

For a stable network, the minimum interval is used. If network changes become frequent, the SPF calculation interval is incremented by the incremental interval × 2n-2 for each calculation until the maximum interval is reached. The value n is the number of calculation times.

Procedure

1.     Enter system view.

system-view

2.     Enter OSPFv3 view.

ospfv3 [ process-id | vpn-instance vpn-instance-name ] *

3.     Set the SPF calculation interval.

spf-schedule-interval maximum-interval [ minimum-interval [ incremental-interval ] ]

By default, the maximum interval is 5 seconds, the minimum interval is 50 milliseconds, and the incremental interval is 200 milliseconds.

Setting the LSA generation interval

About this task

You can adjust the LSA generation interval to protect network resources and routers from being over consumed by frequent network changes.

For a stable network, the minimum interval is used. If network changes become frequent, the LSA generation interval is incremented by the incremental interval × 2n-2 for each generation until the maximum interval is reached. The value n is the number of generation times.

Procedure

1.     Enter system view.

system-view

2.     Enter OSPFv3 view.

ospfv3 [ process-id | vpn-instance vpn-instance-name ] *

3.     Set the LSA generation interval.

lsa-generation-interval maximum-interval [ minimum-interval [ incremental-interval ] ]

By default, the maximum interval is 5 seconds, the minimum interval is 0 milliseconds, and the incremental interval is 0 milliseconds.

Setting the LSU transmit rate

About this task

Sending large numbers of LSU packets affects router performance and consumes a large amount of network bandwidth. You can configure the router to send LSU packets at an interval and to limit the maximum number of LSU packets sent out of an OSPFv3 interface at each interval.

Procedure

1.     Enter system view.

system-view

2.     Enter OSPFv3 view.

ospfv3 [ process-id | vpn-instance vpn-instance-name ] *

3.     Set the LSU transmit rate.

transmit-pacing interval interval count count

By default, an OSPFv3 interface sends a maximum of three LSU packets every 20 milliseconds.

Setting a DR priority for an interface

About this task

The router priority is used for DR election. Interfaces having the priority 0 cannot become a DR or BDR.

Procedure

1.     Enter system view.

system-view

2.     Enter interface view.

interface interface-type interface-number

3.     Set a router priority.

ospfv3 dr-priority priority [ instance instance-id ]

The default router priority is 1.

Configuring OSPFv3 packet parameters

Ignoring MTU check for DD packets

About this task

When LSAs are few in DD packets, it is unnecessary to check the MTU in DD packets to improve efficiency.

Restrictions and guidelines

A neighbor relationship can be established only if the interface's MTU is the same as that of the peer.

Procedure

1.     Enter system view.

system-view

2.     Enter interface view.

interface interface-type interface-number

3.     Ignore MTU check for DD packets.

ospfv3 mtu-ignore [ instance instance-id ]

By default, OSPFv3 does not ignore MTU check for DD packets.

Setting the DSCP value for outgoing OSPFv3 packets

About this task

The DSCP value specifies the precedence of outgoing packets.

Procedure

1.     Enter system view.

system-view

2.     Enter OSPFv3 view.

ospfv3 [ process-id | vpn-instance instance-name ] *

3.     Set the DSCP value for outgoing OSPFv3 packets.

dscp dscp-value

By default, the DSCP value for outgoing OSPFv3 packets is 48.

Disabling interfaces from receiving and sending OSPFv3 packets

About this task

After an OSPFv3 interface is set to silent, direct routes of the interface can still be advertised in Intra-Area-Prefix LSAs through other interfaces, but other OSPFv3 packets cannot be advertised. No neighboring relationship can be established on the interface. This feature can enhance the adaptability of OSPFv3 networking.

Procedure

1.     Enter system view.

system-view

2.     Enter OSPFv3 view.

ospfv3 [ process-id | vpn-instance vpn-instance-name ] *

3.     Disable interfaces from receiving and sending OSPFv3 packets.

silent-interface { interface-type interface-number | all }

By default, the interfaces can receive and send OSPFv3 packets.

This command disables only the interfaces that run the current process. However, multiple OSPFv3 processes can disable the same interface from receiving and sending OSPFv3 packets.

Accelerating OSPFv3 convergence speed

Configuring OSPFv3 ISPF

About this task

Incremental SPF (ISPF) allows the system to recalculate nodes affected by topology changes rather than the entire OSPFv3 shortest path tree. OSPFv3 ISPF saves CPU resources caused by SPF calculations and accelerates the convergence speed.

Procedure

1.     Enter system view.

system-view

2.     Enter OSPFv3 view.

ospfv3 [ process-id | vpn-instance vpn-instance-name ] *

3.     Enable OSPFv3 ISPF.

ispf enable

By default, OSPFv3 ISPF is enabled.

Configuring prefix suppression

 

About this task

By default, an OSPFv3 interface advertises all of its prefixes in LSAs. To speed up OSPFv3 convergence, you can suppress interfaces from advertising all of their prefixes. This feature helps improve network security by preventing IP routing to the suppressed networks.

When prefix suppression is enabled:

·     OSPFv3 does not advertise the prefixes of suppressed interfaces in Type-8 LSAs.

·     On broadcast and NBMA networks, the DR does not advertise the prefixes of suppressed interfaces in Type-9 LSAs that reference Type-2 LSAs.

·     On P2P and P2MP networks, OSPFv3 does not advertise the prefixes of suppressed interfaces in Type-9 LSAs that reference Type-1 LSAs.

Restrictions and guidelines for prefix suppression

As a best practice, configure prefix suppression on all OSPFv3 routers if you want to use prefix suppression.

Configuring prefix suppression for an OSPFv3 process

1.     Enter system view.

system-view

2.     Enter OSPFv3 view.

ospfv3 [ process-id | vpn-instance vpn-instance-name ] *

3.     Enable prefix suppression for the OSPFv3 process.

prefix-suppression

By default, prefix suppression is disabled for an OSPFv3 process.

Enabling prefix suppression for an OSPFv3 process does not suppress the prefixes of loopback interfaces and passive interfaces.

Configuring prefix suppression for an interface

1.     Enter system view.

system-view

2.     Enter interface view.

interface interface-type interface-number

3.     Enable prefix suppression for the interface.

ospfv3 prefix-suppression [ disable ] [ instance instance-id ]

By default, prefix suppression is disabled for an interface.

Configuring PIC

 

About this task

Prefix Independent Convergence (PIC) enables the device to converge without the dependence on the number of prefixes. The convergence time does not increase as the number of prefixes in the routing table increases.

Restrictions and guidelines for OSPFv3 PIC

When both OSPFv3 PIC and OSPFv3 FRR are configured, OSPFv3 FRR takes effect.

OSPFv3 PIC applies only to inter-area routes and external routes.

Enabling PIC

1.     Enter system view.

system-view

2.     Enter OSPFv3 view.

ospfv3 [ process-id | vpn-instance instance-name ] *

3.     Enable PIC for OSPFv3.

pic [ additional-path-always ]

By default, OSPFv3 PIC is enabled.

Configuring BFD OSPFv3 PIC (control packet mode)

1.     Enter system view.

system-view

2.     Enter interface view.

interface interface-type interface-number

3.     Enable BFD control packet mode for OSPFv3 PIC.

ospfv3 primary-path-detect bfd ctrl [ instance instance-id ]

By default, BFD control packet mode is disabled for OSPFv3 PIC.

To speed up OSPFv3 convergence, enable BFD control packet mode for OSPFv3 PIC to detect the primary link failures. This mode requires BFD configuration on both OSPFv3 routers on the link.

Configuring BFD for OSPFv3 PIC (echo packet mode)

1.     Enter system view.

system-view

2.     Configure the source IP address of BFD echo packets.

bfd echo-source-ip ip-address

By default, the source IP address of BFD echo packets is not configured.

The source IP address cannot be on the same network segment as any local interface's IP address.

For more information about this command, see High Availability Command Reference.

3.     Enter interface view.

interface interface-type interface-number

4.     Enable BFD echo packet mode for OSPFv3 PIC.

ospfv3 primary-path-detect bfd echo [ instance instance-id ]

By default, BFD echo packet mode is disabled for OSPFv3 PIC.

To speed up OSPFv3 convergence, enable BFD single-hop echo packet mode for OSPFv3 PIC to detect the primary link failures. This mode requires BFD configuration on one OSPFv3 router on the link.

Configuring a stub router

About this task

A stub router is used for traffic control. It reports its status as a stub router to neighboring OSPFv3 routers. The neighboring routers can have a route to the stub router, but they do not use the stub router to forward data.

Use either of the following methods to configure a router as a stub router:

·     Clear the R-bit of the Option field in Type-1 LSAs. When the R-bit is clear, the OSPFv3 router can participate in OSPFv3 topology distribution without forwarding traffic.

·     Use the OSPFv3 max-metric router LSA feature. This feature enables OSPFv3 to advertise its locally generated Type-1 LSAs with a maximum cost of 65535. Neighbors do not send packets to the stub router as long as they have a route with a smaller cost.

Procedure

1.     Enter system view.

system-view

2.     Enter OSPFv3 view.

ospfv3 [ process-id | vpn-instance vpn-instance-name ] *

3.     Configure the router as a stub router.

¡     Configure the router as a stub router and clear the R-bit of the Option field in Type-1 LSAs.

stub-router r-bit [ include-stub | on-startup { seconds | wait-for-bgp [ seconds ] } ] *

¡     Configure the router as a stub router and advertise the locally generated Type-1 LSAs with the maximum cost of 65535.

stub-router max-metric [ external-lsa [ max-metric-value ] | summary-lsa [ max-metric-value ] | include-stub | on-startup { seconds | wait-for-bgp [ seconds ] } ] *

By default, the router is not configured as a stub router.

A stub router is not related to a stub area.

Configuring OSPFv3 GR

About OSPFv3 GR

GR ensures forwarding continuity when a routing protocol restarts or an active/standby switchover occurs.

Two routers are required to complete a GR process. The following are router roles in a GR process:

·     GR restarter—Graceful restarting router. It must be Graceful Restart capable.

·     GR helper—The neighbor of the GR restarter. It helps the GR restarter to complete the GR process.

To prevent service interruption after a master/backup switchover, a GR restarter running OSPFv3 must perform the following tasks:

·     Keep the GR restarter forwarding entries stable during reboot.

·     Establish all adjacencies and obtain complete topology information after reboot.

After the active/standby switchover, the GR restarter sends a Grace LSA to tell its neighbors that it performs a GR. Upon receiving the Grace LSA, the neighbors with the GR helper capability enter the helper mode (and are called GR helpers). Then, the GR restarter retrieves its adjacencies and LSDB with the help of the GR helpers.

Restrictions and guidelines for OSPFv3 GR

You cannot enable OSPFv3 NSR on a device that acts as GR restarter.

Configuring GR restarter

1.     Enter system view.

system-view

2.     Enter OSPFv3 view.

ospfv3 [ process-id | vpn-instance vpn-instance-name ] *

3.     Enable the GR capability.

graceful-restart enable [ global | planned-only ] *

By default, OSPFv3 GR restarter capability is disabled.

4.     (Optional.) Set the GR interval.

graceful-restart interval interval

By default, the GR interval is 120 seconds.

Configuring GR helper

1.     Enter system view.

system-view

2.     Enter OSPFv3 view.

ospfv3 [ process-id | vpn-instance vpn-instance-name ] *

3.     Enable the GR helper capability.

graceful-restart helper enable [ planned-only ]

By default, the GR helper capability is enabled.

4.     Enable strict LSA checking.

graceful-restart helper strict-lsa-checking

By default, strict LSA checking is disabled.

Triggering OSPFv3 GR

About this task

OSPFv3 GR is triggered by an active/standby switchover or when this task is performed.

