- Table of Contents
-
- 07-Layer 3 - IP Routing Configuration Guide
- 00-Preface
- 01-Basic IP routing configuration
- 02-Static routing configuration
- 03-RIP configuration
- 04-OSPF configuration
- 05-IS-IS configuration
- 06-EIGRP configuration
- 07-BGP configuration
- 08-Policy-based routing configuration
- 09-IPv6 static routing configuration
- 10-RIPng configuration
- 11-OSPFv3 configuration
- 12-IPv6 policy-based routing configuration
- 13-Routing policy configuration
- 14-DCN configuration
- Related Documents
-
Title | Size | Download |
---|---|---|
09-IPv6 static routing configuration | 191.81 KB |
Configuring IPv6 static routing
Configuring an IPv6 static route
Configuring BFD for IPv6 static routes
About BFD for IPv6 static routes
Restrictions and guidelines for BFD
Configuring BFD control packet mode·
Configuring BFD echo packet mode
Configuring IPv6 static route FRR
Restrictions and guidelines for IPv6 static route FRR
Configuring IPv6 static route FRR to automatically select a backup next hop
Enabling BFD echo packet mode for IPv6 static route FRR
Display and maintenance commands for IPv6 static routing
IPv6 static routing configuration examples
Example: Configuring basic IPv6 static route
Example: Configuring BFD for IPv6 static routes (direct next hop)
Example: Configuring BFD for IPv6 static routes (indirect next hop)
Example: Configuring IPv6 static route FRR
Configuring an IPv6 default route
Configuring IPv6 static routing
About IPv6 static routing
Static routes are manually configured and cannot adapt to network topology changes. If a fault or a topological change occurs in the network, the network administrator must modify the static routes manually. IPv6 static routing works well in a simple IPv6 network.
Configuring an IPv6 static route
1. Enter system view.
system-view
2. Configure an IPv6 static route.
Public network:
ipv6 route-static ipv6-address prefix-length { interface-type interface-number [ next-hop-address ] | next-hop-address | vpn-instance d-vpn-instance-name next-hop-address } [ permanent | track track-entry-number ] [ preference preference ] [ tag tag-value ] [ description text ]
VPN:
ipv6 route-static vpn-instance s-vpn-instance-name ipv6-address prefix-length { interface-type interface-number [ next-hop-address ] | next-hop-address [ public ] | vpn-instance d-vpn-instance-name next-hop-address } [ permanent | track track-entry-number ] [ preference preference ] [ tag tag-value ] [ description text ]
By default, no IPv6 static route is configured.
3. (Optional.) Set the default preference for IPv6 static routes.
ipv6 route-static default-preference default-preference
The default setting is 60.
Deleting IPv6 static routes
About deleting IPv6 static routes
To delete an IPv6 static route, use the undo ipv6 route-static command. To delete all IPv6 static routes including the default route, use the delete ipv6 static-routes all command.
Procedure