Procedure

To trigger OSPFv3 GR, execute the reset ospfv3 [ process-id ] process graceful-restart command in user view.

Configuring OSPFv3 NSR

About this task

Nonstop routing (NSR) backs up OSPFv3 link state information from the active process to the standby process. After an active/standby switchover, NSR can complete link state recovery and route regeneration without tearing down adjacencies or impacting forwarding services.

NSR does not require the cooperation of neighboring devices to recover routing information, and it is typically used more often than GR.

Restrictions and guidelines

A device that has OSPFv3 NSR enabled cannot act as GR restarter.

Procedure

1.     Enter system view.

system-view

2.     Enter OSPFv3 view.

ospfv3 [ process-id | vpn-instance vpn-instance-name ] *

3.     Enable OSPFv3 NSR.

non-stop-routing

By default, OSPFv3 NSR is disabled.

This command takes effect only for the current process. As a best practice, enable OSPFv3 NSR for each process if multiple OSPFv3 processes exist.

Configuring BFD for OSPFv3

About this task

Bidirectional forwarding detection (BFD) provides a mechanism to quickly detect the connectivity of links between OSPFv3 neighbors, improving the convergence speed of OSPFv3. For more information about BFD, see High Availability Configuration Guide.

After discovering neighbors by sending hello packets, OSPFv3 notifies BFD of the neighbor addresses, and BFD uses these addresses to establish sessions. Before a BFD session is established, it is in the down state. In this state, BFD control packets are sent at an interval of no less than 1 second to reduce BFD control packet traffic. After the BFD session is established, BFD control packets are sent at the negotiated interval, thereby implementing fast fault detection.

To configure BFD for OSPFv3, you need to configure OSPFv3 first.

Enabling BFD for OSPFv3

1.     Enter system view.

system-view

2.     Enter OSPFv3 view.

ospfv3 [ process-id | vpn-instance vpn-instance-name ] *

3.     Specify a router ID.

router-id router-id

4.     Quit the OSPFv3 view.

quit

5.     Enter interface view.

interface interface-type interface-number

6.     Enable an OSPFv3 process on the interface.

ospfv3 process-id area area-id [ instance instance-id ]

7.     Enable BFD on the interface.

ospfv3 bfd enable [ instance instance-id ]

By default, BFD is disabled on the OSPFv3 interface.

Enabling OSPFv3 to adjust the interface cost according to the BFD session state

About this task

After you enable BFD for OSPFv3, the OSPFv3 neighbor relationship goes down when the BFD session is down and comes up when the BFD session is up. When the BFD session state changes frequently, OSPFv3 neighbor relationship flapping will occur and traffic forwarding might be affected.

To resolve this issue, enable OSPFv3 to adjust the interface cost according to the BFD session state.

After you configure this feature on an interface, OSPFv3 adjusts the interface cost as follows:

·     When the BFD session on the interface goes down, OSPFv3 increases the cost value for the interface.

·     When the BFD session on the interface comes up, OSPFv3 restores the cost value for the interface.

Procedure

1.     Enter system view.

system-view

2.     Enter interface view.

interface interface-type interface-number

3.     Enable OSPFv3 to adjust the interface cost according to the BFD session state.

ospfv3 bfd adjust-cost { cost-offset | max } [ instance instance-id ]

By default, OSPFv3 does not adjust the link cost according to the BFD session state.

Configuring OSPFv3 FRR

About OSPFv3 FRR

A primary link failure can cause packet loss and even a routing loop until OSPFv3 completes routing convergence based on the new network topology. OSPFv3 FRR enables fast rerouting to minimize the failover time.

Figure 1 Network diagram for OSPFv3 FRR

 

As shown in Figure 1, configure FRR on Router B. OSPFv3 FRR automatically calculates a backup next hop or specifies a backup next hop by using a routing policy. When the primary link fails, OSPFv3 directs packets to the backup next hop. At the same time, OSPFv3 calculates the shortest path based on the new network topology. It forwards packets over the path after network convergence.

You can configure OSPFv3 FRR to calculate a backup next hop by using the loop free alternate (LFA) algorithm, or specify a backup next hop by using a routing policy.

Configuring OSPFv3 FRR to use the LFA algorithm to calculate a backup next hop

Restrictions and guidelines

Do not use the fast-reroute lfa command together with the vlink-peer command.

Procedure

1.     Enter system view.

system-view

2.     Enter interface view.

interface interface-type interface-number

3.     (Optional.) Disable LFA on an interface.

ospfv3 fast-reroute lfa-backup exclude

By default, the interface on which LFA is enabled can be selected as a backup interface.

4.     Return to system view.

quit

5.     Enter OSPFv3 view.

ospfv3 [ process-id | vpn-instance vpn-instance-name ] *

6.     Enable OSPFv3 FRR to use the LFA algorithm to calculate a backup next hop.

fast-reroute lfa [ abr-only ]

By default, OSPFv3 FRR is disabled.

If abr-only is specified, the route to the ABR is selected as the backup path.

Configuring OSPFv3 FRR to use a backup next hop in a routing policy

About this task

Before you perform this task, use the apply ipv6 fast-reroute backup-interface command to specify a backup next hop in the routing policy to be used. For more information about the apply ipv6 fast-reroute backup-interface command and routing policy configuration, see "Configuring routing policies."

Procedure

1.     Enter system view.

system-view

2.     Enter interface view.

interface interface-type interface-number

3.     (Optional.) Disable LFA on an interface.

ospfv3 fast-reroute lfa-backup exclude

By default, the interface is enabled with LFA and it can be selected as a backup interface.

4.     Return to system view.

quit

5.     Enter OSPFv3 view.

ospfv3 [ process-id | vpn-instance vpn-instance-name ] *

6.     Configure OSPFv3 FRR to use a backup next hop in a routing policy.

fast-reroute route-policy route-policy-name

By default, OSPFv3 FRR is disabled.

Configuring BFD control packet mode for OSPFv3 FRR

About this task

By default, OSPFv3 FRR does not use BFD to detect primary link failures. To speed up OSPFv3 convergence, enable BFD control packet mode for OSPFv3 FRR to detect primary link failures. This mode requires BFD configuration on both OSPFv3 routers on the link.

Procedure

1.     Enter system view.

system-view

2.     Enter interface view.

interface interface-type interface-number

3.     Enable BFD control packet mode for OSPFv3 FRR.

ospfv3 primary-path-detect bfd ctrl [ instance instance-id ]

By default, BFD control packet mode is disabled for OSPFv3 FRR.

Configuring BFD echo packet mode for OSPFv3 FRR

About this task

By default, OSPFv3 FRR does not use BFD to detect primary link failures. To speed up OSPFv3 convergence, enable BFD echo packet mode for OSPFv3 FRR to detect primary link failures. This mode requires BFD configuration on one OSPFv3 router on the link.

Procedure

1.     Enter system view.

system-view

2.     Configure the source IPv6 address of BFD echo packets.

bfd echo-source-ipv6 ipv6-address

By default, the source IPv6 address of BFD echo packets is not configured.

The source IPv6 address cannot be on the same network segment as any local interface's IP address.

For more information about this command, see High Availability Command Reference.

3.     Enter interface view.

interface interface-type interface-number

4.     Enable BFD echo packet mode for OSPFv3 FRR.

ospfv3 primary-path-detect bfd echo [ instance instance-id ]

By default, BFD echo packet mode is disabled for OSPFv3 FRR.

Enhancing OSPFv3 security

Configuring OSPFv3 authentication

 

About this task

OSPFv3 uses keychain authentication to prevent routing information from being leaked and routers from being attacked.

OSPFv3 adds the Authentication Trailer option into outgoing packets, and uses the authentication information in the option to authenticate incoming packets. Only packets that pass the authentication can be received. If a packet fails the authentication, the OSPFv3 neighbor relationship cannot be established.

Restrictions and guidelines

The authentication mode specified for an OSPFv3 interface has a higher priority than the mode specified for an OSPFv3 area.

Configuring OSPFv3 area authentication

1.     Enter system view.

system-view

2.     Enter OSPFv3 view.

ospfv3 [ process-id | vpn-instance vpn-instance-name ] *

3.     Enter OSPFv3 area view.

area area-id

4.     Specify an authentication mode for the area.

authentication-mode keychain keychain-name

By default, no authentication is performed for the area.

For more information about keychains, see Security Configuration Guide.

Configuring OSPFv3 interface authentication

1.     Enter system view.

system-view

2.     Enter interface view.

interface interface-type interface-number

3.     Specify an authentication mode for the interface.

ospfv3 authentication-mode keychain keychain-name [ instance instance-id ]

By default, no authentication is performed for the interface.

For more information about keychains, see Security Configuration Guide.

Applying an IPsec profile for authenticating OSPFv3 packets

 

About this task

To protect routing information and prevent attacks, OSPFv3 can authenticate protocol packets by using an IPsec profile. For more information about IPsec profiles, see Security Configuration Guide.

Outbound OSPFv3 packets carry the Security Parameter Index (SPI) defined in the relevant IPsec profile. A device compares the SPI carried in a received packet with the configured IPsec profile. If they match, the device accepts the packet. Otherwise, the device discards the packet and will not establish a neighbor relationship with the sending device.

Restrictions and guidelines for applying an IPsec profile

You can configure an IPsec profile for an area, an interface, a virtual link, or a sham link.

·     To implement area-based IPsec protection, configure the same IPsec profile on the routers in the target area.

·     To implement interface-based IPsec protection, configure the same IPsec profile on the interfaces between two neighboring routers.

·     To implement virtual link-based IPsec protection, configure the same IPsec profile on the two routers connected over the virtual link.

·     To implement sham link-based IPsec protection, configure the same IPsec profile on the two routers connected over the sham link. For more information about sham links, see MPLS Configuration Guide.

·     If an interface and its area each have an IPsec profile configured, the interface uses its own IPsec profile.

·     If a virtual link and area 0 each have an IPsec profile configured, the virtual link uses its own IPsec profile.

·     If a sham link and its area have an IPsec profile configured, the sham link uses its own IPsec profile.

Applying an IPsec profile to an area

1.     Enter system view.

system-view

2.     Enter OSPFv3 view.

ospfv3 [ process-id | vpn-instance vpn-instance-name ] *

3.     Enter OSPFv3 area view.

area area-id

4.     Apply an IPsec profile to the area.

enable ipsec-profile profile-name

By default, no IPsec profile is applied.

Applying an IPsec profile to an interface

1.     Enter system view.

system-view

2.     Enter interface view.

interface interface-type interface-number

3.     Apply an IPsec profile to the interface.

ospfv3 ipsec-profile profile-name [ instance instance-id ]

By default, no IPsec profile is applied.

Applying an IPsec profile to a virtual link

1.     Enter system view.

system-view

2.     Enter OSPFv3 view.

ospfv3 [ process-id | vpn-instance vpn-instance-name ] *

3.     Enter OSPFv3 area view.

area area-id

4.     Apply an IPsec profile to a virtual link.

vlink-peer router-id [ dead seconds | hello seconds | instance instance-id | ipsec-profile profile-name | keychain keychain-name | retransmit seconds | trans-delay seconds ] *

By default, no IPsec profile is applied.

Applying an IPsec profile to a sham link

1.     Enter system view.

system-view

2.     Enter OSPFv3 view.

ospfv3 [ process-id | vpn-instance vpn-instance-name ] *

3.     Enter OSPFv3 area view.

area area-id

4.     Apply an IPsec profile to a sham link.

sham-link source-ipv6-address destination-ipv6-address [ cost cost-value | dead dead-interval | hello hello-interval | instance instance-id | ipsec-profile profile-name | keychain keychain-name | retransmit retrans-interval | trans-delay delay ] *

By default, no IPsec profile is applied.

Configuring OSPFv3 logging and SNMP notifications

Enabling logging for neighbor state changes

About this task

With this feature enabled, the router delivers logs about neighbor state changes to its information center. The information center processes logs according to user-defined output rules (whether to output logs and where to output). For more information about the information center, see Network Management and Monitoring Configuration Guide.

Procedure

1.     Enter system view.

system-view

2.     Enter OSPFv3 view.

ospfv3 [ process-id | vpn-instance vpn-instance-name ] *

3.     Enable logging for neighbor state changes.

log-peer-change

By default, this feature is enabled.

Setting the maximum number of OSPFv3 logs

About this task

OSPFv3 logs include route calculation logs, neighbor logs, and LSA aging logs.

Procedure

1.     Enter system view.

system-view

2.     Enter OSPFv3 view.

ospfv3 [ process-id | vpn-instance vpn-instance-name ] *

3.     Set the maximum number of OSPFv3 logs.

event-log { lsa-flush | peer | spf } size count

By default, the maximum number of LSA aging logs, neighbor logs, or route calculation logs is 10.

Configuring OSPFv3 network management

About this task

This task involves the following configurations:

·     Bind an OSPFv3 process to MIB so that you can use network management software to manage the specified OSPFv3 process.

·     Enable SNMP notifications for OSPFv3 to report important events.

·     Set the SNMP notification output interval and the maximum number of SNMP notifications that can be output at each interval.

To report critical OSPFv3 events to an NMS, enable SNMP notifications for OSPFv3. For SNMP notifications to be sent correctly, you must also configure SNMP on the device. For more information about SNMP configuration, see the network management and monitoring configuration guide for the device.

The standard OSPFv3 MIB provides only single-instance MIB objects. To identify multiple OSPFv3 processes in the standard OSPFv3 MIB, you must assign a unique context name to each OSPFv3 process.

Context is a method introduced to SNMPv3 for multiple-instance management. For SNMPv1/v2c, you must specify a community name as a context name for protocol identification.

Procedure

1.     Enter system view.

system-view

2.     Bind MIB to an OSPFv3 process.

ospfv3 mib-binding process-id

By default, MIB is bound to the process with the smallest process ID.

3.     Enable SNMP notifications for OSPFv3.

snmp-agent trap enable ospfv3 [ grrestarter-status-change | grhelper-status-change | if-state-change | if-cfg-error | if-bad-pkt | neighbor-state-change | nssatranslator-status-change | virtif-bad-pkt | virtif-cfg-error | virtif-state-change | virtgrhelper-status-change | virtneighbor-state-change ]*

By default, SNMP notifications for OSPFv3 are enabled.

4.     Enter OSPFv3 view.

ospfv3 [ process-id | vpn-instance vpn-instance-name ] *

5.     Configure an SNMP context for the OSPFv3 process.

snmp context-name context-name

By default, no SNMP context is configured for the OSPFv3 process.

6.     (Optional.) Set the SNMP notification output interval and the maximum number of SNMP notifications that can be output at each interval.

snmp trap rate-limit interval trap-interval count trap-number

By default, OSPFv3 outputs a maximum of seven SNMP notifications within 10 seconds.

Display and maintenance commands for OSPFv3

Execute display commands in any view and reset commands in user view.

 

Task

Command

Display information about the routes to OSPFv3 ABR and ASBR.

display ospfv3 [ process-id ] abr-asbr

Display summary route information on the OSPFv3 ABR.

display ospfv3 [ process-id ] [ area area-id ] abr-summary [ ipv6-address prefix-length ] [ verbose ]

Display summary route information on the OSPFv3 ASBR.

display ospfv3 [ process-id ] asbr-summary [ ipv6-address prefix-length ] [ verbose ]

Display OSPFv3 log information.

display ospfv3 [ process-id ] event-log { lsa-flush | peer | spf }

Display OSPFv3 process information.

display ospfv3 [ process-id ] [ verbose ]

Display OSPFv3 GR information.

display ospfv3 [ process-id ] graceful-restart [ verbose ]

Display OSPFv3 NSR information.

display ospfv3 [ process-id ] non-stop-routing

Display OSPFv3 interface information.

display ospfv3 [ process-id ] interface [ interface-type interface-number | verbose ]

Display OSPFv3 LSDB information.

display ospfv3 [ process-id ] lsdb [ { external | grace | inter-prefix | inter-router | intra-prefix | intra-te | link | network | nssa | router | unknown [ type ] } [ link-state-id ] [ originate-router router-id | self-originate ] | statistics | total | verbose ]

Display OSPFv3 next hop information.

display ospfv3 [ process-id ] nexthop

Display OSPFv3 neighbor information.

display ospfv3 [ process-id ] [ area area-id ] peer [ [ interface-type interface-number ] [ verbose ] | peer-router-id | statistics ]

Display OSPFv3 request list information.

display ospfv3 [ process-id ] [ area area-id ] request-queue [ interface-type interface-number ] [ neighbor-id ]

Display OSPFv3 retransmission list information.

display ospfv3 [ process-id ] [ area area-id ] retrans-queue [ interface-type interface-number ] [ neighbor-id ]

Display OSPFv3 routing information.

display ospfv3 [ process-id ] routing [ ipv6-address prefix-length ]

Display OSPFv3 topology information.

display ospfv3 [ process-id ] [ area area-id ] spf-tree [ verbose ]

Display OSPFv3 statistics.

display ospfv3 [ process-id ] statistics [ error ]

Display OSPFv3 virtual link information.

display ospfv3 [ process-id ] vlink

Display global OSPFv3 statistics.

display ospfv3 global-statistics [ public | vpn-instance vpn-instance-name ]

Restart an OSPFv3 process.

reset ospfv3 [ process-id ] process [ graceful-restart ]

Restart OSPFv3 route redistribution.

reset ospfv3 [ process-id ] redistribution

Clear OSPFv3 statistics.

reset ospfv3 [ process-id ] statistics

Clear OSPFv3 log information.

reset ospfv3 [ process-id ] event-log [ lsa-flush | peer | spf ]

 

OSPFv3 configuration examples

Example: Configuring OSPFv3 stub area

Network configuration

As shown in Figure 2:

·     Enable OSPFv3 on all routers.

·     Split the AS into three areas.

·     Configure Router B and Router C as ABRs to forward routing information between areas.

·     Configure Area 2 as a stub area to reduce LSAs in the area without affecting route reachability.

Figure 2 Network diagram

Procedure

IMPORTANT

IMPORTANT:

By default, interfaces on the device are disabled (in ADM or Administratively Down state). To have an interface operate, you must use the undo shutdown command to enable that interface.

1.     Configure IPv6 addresses for interfaces. (Details not shown.)

2.     Configure basic OSPFv3:

# On Router A, enable OSPFv3 and specify the router ID as 1.1.1.1.

<RouterA> system-view

[RouterA] ospfv3 1

[RouterA-ospfv3-1] router-id 1.1.1.1

[RouterA-ospfv3-1] quit

[RouterA] interface hundredgige 1/0/1

[RouterA-HundredGigE1/0/1] ospfv3 1 area 1

[RouterA-HundredGigE1/0/1] quit

[RouterA] interface hundredgige 1/0/2

[RouterA-HundredGigE1/0/2] ospfv3 1 area 1

[RouterA-HundredGigE1/0/2] quit

# On Router B, enable OSPFv3 and specify the router ID as 2.2.2.2.

<RouterB> system-view

[RouterB] ospfv3 1

[RouterB-ospfv3-1] router-id 2.2.2.2

[RouterB-ospfv3-1] quit

[RouterB] interface hundredgige 1/0/1

[RouterB-HundredGigE1/0/1] ospfv3 1 area 0

[RouterB-HundredGigE1/0/1] quit

[RouterB] interface hundredgige 1/0/2

[RouterB-HundredGigE1/0/2] ospfv3 1 area 1

[RouterB-HundredGigE1/0/2] quit

# On Router C, enable OSPFv3 and specify the router ID as 3.3.3.3.

<RouterC> system-view

[RouterC] ospfv3 1

[RouterC-ospfv3-1] router-id 3.3.3.3

[RouterC-ospfv3-1] quit

[RouterC] interface hundredgige 1/0/1

[RouterC-HundredGigE1/0/1] ospfv3 1 area 0

[RouterC-HundredGigE1/0/1] quit

[RouterC] interface hundredgige 1/0/2

[RouterC-HundredGigE1/0/2] ospfv3 1 area 2

[RouterC-HundredGigE1/0/2] quit

# On Router D, enable OSPFv3 and specify the router ID as 4.4.4.4.

<RouterD> system-view

[RouterD] ospfv3 1

[RouterD-ospfv3-1] router-id 4.4.4.4

[RouterD-ospfv3-1] quit

[RouterD] interface hundredgige 1/0/2

[RouterD-HundredGigE1/0/2] ospfv3 1 area 2

[RouterD-HundredGigE1/0/2] quit

# Display OSPFv3 neighbors on Router B.

[RouterB] display ospfv3 peer

 

               OSPFv3 Process 1 with Router ID 2.2.2.2

 

 Area: 0.0.0.0

-------------------------------------------------------------------------

 Router ID       Pri State             Dead-Time InstID Interface

 3.3.3.3         1   Full/BDR          00:00:40  0      HGE1/0/1

 

 Area: 0.0.0.1

-------------------------------------------------------------------------

 Router ID       Pri State             Dead-Time InstID Interface

 1.1.1.1         1   Full/DR           00:00:40  0      HGE1/0/2

# Display OSPFv3 neighbors on Router C.

[RouterC] display ospfv3 peer

 

               OSPFv3 Process 1 with Router ID 3.3.3.3

 

 Area: 0.0.0.0

-------------------------------------------------------------------------

 Router ID       Pri State             Dead-Time InstID Interface

 2.2.2.2         1   Full/DR           00:00:40  0      HGE1/0/1

 

 Area: 0.0.0.2

-------------------------------------------------------------------------

 Router ID       Pri State             Dead-Time InstID Interface

 4.4.4.4         1   Full/BDR          00:00:40  0      HGE1/0/2

# Display OSPFv3 neighbors on Router D.

[RouterD] display ospfv3 routing

 

               OSPFv3 Process 1 with Router ID 4.4.4.4

-------------------------------------------------------------------------

 I  - Intra area route,  E1 - Type 1 external route,  N1 - Type 1 NSSA route

 IA - Inter area route,  E2 - Type 2 external route,  N2 - Type 2 NSSA route

 *  - Selected route

 

*Destination: 2001::/64

  Type       : IA                        Area       : 0.0.0.2

  AdvRouter  : 3.3.3.3                   Preference : 10

  NibID      : 0x23000004                Cost       : 2

  Interface  : HGE1/0/2                  BkInterface: N/A

  Nexthop    : FE80::48C0:26FF:FEDA:305

  BkNexthop  : N/A

  Status     : Rely

 

 *Destination: 2001:1::/64

  Type       : IA                        Area       : 0.0.0.2

  AdvRouter  : 3.3.3.3                   Preference : 10

  NibID      : 0x23000004                Cost       : 3

  Interface  : HGE1/0/2                  BkInterface: N/A

  Nexthop    : FE80::48C0:26FF:FEDA:305

  BkNexthop  : N/A

  Status     : Rely

 

 *Destination: 2001:2::/64

  Type       : I                         Area       : 0.0.0.2

  AdvRouter  : 4.4.4.4                   Preference : 10

  NibID      : 0x23000002                Cost       : 1

  Interface  : HGE1/0/2                  BkInterface: N/A

  Nexthop    : ::

  BkNexthop  : N/A

  Status     : Direct

 

 *Destination: 2001:3::1/128

  Type       : IA                        Area       : 0.0.0.2

  AdvRouter  : 3.3.3.3                   Preference : 10

  NibID      : 0x23000004                Cost       : 3

  Interface  : HGE1/0/2                  BkInterface: N/A

  Nexthop    : FE80::48C0:26FF:FEDA:305

  BkNexthop  : N/A

  Status     : Rely

 

 Total: 4

 Intra area: 1         Inter area: 3         ASE: 0         NSSA: 0

3.     Configure Area 2 as a stub area:

# Configure Router D.

[RouterD] ospfv3

[RouterD-ospfv3-1] area 2

[RouterD-ospfv3-1-area-0.0.0.2] stub

[RouterD-ospfv3-1-area-0.0.0.2] quit

[RouterD-ospfv3-1] quit

# Configure Router C, and specify the cost of the default route sent to the stub area as 10.

[RouterC] ospfv3

[RouterC-ospfv3-1] area 2

[RouterC-ospfv3-1-area-0.0.0.2] stub

[RouterC-ospfv3-1-area-0.0.0.2] default-cost 10

# Display OSPFv3 routing table on Router D.

[RouterD] display ospfv3 routing

 

               OSPFv3 Process 1 with Router ID 4.4.4.4

-------------------------------------------------------------------------

 I  - Intra area route,  E1 - Type 1 external route,  N1 - Type 1 NSSA route

 IA - Inter area route,  E2 - Type 2 external route,  N2 - Type 2 NSSA route

 *  - Selected route

 

*Destination: ::/0

  Type       : IA                        Area       : 0.0.0.2

  AdvRouter  : 3.3.3.3                   Preference : 10

  NibID      : 0x23000003                Cost       : 11

  Interface  : HGE1/0/2                  BkInterface: N/A

  Nexthop    : FE80::48C0:26FF:FEDA:305

  BkNexthop  : N/A

  Status     : Rely

 

 *Destination: 2001::/64

  Type       : IA                        Area       : 0.0.0.2

  AdvRouter  : 3.3.3.3                   Preference : 10

  NibID      : 0x23000003                Cost       : 2

  Interface  : HGE1/0/2                  BkInterface: N/A

  Nexthop    : FE80::48C0:26FF:FEDA:305

  BkNexthop  : N/A

  Status     : Rely

 

 *Destination: 2001:1::/64

  Type       : IA                        Area       : 0.0.0.2

  AdvRouter  : 3.3.3.3                   Preference : 10

  NibID      : 0x23000003                Cost       : 3

  Interface  : HGE1/0/2                  BkInterface: N/A

  Nexthop    : FE80::48C0:26FF:FEDA:305

  BkNexthop  : N/A

  Status     : Rely

 

 *Destination: 2001:2::/64

  Type       : I                         Area       : 0.0.0.2

  AdvRouter  : 4.4.4.4                   Preference : 10

  NibID      : 0x23000001                Cost       : 1

  Interface  : HGE1/0/2                  BkInterface: N/A

  Nexthop    : ::

  BkNexthop  : N/A

  Status     : Direct

 

 *Destination: 2001:3::1/128

  Type       : IA                        Area       : 0.0.0.2

  AdvRouter  : 3.3.3.3                   Preference : 10

  NibID      : 0x23000003                Cost       : 3

  Interface  : HGE1/0/2                  BkInterface: N/A

  Nexthop    : FE80::48C0:26FF:FEDA:305

  BkNexthop  : N/A

  Status     : Rely

 

 Total: 5

 Intra area: 1         Inter area: 4         ASE: 0         NSSA: 0

The output shows that a default route is added and its cost is the cost of a direct route plus the configured cost.

4.     Configure Area 2 as a totally stub area to further reduce the stub area routing table size:

# Configure Area 2 as a totally stub area on Router C.

[RouterC-ospfv3-1-area-0.0.0.2] stub no-summary

# Display OSPFv3 routing table on Router D.

[RouterD] display ospfv3 routing

 

               OSPFv3 Process 1 with Router ID 4.4.4.4

-------------------------------------------------------------------------

 I  - Intra area route,  E1 - Type 1 external route,  N1 - Type 1 NSSA route

 IA - Inter area route,  E2 - Type 2 external route,  N2 - Type 2 NSSA route

 *  - Selected route

 

*Destination: ::/0

  Type       : IA                        Area       : 0.0.0.2

  AdvRouter  : 3.3.3.3                   Preference : 10

  NibID      : 0x23000003                Cost       : 11

  Interface  : HGE1/0/2                  BkInterface: N/A

  Nexthop    : FE80::48C0:26FF:FEDA:305

  BkNexthop  : N/A

  Status     : Rely

 

 *Destination: 2001:2::/64

  Type       : I                         Area       : 0.0.0.2

  AdvRouter  : 4.4.4.4                   Preference : 10

  NibID      : 0x23000001                Cost       : 1

  Interface  : HGE1/0/2                  BkInterface: N/A

  Nexthop    : ::

  BkNexthop  : N/A

  Status     : Direct

 

 Total: 2

 Intra area: 1         Inter area: 1         ASE: 0         NSSA: 0

The output shows that route entries are reduced. All indirect routes are removed, except the default route.

Example: Configuring OSPFv3 NSSA area

Network configuration

As shown in Figure 3:

·     Configure OSPFv3 on all routers and split the AS into three areas.

·     Configure Router B and Router C as ABRs to forward routing information between areas.

·     Configure Area 1 as an NSSA area and configure Router A as an ASBR to redistribute static routes into the AS.

Figure 3 Network diagram

Procedure

IMPORTANT

IMPORTANT:

By default, interfaces on the device are disabled (in ADM or Administratively Down state). To have an interface operate, you must use the undo shutdown command to enable that interface.

1.     Configure IPv6 addresses for interfaces. (Details not shown.)

2.     Configure basic OSPFv3 (see "Example: Configuring OSPFv3 stub area").

3.     Configure Area 1 as an NSSA area:

# Configure Router A.

<RouterA> system-view

[RouterA] ospfv3

[RouterA-ospfv3-1] area 1

[RouterA-ospfv3-1-area-0.0.0.1] nssa

[RouterA-ospfv3-1-area-0.0.0.1] quit

[RouterA-ospfv3-1] quit

# Configure Router B.

<RouterB> system-view

[RouterB] ospfv3

[RouterB-ospfv3-1] area 1

[RouterB-ospfv3-1-area-0.0.0.1] nssa

[RouterB-ospfv3-1-area-0.0.0.1] quit

[RouterB-ospfv3-1] quit

# Display OSPFv3 routing information on Router D.

[RouterD] display ospfv3 1 routing

 

               OSPFv3 Process 1 with Router ID 4.4.4.4

-------------------------------------------------------------------------

 I  - Intra area route,  E1 - Type 1 external route,  N1 - Type 1 NSSA route

 IA - Inter area route,  E2 - Type 2 external route,  N2 - Type 2 NSSA route

 *  - Selected route

 

*Destination: 2001::/64

  Type       : IA                        Area       : 0.0.0.2

  AdvRouter  : 3.3.3.3                   Preference : 10

  NibID      : 0x23000003                Cost       : 2

  Interface  : HGE1/0/2                  BkInterface: N/A

  Nexthop    : FE80::48C0:26FF:FEDA:305

  BkNexthop  : N/A

  Status     : Rely

 

 *Destination: 2001:1::/64

  Type       : IA                        Area       : 0.0.0.2

  AdvRouter  : 3.3.3.3                   Preference : 10

  NibID      : 0x23000003                Cost       : 3

  Interface  : HGE1/0/2                  BkInterface: N/A

  Nexthop    : FE80::48C0:26FF:FEDA:305

  BkNexthop  : N/A

  Status     : Rely

 

 *Destination: 2001:2::/64

  Type       : I                         Area       : 0.0.0.2

  AdvRouter  : 4.4.4.4                   Preference : 10

  NibID      : 0x23000001                Cost       : 1

  Interface  : HGE1/0/2                  BkInterface: N/A

  Nexthop    : ::

  BkNexthop  : N/A

  Status     : Direct

 

 *Destination: 2001:3::/64

  Type       : IA                        Area       : 0.0.0.2

  AdvRouter  : 3.3.3.3                   Preference : 10

  NibID      : 0x23000003                Cost       : 4

  Interface  : HGE1/0/2                  BkInterface: N/A

  Nexthop    : FE80::48C0:26FF:FEDA:305

  BkNexthop  : N/A

  Status     : Rely

 

 Total: 4

 Intra area: 1         Inter area: 3         ASE: 0         NSSA: 0

4.     Configure route redistribution:

# Configure an IPv6 static route, and configure OSPFv3 to redistribute the static route on Router A.

[RouterA] ipv6 route-static 1234:: 64 null 0

[RouterA] ospfv3 1

[RouterA-ospfv3-1] import-route static

[RouterA-ospfv3-1] quit

# Display OSPFv3 routing information on Router D.

[RouterD] display ospfv3 1 routing

 

               OSPFv3 Process 1 with Router ID 4.4.4.4

-------------------------------------------------------------------------

 I  - Intra area route,  E1 - Type 1 external route,  N1 - Type 1 NSSA route

 IA - Inter area route,  E2 - Type 2 external route,  N2 - Type 2 NSSA route

 *  - Selected route

 

*Destination: 2001::/64

  Type       : IA                        Area       : 0.0.0.2

  AdvRouter  : 3.3.3.3                   Preference : 10

  NibID      : 0x23000002                Cost       : 2

  Interface  : HGE1/0/2                  BkInterface: N/A

  Nexthop    : FE80::48C0:26FF:FEDA:305

  BkNexthop  : N/A

  Status     : Rely

 

 *Destination: 2001:1::/64

  Type       : IA                        Area       : 0.0.0.2

  AdvRouter  : 3.3.3.3                   Preference : 10

  NibID      : 0x23000002                Cost       : 3

  Interface  : HGE1/0/2                  BkInterface: N/A

  Nexthop    : FE80::48C0:26FF:FEDA:305

  BkNexthop  : N/A

  Status     : Rely

 

 *Destination: 2001:2::/64

  Type       : I                         Area       : 0.0.0.2

  AdvRouter  : 4.4.4.4                   Preference : 10

  NibID      : 0x23000004                Cost       : 1

  Interface  : HGE1/0/2                  BkInterface: N/A

  Nexthop    : ::

  BkNexthop  : N/A

  Status     : Direct

 

 *Destination: 2001:3::/64

  Type       : IA                        Area       : 0.0.0.2

  AdvRouter  : 3.3.3.3                   Preference : 10

  NibID      : 0x23000002                Cost       : 4

  Interface  : HGE1/0/2                  BkInterface: N/A

  Nexthop    : FE80::48C0:26FF:FEDA:305

  BkNexthop  : N/A

  Status     : Rely

 

 *Destination: 1234::/64

  Type       : E2                        Tag        : 1

  AdvRouter  : 2.2.2.2                   Preference : 150

  NibID      : 0x23000001                Cost       : 1

  Interface  : HGE1/0/2                  BkInterface: N/A

  Nexthop    : FE80::48C0:26FF:FEDA:305

  BkNexthop  : N/A

  Status     : Normal

 

 Total: 5

 Intra area: 1         Inter area: 3         ASE: 1         NSSA: 0

The output shows an AS external route imported from the NSSA area exists on Router D.

Example: Configuring OSPFv3 DR election

Network configuration

As shown in Figure 4:

·     Configure router priority 100 for Router A, the highest priority on the network, so it will become the DR.

·     Configure router priority 2 for Router C, the second highest priority on the network, so it will become the BDR.

·     Configure router priority 0 for Router B, so it cannot become a DR or BDR.

·     Router D uses the default router priority 1.

Figure 4 Network diagram

Procedure

IMPORTANT

IMPORTANT:

By default, interfaces on the device are disabled (in ADM or Administratively Down state). To have an interface operate, you must use the undo shutdown command to enable that interface.

1.     Configure IPv6 addresses for interfaces. (Details not shown.)

2.     Configure basic OSPFv3:

# On Router A, enable OSPFv3, and specify the router ID as 1.1.1.1.

<RouterA> system-view

[RouterA] ospfv3

[RouterA-ospfv3-1] router-id 1.1.1.1

[RouterA-ospfv3-1] quit

[RouterA] interface hundredgige 1/0/1

[RouterA-HundredGigE1/0/1] ospfv3 1 area 0

[RouterA-HundredGigE1/0/1] quit

# On Router B, enable OSPFv3, and specify the router ID as 2.2.2.2.

<RouterB> system-view

[RouterB] ospfv3

[RouterB-ospfv3-1] router-id 2.2.2.2

[RouterB-ospfv3-1] quit

[RouterB] interface hundredgige 1/0/1

[RouterB-HundredGigE1/0/1] ospfv3 1 area 0

[RouterB-HundredGigE1/0/1] quit

# On Router C, enable OSPFv3, and specify the router ID as 3.3.3.3.

<RouterC> system-view

[RouterC] ospfv3

[RouterC-ospfv3-1] router-id 3.3.3.3

[RouterC-ospfv3-1] quit

[RouterC] interface hundredgige 1/0/1

[RouterC-HundredGigE1/0/1] ospfv3 1 area 0

[RouterC-HundredGigE1/0/1] quit

# On Router D, enable OSPFv3, and specify the router ID as 4.4.4.4.

<RouterD> system-view

[RouterD] ospfv3

[RouterD-ospfv3-1] router-id 4.4.4.4

[RouterD-ospfv3-1] quit

[RouterD] interface hundredgige 1/0/1

[RouterD-HundredGigE1/0/1] ospfv3 1 area 0

[RouterD-HundredGigE1/0/1] quit

# Display neighbors on Router A. The routers have the same default router priority 1, so Router D (the router with the highest router ID) is elected as the DR, and Router C is the BDR.

[RouterA] display ospfv3 peer

 

               OSPFv3 Process 1 with Router ID 1.1.1.1

 

 Area: 0.0.0.0

-------------------------------------------------------------------------

 Router ID       Pri State             Dead-Time InstID Interface

 2.2.2.2         1   2-Way/DROther     00:00:36  0      HGE1/0/1

 3.3.3.3         1   Full/BDR          00:00:35  0      HGE1/0/1

 4.4.4.4         1   Full/DR           00:00:33  0      HGE1/0/1

# Display neighbors on Router D. The neighbor states are all full.

[RouterD] display ospfv3 peer

 

               OSPFv3 Process 1 with Router ID 4.4.4.4

 

 Area: 0.0.0.0

-------------------------------------------------------------------------

 Router ID       Pri State             Dead-Time InstID Interface

 1.1.1.1         1   Full/DROther      00:00:30  0      HGE1/0/1

 2.2.2.2         1   Full/DROther      00:00:37  0      HGE1/0/1

 3.3.3.3         1   Full/BDR          00:00:31  0      HGE1/0/1

3.     Configure router priorities for interfaces:

# Set the router priority to 100 for the interface HundredGigE 1/0/1 of Router A.

[RouterA] interface hundredgige 1/0/1

[RouterA-HundredGigE1/0/1] ospfv3 dr-priority 100

[RouterA-HundredGigE1/0/1] quit

# Set the router priority to 0 for the interface HundredGigE 1/0/1 of Router B.

[RouterB] interface hundredgige 1/0/1

[RouterB-HundredGigE1/0/1] ospfv3 dr-priority 0

[RouterB-HundredGigE1/0/1] quit

# Set the router priority to 2 for the interface HundredGigE 1/0/1 of Router C.

[RouterC] interface hundredgige 1/0/1

[RouterC-HundredGigE1/0/1] ospfv3 dr-priority 2

[RouterC-HundredGigE1/0/1] quit

# Display neighbors on Router A. The output shows that the router priorities have been changed, but the DR and BDR are not changed.

[RouterA] display ospfv3 peer

 

               OSPFv3 Process 1 with Router ID 1.1.1.1

 

 Area: 0.0.0.0

-------------------------------------------------------------------------

 Router ID       Pri State             Dead-Time InstID Interface

 2.2.2.2         0   2-Way/DROther     00:00:36  0      HGE1/0/1

 3.3.3.3         2   Full/BDR          00:00:35  0      HGE1/0/1

 4.4.4.4         1   Full/DR           00:00:33  0      HGE1/0/1

# Display neighbors on Router D.

[RouterD] display ospfv3 peer

 

               OSPFv3 Process 1 with Router ID 4.4.4.4

 

 Area: 0.0.0.0

-------------------------------------------------------------------------

 Router ID       Pri State             Dead-Time InstID Interface

 1.1.1.1         100 Full/DROther      00:00:30  0      HGE1/0/1

 2.2.2.2         0   Full/DROther      00:00:37  0      HGE1/0/1

 3.3.3.3         2   Full/BDR          00:00:31  0      HGE1/0/1

The output shows that the DR is still Router D.

4.     Enable DR/BDR election:

# Perform the shutdown and undo shutdown commands on each interface to enable a new DR/BD election. (Details not shown.)

# Display neighbors on Router A. The output shows that Router C becomes the BDR.

[RouterA] display ospfv3 peer

 

               OSPFv3 Process 1 with Router ID 1.1.1.1

 

 Area: 0.0.0.0

-------------------------------------------------------------------------

 Router ID       Pri State             Dead-Time InstID Interface

 2.2.2.2         0   Full/DROther      00:00:36  0      HGE1/0/1

 3.3.3.3         2   Full/BDR          00:00:35  0      HGE1/0/1

 4.4.4.4         1   Full/DROther      00:00:33  0      HGE1/0/1

# Display neighbors on Router D.

[RouterD] display ospfv3 peer

 

               OSPFv3 Process 1 with Router ID 4.4.4.4

 

 Area: 0.0.0.0

-------------------------------------------------------------------------

 Router ID       Pri State             Dead-Time InstID Interface

 1.1.1.1         100 Full/DR           00:00:30  0      HGE1/0/1

 2.2.2.2         0   2-Way/DROther     00:00:37  0      HGE1/0/1

 3.3.3.3         2   Full/BDR          00:00:31  0      HGE1/0/1

The output shows that Router A becomes the DR.

Example: Configuring OSPFv3 route redistribution

Network configuration

As shown in Figure 5:

·     Router A, Router B, and Router C are in Area 2.

·     OSPFv3 process 1 and OSPFv3 process 2 run on Router B. Router B communicates with Router A and Router C through OSPFv3 process 1 and OSPFv3 process 2.

·     Configure OSPFv3 process 2 to redistribute direct routes and the routes from OSPFv3 process 1 on Router B, and set the metric for redistributed routes to 3. Router C can then learn the routes destined for 1::0/64 and 2::0/64, and Router A cannot learn the routes destined for 3::0/64 or 4::0/64.

Figure 5 Network diagram

Procedure

IMPORTANT

IMPORTANT:

By default, interfaces on the device are disabled (in ADM or Administratively Down state). To have an interface operate, you must use the undo shutdown command to enable that interface.

1.     Configure IPv6 addresses for interfaces. (Details not shown.)

2.     Configure basic OSPFv3:

# Enable OSPFv3 process 1 on Router A.

<RouterA> system-view

[RouterA] ospfv3 1

[RouterA-ospfv3-1] router-id 1.1.1.1

[RouterA-ospfv3-1] quit

[RouterA] interface hundredgige 1/0/2

[RouterA-HundredGigE1/0/2] ospfv3 1 area 2

[RouterA-HundredGigE1/0/2] quit

[RouterA] interface hundredgige 1/0/1

[RouterA-HundredGigE1/0/1] ospfv3 1 area 2

[RouterA-HundredGigE1/0/1] quit

# Enable OSPFv3 process 1 and OSPFv3 process 2 on Router B.

<RouterB> system-view

[RouterB] ospfv3 1

[RouterB-ospfv3-1] router-id 2.2.2.2

[RouterB-ospfv3-1] quit

[RouterB] interface hundredgige 1/0/2

[RouterB-HundredGigE1/0/2] ospfv3 1 area 2

[RouterB-HundredGigE1/0/2] quit

[RouterB] ospfv3 2

[RouterB-ospfv3-2] router-id 3.3.3.3

[RouterB-ospfv3-2] quit

[RouterB] interface hundredgige 1/0/1

[RouterB-HundredGigE1/0/1] ospfv3 2 area 2

[RouterB-HundredGigE1/0/1] quit

# Enable OSPFv3 process 2 on Router C.

<RouterC> system-view

[RouterC] ospfv3 2

[RouterC-ospfv3-2] router-id 4.4.4.4

[RouterC-ospfv3-2] quit

[RouterC] interface hundredgige 1/0/2

[RouterC-HundredGigE1/0/2] ospfv3 2 area 2

[RouterC-HundredGigE1/0/2] quit

[RouterC] interface hundredgige 1/0/1

[RouterC-HundredGigE1/0/1] ospfv3 2 area 2

[RouterC-HundredGigE1/0/1] quit

# Display the routing table on Router C.

[RouterC] display ipv6 routing-table

 

Destinations : 6 Routes : 6

 

Destination: ::1/128                                     Protocol  : Direct

NextHop    : ::1                                         Preference: 0

Interface  : InLoop0                                     Cost      : 0

 

Destination: 3::/64                                      Protocol  : Direct

NextHop    : ::                                          Preference: 0

Interface  : HGE1/0/2                                    Cost      : 0

 

Destination: 3::2/128                                    Protocol  : Direct

NextHop    : ::1                                         Preference: 0

Interface  : InLoop0                                     Cost      : 0

 

Destination: 4::/64                                      Protocol  : Direct

NextHop    : ::                                          Preference: 0

Interface  : HGE1/0/1                                    Cost      : 0

 

Destination: 4::1/128                                    Protocol  : Direct

NextHop    : ::1                                         Preference: 0

Interface  : InLoop0                                     Cost      : 0

 

Destination: FE80::/10                                   Protocol  : Direct

NextHop    : ::                                          Preference: 0

Interface  : NULL0                                       Cost      : 0

3.     Configure OSPFv3 route redistribution:

# Configure OSPFv3 process 2 to redistribute direct routes and the routes from OSPFv3 process 1 on Router B, and set the metric for redistributed routes to 3.

[RouterB] ospfv3 2

[RouterB-ospfv3-2] import-route ospfv3 1 cost 3

[RouterB-ospfv3-2] import-route direct cost 3

[RouterB-ospfv3-2] quit

# Display the routing table on Router C.

[RouterC] display ipv6 routing-table

 

Destinations : 8 Routes : 8

 

Destination: ::1/128                                     Protocol  : Direct

NextHop    : ::1                                         Preference: 0

Interface  : InLoop0                                     Cost      : 0

 

Destination: 1::/64                                      Protocol  : O_ASE2

NextHop    : FE80::200:CFF:FE01:1C03                     Preference: 150

Interface  : HGE1/0/2                                    Cost      : 3

 

Destination: 2::/64                                      Protocol  : O_ASE2

NextHop    : FE80::200:CFF:FE01:1C03                     Preference: 150

Interface  : HGE1/0/2                                    Cost      : 3

 

Destination: 3::/64                                      Protocol  : Direct

NextHop    : ::                                          Preference: 0

Interface  : HGE1/0/2                                    Cost      : 0

 

Destination: 3::2/128                                    Protocol  : Direct

NextHop    : ::1                                         Preference: 0

Interface  : InLoop0                                     Cost      : 0

 

Destination: 4::/64                                      Protocol  : Direct

NextHop    : ::                                          Preference: 0

Interface  : HGE1/0/1                                    Cost      : 0

 

Destination: 4::1/128                                    Protocol  : Direct

NextHop    : ::1                                         Preference: 0

Interface  : InLoop0                                     Cost      : 0

 

Destination: FE80::/10                                   Protocol  : Direct

NextHop    : ::                                          Preference: 0

Interface  : NULL0                                       Cost      : 0

Example: Configuring OSPFv3 route summarization

Network configuration

As shown in Figure 6:

·     Router A, Router B, and Router C are in Area 2.

·     OSPFv3 process 1 and OSPFv3 process 2 run on Router B. Router B communicates with Router A and Router C through OSPFv3 process 1 and OSPFv3 process 2, respectively.

·     On Router A, configure IPv6 addresses 2:1:1::1/64, 2:1:2::1/64, and 2:1:3::1/64 for HundredGigE 1/0/1.

·     On Router B, configure OSPFv3 process 2 to redistribute direct routes and the routes from OSPFv3 process 1. Router C can then learn the routes destined for 2::/64, 2:1:1::/64, 2:1:2::/64, and 2:1:3::/64.

·     On Router B, configure route summarization to advertise only summary route 2::/16 to Router C.

Figure 6 Network diagram

Procedure

IMPORTANT

IMPORTANT:

By default, interfaces on the device are disabled (in ADM or Administratively Down state). To have an interface operate, you must use the undo shutdown command to enable that interface.

1.     Configure IPv6 addresses for interfaces. (Details not shown.)

2.     Configure OSPFv3:

# Enable OSPFv3 process 1 on Router A.

<RouterA> system-view

[RouterA] ospfv3 1

[RouterA-ospfv3-1] router-id 1.1.1.1

[RouterA-ospfv3-1] quit

[RouterA] interface hundredgige 1/0/2

[RouterA-HundredGigE1/0/2] ospfv3 1 area 2

[RouterA-HundredGigE1/0/2] quit

[RouterA] interface hundredgige 1/0/1

[RouterA-HundredGigE1/0/1] ipv6 address 2:1:1::1 64

[RouterA-HundredGigE1/0/1] ipv6 address 2:1:2::1 64

[RouterA-HundredGigE1/0/1] ipv6 address 2:1:3::1 64

[RouterA-HundredGigE1/0/1] ospfv3 1 area 2

[RouterA-HundredGigE1/0/1] quit

# Enable OSPFv3 process 1 and OSPFv3 process 2 on Router B.

<RouterB> system-view

[RouterB] ospfv3 1

[RouterB-ospfv3-1] router-id 2.2.2.2

[RouterB-ospfv3-1] quit

[RouterB] interface hundredgige 1/0/2

[RouterB-HundredGigE1/0/2] ospfv3 1 area 2

[RouterB-HundredGigE1/0/2] quit

[RouterB] ospfv3 2

[RouterB-ospfv3-2] router-id 3.3.3.3

[RouterB-ospfv3-2] quit

[RouterB] interface hundredgige 1/0/1

[RouterB-HundredGigE1/0/1] ospfv3 2 area 2

[RouterB-HundredGigE1/0/1] quit

# Enable OSPFv3 process 2 on Router C.

<RouterC> system-view

[RouterC] ospfv3 2

[RouterC-ospfv3-2] router-id 4.4.4.4

[RouterC-ospfv3-2] quit

[RouterC] interface hundredgige 1/0/2

[RouterC-HundredGigE1/0/2] ospfv3 2 area 2

[RouterC-HundredGigE1/0/2] quit

[RouterC] interface hundredgige 1/0/1

[RouterC-HundredGigE1/0/1] ospfv3 2 area 2

[RouterC-HundredGigE1/0/1] quit

3.     Configure OSPFv3 route redistribution:

# Configure OSPFv3 process 2 to redistribute direct routes and the routes from OSPFv3 process 1 on Router B.

[RouterB] ospfv3 2

[RouterB-ospfv3-2] import-route ospfv3 1

[RouterB-ospfv3-2] import-route direct

[RouterB-ospfv3-2] quit

# Display the routing table on Router C.

[RouterC] display ipv6 routing-table

 

Destinations : 11 Routes : 11

 

Destination: ::1/128                                     Protocol  : Direct

NextHop    : ::1                                         Preference: 0

Interface  : InLoop0                                     Cost      : 0

 

Destination: 1::/64                                      Protocol  : O_ASE2

NextHop    : FE80::200:CFF:FE01:1C03                     Preference: 150

Interface  : HGE1/0/2                                    Cost      : 1

 

Destination: 2::/64                                      Protocol  : O_ASE2

NextHop    : FE80::200:CFF:FE01:1C03                     Preference: 150

Interface  : HGE1/0/2                                    Cost      : 1

 

Destination: 2:1:1::/64                                  Protocol  : O_ASE2

NextHop    : FE80::200:CFF:FE01:1C03                     Preference: 150

Interface  : HGE1/0/2                                    Cost      : 1

 

Destination: 2:1:2::/64                                  Protocol  : O_ASE2

NextHop    : FE80::200:CFF:FE01:1C03                     Preference: 150

Interface  : HGE1/0/2                                    Cost      : 1

 

Destination: 2:1:3::/64                                  Protocol  : O_ASE2

NextHop    : FE80::200:CFF:FE01:1C03                     Preference: 150

Interface  : HGE1/0/2                                    Cost      : 1

 

Destination: 3::/64                                      Protocol  : Direct

NextHop    : 3::2                                        Preference: 0

Interface  : HGE1/0/2                                    Cost      : 0

 

Destination: 3::2/128                                    Protocol  : Direct

NextHop    : ::1                                         Preference: 0

Interface  : InLoop0                                     Cost      : 0

 

Destination: 4::/64                                      Protocol  : Direct

NextHop    : 4::1                                        Preference: 0

Interface  : HGE1/0/1                                    Cost      : 0

 

Destination: 4::1/128                                    Protocol  : Direct

NextHop    : ::1                                         Preference: 0

Interface  : InLoop0                                     Cost      : 0

 

Destination: FE80::/10                                   Protocol  : Direct

NextHop    : ::                                          Preference: 0

Interface  : NULL0                                       Cost      : 0

4.     Configure ASBR route summarization:

# On Router B, configure OSPFv3 process 2 to advertise a summary route 2::/16.

[RouterB] ospfv3 2

[RouterB-ospfv3-2] asbr-summary 2:: 16

[RouterB-ospfv3-2] quit

# Display the routing table on Router C.

[RouterC] display ipv6 routing-table

 

Destinations : 8 Routes : 8

 

Destination: ::1/128                                     Protocol  : Direct

NextHop    : ::1                                         Preference: 0

Interface  : InLoop0                                     Cost      : 0

 

Destination: 1::/64                                      Protocol  : O_ASE2

NextHop    : FE80::200:CFF:FE01:1C03                     Preference: 150

Interface  : HGE1/0/2                                    Cost      : 1

 

Destination: 2::/16                                      Protocol  : O_ASE2

NextHop    : FE80::200:CFF:FE01:1C03                     Preference: 150

Interface  : HGE1/0/2                                    Cost      : 1

 

Destination: 3::/64                                      Protocol  : Direct

NextHop    : 3::2                                        Preference: 0

Interface  : HGE1/0/2                                    Cost      : 0

 

Destination: 3::2/128                                    Protocol  : Direct

NextHop    : ::1                                         Preference: 0

Interface  : InLoop0                                     Cost      : 0

 

Destination: 4::/64                                      Protocol  : Direct

NextHop    : 4::1                                        Preference: 0

Interface  : HGE1/0/1                                    Cost      : 0

 

Destination: 4::1/128                                    Protocol  : Direct

NextHop    : ::1                                         Preference: 0

Interface  : InLoop0                                     Cost      : 0

 

Destination: FE80::/10                                   Protocol  : Direct

NextHop    : ::                                          Preference: 0

Interface  : NULL0                                       Cost      : 0

Example: Configuring OSPFv3 GR

Network configuration

As shown in Figure 7:

·     Router A, Router B, and Router C that reside in the same AS and the same OSPFv3 routing domain are GR capable.

·     Router A acts as the GR restarter. Router B and Router C act as GR helpers, and synchronize their LSDBs with Router A through GR.

Figure 7 Network diagram

Procedure

IMPORTANT

IMPORTANT:

By default, interfaces on the device are disabled (in ADM or Administratively Down state). To have an interface operate, you must use the undo shutdown command to enable that interface.

1.     Configure IPv6 addresses for interfaces. (Details not shown.)

2.     Configure basic OSPFv3:

# On Router A, enable OSPFv3 process 1, enable GR, and set the router ID to 1.1.1.1.

<RouterA> system-view

[RouterA] ospfv3 1

[RouterA-ospfv3-1] router-id 1.1.1.1

[RouterA-ospfv3-1] graceful-restart enable

[RouterA-ospfv3-1] quit

[RouterA] interface hundredgige 1/0/1

[RouterA-HundredGigE1/0/1] ospfv3 1 area 1

[RouterA-HundredGigE1/0/1] quit

# On Router B, enable OSPFv3 and set the router ID to 2.2.2.2. (By default, GR helper is enabled on a router.)

<RouterB> system-view

[RouterB] ospfv3 1

[RouterB-ospfv3-1] router-id 2.2.2.2

[RouterB-ospfv3-1] quit

[RouterB] interface hundredgige 1/0/1

[RouterB-HundredGigE1/0/1] ospfv3 1 area 1

[RouterB-HundredGigE1/0/1] quit

# On Router C, enable OSPFv3 and set the router ID to 3.3.3.3. (By default, GR helper is enabled on a router.)

<RouterC> system-view

[RouterC] ospfv3 1

[RouterC-ospfv3-1] router-id 3.3.3.3

[RouterC-ospfv3-1] quit

[RouterC] interface hundredgige 1/0/1

[RouterC-HundredGigE1/0/1] ospfv3 1 area 1

[RouterC-HundredGigE1/0/1] quit

Verifying the configuration

# Enable OSPFv3 GR event debugging and restart the OSPFv3 process by using GR on Router A.

<RouterA> debugging ospfv3 event graceful-restart

<RouterA> terminal monitor

<RouterA> terminal logging level 7

<RouterA> reset ospfv3 1 process graceful-restart

Reset OSPF process? [Y/N]:y

>%Mar 13 10:54:46:633 2020 RouterA OSPFV3/5/OSPFv3_NBR_CHG: OSPFv3 1 Neighbor 2.2.2.2(HundredGigE1/0/1) received KillNbr and its state changed from FULL to DOWN.

%Mar 13 10:54:46:634 2020 RouterA OSPFV3/5/OSPFv3_NBR_CHG: OSPFv3 1 Neighbor 3.3.3.3(HundredGigE1/0/1) received KillNbr and its state changed from FULL to DOWN.

%Mar 13 10:54:54:610 2020 RouterA OSPFV3/5/OSPFv3_NBR_CHG: OSPFv3 1 Neighbor 3.3.3.3(HundredGigE1/0/1) received LoadingDone and its state changed from LOADING to FULL.

%Mar 13 10:54:57:424 2020 RouterA OSPFV3/5/OSPFv3_NBR_CHG: OSPFv3 1 Neighbor 2.2.2.2(HundredGigE1/0/1) received LoadingDone and its state changed from LOADING to FULL.

The output shows that Router A completes GR.

Example: Configuring OSPFv3 NSR

Network configuration

As shown in Figure 8, Router S, Router A, and Router B belong to the same OSPFv3 routing domain. Enable OSPFv3 NSR on Router S to ensure correct routing when an active/standby switchover occurs on Router S.

Figure 8 Network diagram

Procedure

IMPORTANT

IMPORTANT:

By default, interfaces on the device are disabled (in ADM or Administratively Down state). To have an interface operate, you must use the undo shutdown command to enable that interface.

1.     Configure IP addresses and subnet masks for interfaces on the routers. (Details not shown.)

2.     Configure OSPFv3 on the routers to ensure that Router S, Router A, and Router B can communicate with each other at Layer 3. (Details not shown.)

3.     Configure OSPFv3:

# On Router A, enable OSPFv3 and set the router ID to 1.1.1.1.

<RouterA> system-view

[RouterA] ospfv3 1

[RouterA-ospfv3-1] router-id 1.1.1.1

[RouterA-ospfv3-1] quit

[RouterA] interface hundredgige 1/0/1

[RouterA-HundredGigE1/0/1] ospfv3 1 area 1

[RouterA-HundredGigE1/0/1] quit

# On Router B, enable OSPFv3 and set the router ID to 2.2.2.2.

<RouterB> system-view

[RouterB] ospfv3 1

[RouterB-ospfv3-1] router-id 2.2.2.2

[RouterB-ospfv3-1] quit

[RouterB] interface hundredgige 1/0/1

[RouterB-HundredGigE1/0/1] ospfv3 1 area 1

[RouterB-HundredGigE1/0/1] quit

# On Router S, enable OSPFv3, set the router ID to 3.3.3.3, and enable NSR.

<RouterS> system-view

[RouterS] ospfv3 1

[RouterS-ospfv3-1] router-id 3.3.3.3

[RouterS-ospfv3-1] non-stop-routing

[RouterS-ospfv3-1] quit

[RouterS] interface hundredgige 1/0/1

[RouterS-HundredGigE1/0/1] ospfv3 1 area 1

[RouterS-HundredGigE1/0/1] quit

[RouterS] interface hundredgige 1/0/2

[RouterS-HundredGigE1/0/2] ospfv3 1 area 1

[RouterS-HundredGigE1/0/2] quit

[RouterS] quit

Verifying the configuration

# Enable OSPFv3 neighbor event debugging and then perform an active/standby switchover on Router S.

<RouterS> debugging ospfv3 event neighbor

<RouterS> system-view

[RouterS] placement reoptimize

Predicted changes to the placement

Service Group(instance name)                    Cur location    New location

----------------------------------------------------------------------------

ospfv3                                            0/0           1/0

rib                                               0/0           1/0

rib6                                              0/0           1/0

staticroute                                       0/0           1/0

staticroute6                                      0/0           1/0

Continue? [y/n]:y

To avoid neighbor flapping of the protocols running on the processes, make sure the processes have backup features such NSR or GR configured and are in stable state. Continue? [y/n]:y

Re-optimization of the placement start. You will be notified on completion.

Re-optimization of the placement complete. Use 'display placement' to view the new placement.

The output shows that the neighbor relationships are not changed when an active/standby switchover occurs on Router S.

Example: Configuring BFD for OSPFv3

Network configuration

As shown in Figure 9:

·     Configure OSPFv3 on Router A, Router B and Router C and configure BFD over the link Router A<—>L2 Switch<—>Router B.

·     After the link Router A<—>L2 Switch<—>Router B fails, BFD can quickly detect the failure and notify OSPFv3 of the failure. Then Router A and Router B communicate through Router C.

Figure 9 Network diagram

Table 1 Interface and IP address assignment

Device

Interface

IPv6 address

Router A

HGE1/0/1

2001::1/64

Router A

HGE1/0/2

2001:2::1/64

Router B

HGE1/0/1

2001::2/64

Router B

HGE1/0/2

2001:3::2/64

Router C

HGE1/0/1

2001:2::2/64

Router C

HGE1/0/2

2001:3::1/64

 

Procedure

IMPORTANT

IMPORTANT:

By default, interfaces on the device are disabled (in ADM or Administratively Down state). To have an interface operate, you must use the undo shutdown command to enable that interface.

1.     Configure IPv6 addresses for interfaces. (Details not shown.)

2.     Configure basic OSPFv3:

# Enable OSPFv3 and set the router ID to 1.1.1.1 on Router A.

<RouterA> system-view

[RouterA] ospfv3 1

[RouterA-ospfv3-1] router-id 1.1.1.1

[RouterA-ospfv3-1] quit

[RouterA] interface hundredgige 1/0/1

[RouterA-HundredGigE1/0/1] ospfv3 1 area 0

[RouterA-HundredGigE1/0/1] quit

[RouterA] interface hundredgige 1/0/2

[RouterA-HundredGigE1/0/2] ospfv3 1 area 0

[RouterA-HundredGigE1/0/2] quit

# Enable OSPFv3 and set the router ID to 2.2.2.2 on Router B.

<RouterB> system-view

[RouterB] ospfv3 1

[RouterB-ospfv3-1] router-id 2.2.2.2

[RouterB-ospfv3-1] quit

[RouterB] interface hundredgige 1/0/1

[RouterB-HundredGigE1/0/1] ospfv3 1 area 0

[RouterB-HundredGigE1/0/1] quit

[RouterB] interface hundredgige 1/0/2

[RouterB-HundredGigE1/0/2] ospfv3 1 area 0

[RouterB-HundredGigE1/0/2] quit

# Enable OSPFv3 and set the router ID to 3.3.3.3 on Router C.

<RouterC> system-view

[RouterC] ospfv3 1

[RouterC-ospfv3-1] router-id 3.3.3.3

[RouterC-ospfv3-1] quit

[RouterC] interface hundredgige 1/0/1

[RouterC-HundredGigE1/0/1] ospfv3 1 area 0

[RouterC-HundredGigE1/0/1] quit

[RouterC] interface hundredgige 1/0/2

[RouterC-HundredGigE1/0/2] ospfv3 1 area 0

[RouterC-HundredGigE1/0/2] quit

3.     Configure BFD:

# Enable BFD and configure BFD parameters on Router A.

[RouterA] bfd session init-mode active

[RouterA] interface hundredgige 1/0/1

[RouterA-HundredGigE1/0/1] ospfv3 bfd enable

[RouterA-HundredGigE1/0/1] bfd min-transmit-interval 500

[RouterA-HundredGigE1/0/1] bfd min-receive-interval 500

[RouterA-HundredGigE1/0/1] bfd detect-multiplier 7

[RouterA-HundredGigE1/0/1] return

# Enable BFD and configure BFD parameters on Router B.

[RouterB] bfd session init-mode active

[RouterB] interface hundredgige 1/0/1

[RouterB-HundredGigE1/0/1] ospfv3 bfd enable

[RouterB-HundredGigE1/0/1] bfd min-transmit-interval 500

[RouterB-HundredGigE1/0/1] bfd min-receive-interval 500

[RouterB-HundredGigE1/0/1] bfd detect-multiplier 6

Verifying the configuration

# Display the BFD information on Router A.

<RouterA> display bfd session

 Total sessions: 1        Up sessions: 1        Init mode: Active

 

 IPv6 session working in control packet mode:

 

       Local discr: 1441                 Remote discr: 1450

         Source IP: FE80::20F:FF:FE00:1202 (link-local address of HundredGigE1/0/1 on Router A)

    Destination IP: FE80::20F:FF:FE00:1200 (link-local address of HundredGigE1/0/1 on Router B)

     Session state: Up                      Interface: HGE1/0/1

         Hold time: 2319ms

# Display routes destined for 2001:4::0/64 on Router A.

<RouterA> display ipv6 routing-table 2001:4::0 64

 

Summary Count : 1

 

Destination: 2001:4::/64                                 Protocol  : O_INTRA

NextHop    : FE80::20F:FF:FE00:1200                      Preference: 10

Interface  : HGE1/0/1                                    Cost      : 1

The output shows that Router A communicates with Router B through HundredGigE 1/0/1. Then the link over HundredGigE 1/0/1 fails.

# Display routes destined for 2001:4::0/64 on Router A.

<RouterA> display ipv6 routing-table 2001:4::0 64

 

Summary Count : 1

 

Destination: 2001:4::/64                                 Protocol  : O_INTRA

NextHop    : FE80::BAAF:67FF:FE27:DCD0                   Preference: 10

Interface  : HGE1/0/2                                    Cost      : 2

The output shows that Router A communicates with Router B through HundredGigE 1/0/2.

Example: Configuring OSPFv3 FRR

Network configuration

As shown in Figure 10, Router A, Router B, and Router C reside in the same OSPFv3 domain. Configure OSPFv3 FRR so that when Link A fails, traffic is immediately switched to Link B.

Figure 10 Network diagram

Table 2 Interface and IP address assignment

Device

Interface

IP address

Device

Interface

IP address

Router A

HGE1/0/1

1::1/64

Router B

HGE1/0/1

3::1/64

 

HGE1/0/2

2::1/64

 

HGE1/0/2

2::2/64

 

Loop0

10::1/128

 

Loop0

20::1/128

Router C

HGE1/0/1

1::2/64

 

 

 

 

HGE1/0/2

3::2/64

 

 

 

 

Procedure

IMPORTANT

IMPORTANT:

By default, interfaces on the device are disabled (in ADM or Administratively Down state). To have an interface operate, you must use the undo shutdown command to enable that interface.

1.     Configure IPv6 addresses for interfaces on the routers. (Details not shown.)

2.     Configure OSPFv3 on the routers to ensure that Router A, Router B, and Router C can communicate with each other at the network layer. (Details not shown.)

3.     Configure OSPFv3 FRR:

You can enable OSPFv3 FRR to either calculate a backup next hop by using the LFA algorithm, or specify a backup next hop by using a routing policy.

¡     (Method 1.) Enable OSPFv3 FRR to calculate a backup next hop by using the LFA algorithm:

# Configure Router A.

<RouterA> system-view

[RouterA] ospfv3 1

[RouterA-ospfv3-1] fast-reroute lfa

[RouterA-ospfv3-1] quit

# Configure Router B.

<RouterB> system-view

[RouterB] ospfv3 1

[RouterB-ospfv3-1] fast-reroute lfa

[RouterB-ospfv3-1] quit

¡     (Method 2.) Enable OSPFv3 FRR to specify a backup next hop by using a routing policy:

# Configure Router A.

<RouterA> system-view

[RouterA] ipv6 prefix-list abc index 10 permit 20::1 128

[RouterA] route-policy frr permit node 10

[RouterA-route-policy-frr-10] if-match ipv6 address prefix-list abc

[RouterA-route-policy-frr-10] apply ipv6 fast-reroute backup-interface hundredgige 1/0/1 backup-nexthop 1::2

[RouterA-route-policy-frr-10] quit

[RouterA] ospfv3 1

[RouterA-ospfv3-1] fast-reroute route-policy frr

[RouterA-ospfv3-1] quit

# Configure Router B.

<RouterB> system-view

[RouterB] ipv6 prefix-list abc index 10 permit 10::1 128

[RouterB] route-policy frr permit node 10

[RouterB-route-policy-frr-10] if-match ipv6 address prefix-list abc

[RouterB-route-policy-frr-10] apply ipv6 fast-reroute backup-interface hundredgige 1/0/1 backup-nexthop 3::2

[RouterB-route-policy-frr-10] quit

[RouterB] ospfv3 1

[RouterB-ospfv3-1] fast-reroute route-policy frr

[RouterB-ospfv3-1] quit

Verifying the configuration

# Display the route 20::1/128 on Router A to view the backup next hop information.

[RouterA] display ipv6 routing-table 20::1 128 verbose

 

Summary count : 1

 

 Destination: 20::1/128

    Protocol: O_INTRA

  Process ID: 1

   SubProtID: 0x1                       Age: 00h03m45s

        Cost: 6                  Preference: 10

       IpPre: N/A                QosLocalID: N/A

         Tag: 0                       State: Active Adv

   OrigTblID: 0x0                   OrigVrf: default-vrf

     TableID: 0xa                    OrigAs: 0

       NibID: 0x23000005             LastAs: 0

      AttrID: 0xffffffff           Neighbor: ::

       Flags: 0x10041           OrigNextHop: FE80::7685:45FF:FEAD:102

       Label: NULL              RealNextHop: FE80::7685:45FF:FEAD:102

     BkLabel: NULL                BkNextHop: FE80::34CD:9FF:FE2F:D02

     SRLabel: NULL                Interface: HundredGigE1/0/2

   BkSRLabel: NULL              BkInterface: HundredGigE1/0/1

   Tunnel ID: Invalid           IPInterface: HundredGigE1/0/2

 BkTunnel ID: Invalid         BkIPInterface: HundredGigE1/0/1

     InLabel: NULL           ColorInterface: N/A

    SIDIndex: NULL         BkColorInterface: N/A

    FtnIndex: 0x0           TunnelInterface: N/A

TrafficIndex: N/A         BkTunnelInterface: N/A

   Connector: N/A                    PathID: 0x0

      UserID: 0x0                SRTunnelID: Invalid

    SID Type: N/A                       NID: Invalid

    FlushNID: Invalid                 BkNID: Invalid

  BkFlushNID: Invalid

# Display the route 10::1/128 on Router B to view the backup next hop information.

[RouterB] display ipv6 routing-table 10::1 128 verbose

 

Summary count : 1

 

Destination: 10::1/128

    Protocol: O_INTRA

  Process ID: 1

   SubProtID: 0x1                       Age: 00h03m10s

        Cost: 1                  Preference: 10

       IpPre: N/A                QosLocalID: N/A

         Tag: 0                       State: Active Adv

   OrigTblID: 0x0                   OrigVrf: default-vrf

     TableID: 0xa                    OrigAs: 0

       NibID: 0x23000006             LastAs: 0

      AttrID: 0xffffffff           Neighbor: ::

       Flags: 0x10041           OrigNextHop: FE80::34CC:E8FF:FE5B:C02

       Label: NULL              RealNextHop: FE80::34CC:E8FF:FE5B:C02

     BkLabel: NULL                BkNextHop: FE80::7685:45FF:FEAD:102

     SRLabel: NULL                Interface: HundredGigE1/0/2

   BkSRLabel: NULL              BkInterface: HundredGigE1/0/1

   Tunnel ID: Invalid           IPInterface: HundredGigE1/0/2

 BkTunnel ID: Invalid         BkIPInterface: HundredGigE1/0/1

     InLabel: NULL           ColorInterface: N/A

    SIDIndex: NULL         BkColorInterface: N/A

    FtnIndex: 0x0           TunnelInterface: N/A

TrafficIndex: N/A         BkTunnelInterface: N/A

   Connector: N/A                    PathID: 0x0

      UserID: 0x0                SRTunnelID: Invalid

    SID Type: N/A                       NID: Invalid

    FlushNID: Invalid                 BkNID: Invalid

  BkFlushNID: Invalid

Example: Configuring OSPFv3 IPsec profile

Network configuration

As shown in Figure 11, all routers run OSPFv3, and the AS is divided into two areas.

Configure IPsec profiles on the routers to authenticate and encrypt protocol packets.

Figure 11 Network diagram

Procedure

IMPORTANT

IMPORTANT:

By default, interfaces on the device are disabled (in ADM or Administratively Down state). To have an interface operate, you must use the undo shutdown command to enable that interface.

1.     Configure IPv6 addresses for interfaces. (Details not shown.)

2.     Configure OSPFv3 basic features:

# On Router A, enable OSPFv3 and specify the router ID as 1.1.1.1.

<RouterA> system-view

[RouterA] ospfv3 1

[RouterA-ospfv3-1] router-id 1.1.1.1

[RouterA-ospfv3-1] quit

[RouterA] interface hundredgige 1/0/2

[RouterA-HundredGigE1/0/2] ospfv3 1 area 1

[RouterA-HundredGigE1/0/2] quit

# On Router B, enable OSPFv3 and specify the router ID as 2.2.2.2.

<RouterB> system-view

[RouterB] ospfv3 1

[RouterB-ospfv3-1] router-id 2.2.2.2

[RouterB-ospfv3-1] quit

[RouterB] interface hundredgige 1/0/1

[RouterB-HundredGigE1/0/1] ospfv3 1 area 0

[RouterB-HundredGigE1/0/1] quit

[RouterB] interface hundredgige 1/0/2

[RouterB-HundredGigE1/0/2] ospfv3 1 area 1

[RouterB-HundredGigE1/0/2] quit

# On Router C, enable OSPFv3 and specify the router ID as 3.3.3.3.

<RouterC> system-view

[RouterC] ospfv3 1

[RouterC-ospfv3-1] router-id 3.3.3.3

[RouterC-ospfv3-1] quit

[RouterC] interface hundredgige 1/0/1

[RouterC-HundredGigE1/0/1] ospfv3 1 area 0

[RouterC-HundredGigE1/0/1] quit

3.     Configure OSPFv3 IPsec profiles:

¡     On Router A:

# Create an IPsec transform set named trans.

[RouterA] ipsec transform-set trans

# Specify the encapsulation mode as transport.

[RouterA-ipsec-transform-set-trans] encapsulation-mode transport

# Specify the ESP encryption and authentication algorithms.

[RouterA-ipsec-transform-set-trans] protocol esp

[RouterA-ipsec-transform-set-trans] esp encryption-algorithm aes-cbc-128

[RouterA-ipsec-transform-set-trans] esp authentication-algorithm sha1

[RouterA-ipsec-transform-set-trans] quit

# Create a manual IPsec profile named profile001.

[RouterA] ipsec profile profile001 manual

# Use IPsec transform set trans.

[RouterA-ipsec-profile-manual-profile001] transform-set trans

# Configure the inbound and outbound SPIs for ESP.

[RouterA-ipsec-profile-manual-profile001] sa spi outbound esp 123456

[RouterA-ipsec-profile-manual-profile001] sa spi inbound esp 123456

# Configure the inbound and outbound SA keys for ESP.

[RouterA-ipsec-profile-manual-profile001] sa string-key outbound esp simple abcdefg

[RouterA-ipsec-profile-manual-profile001] sa string-key inbound esp simple abcdefg

[RouterA-ipsec-profile-manual-profile001] quit

¡     On Router B:

# Create an IPsec transform set named trans.

[RouterB] ipsec transform-set trans

# Specify the encapsulation mode as transport.

[RouterB-ipsec-transform-set-trans] encapsulation-mode transport

# Specify the ESP encryption and authentication algorithms.

[RouterB-ipsec-transform-set-trans] protocol esp

[RouterB-ipsec-transform-set-trans] esp encryption-algorithm aes-cbc-128

[RouterB-ipsec-transform-set-trans] esp authentication-algorithm sha1

[RouterB-ipsec-transform-set-trans] quit

# Create a manual IPsec profile named profile001.

[RouterB] ipsec profile profile001 manual

# Use IPsec transform set trans.

[RouterB-ipsec-profile-manual-profile001] transform-set trans

# Configure the inbound and outbound SPIs for ESP.

[RouterB-ipsec-profile-manual-profile001] sa spi outbound esp 123456

[RouterB-ipsec-profile-manual-profile001] sa spi inbound esp 123456

# Configure the inbound and outbound SA keys for ESP.

[RouterB-ipsec-profile-manual-profile001] sa string-key outbound esp simple abcdefg

[RouterB-ipsec-profile-manual-profile001] sa string-key inbound esp simple abcdefg

[RouterB-ipsec-profile-manual-profile001] quit

# Create a manual IPsec profile named profile002.

[RouterB] ipsec profile profile002 manual

# Use IPsec transform set trans.

[RouterB-ipsec-profile-manual-profile002] transform-set trans

# Configure the inbound and outbound SPIs for ESP.

[RouterB-ipsec-profile-manual-profile002] sa spi outbound esp 256

[RouterB-ipsec-profile-manual-profile002] sa spi inbound esp 256

# Configure the inbound and outbound SA keys for ESP.

[RouterB-ipsec-profile-manual-profile002] sa string-key outbound esp simple byebye

[RouterB-ipsec-profile-manual-profile001] sa string-key inbound esp simple byebye

[RouterB-ipsec-profile-manual-profile001] quit

¡     On Router C:

# Create an IPsec transform set named trans.

[RouterC] ipsec transform-set trans

# Specify the encapsulation mode as transport.

[RouterC-ipsec-transform-set-trans] encapsulation-mode transport

# Specify the ESP encryption and authentication algorithms.

[RouterC-ipsec-transform-set-trans] protocol esp

[RouterC-ipsec-transform-set-trans] esp encryption-algorithm aes-cbc-128

[RouterC-ipsec-transform-set-trans] esp authentication-algorithm sha1

[RouterC-ipsec-transform-set-trans] quit

# Create a manual IPsec profile named profile002.

[RouterC] ipsec profile profile002 manual

# Use IPsec transform set trans.

[RouterC-ipsec-profile-manual-profile002] transform-set trans

# Configure the inbound and outbound SPIs for ESP.

[RouterC-ipsec-profile-manual-profile002] sa spi outbound esp 256

[RouterC-ipsec-profile-manual-profile002] sa spi inbound esp 256

# Configure the inbound and outbound SA keys for ESP.

[RouterC-ipsec-profile-manual-profile002] sa string-key outbound esp simple byebye

[RouterC-ipsec-profile-manual-profile001] sa string-key inbound esp simple byebye

[RouterC-ipsec-profile-manual-profile001] quit

4.     Apply the IPsec profiles to areas:

# Configure Router A.

[RouterA] ospfv3 1

[RouterA-ospfv3-1] area 1

[RouterA-ospfv3-1-area-0.0.0.1] enable ipsec-profile profile001

[RouterA-ospfv3-1-area-0.0.0.1] quit

[RouterA-ospfv3-1] quit

# Configure Router B.

[RouterB] ospfv3 1

[RouterB-ospfv3-1] area 0

[RouterB-ospfv3-1-area-0.0.0.0] enable ipsec-profile profile002

[RouterB-ospfv3-1-area-0.0.0.0] quit

[RouterB-ospfv3-1] area 1

[RouterB-ospfv3-1-area-0.0.0.1] enable ipsec-profile profile001

[RouterB-ospfv3-1-area-0.0.0.1] quit

[RouterB-ospfv3-1] quit

# Configure Router C.

[RouterC] ospfv3 1

[RouterC-ospfv3-1] area 0

[RouterC-ospfv3-1-area-0.0.0.0] enable ipsec-profile profile002

[RouterC-ospfv3-1-area-0.0.0.0] quit

[RouterC-ospfv3-1] quit

Verifying the configuration

# Verify that OSPFv3 packets between Routers A, B, and C are protected by IPsec. (Details not shown.)

 

  • Cloud & AI
  • InterConnect
  • Intelligent Computing
  • Security
  • SMB Products
  • Intelligent Terminal Products
  • Product Support Services
  • Technical Service Solutions
All Services
  • Resource Center
  • Policy
  • Online Help
All Support
  • Become a Partner
  • Partner Resources
  • Partner Business Management
All Partners
  • Profile
  • News & Events
  • Online Exhibition Center
  • Contact Us
All About Us
新华三官网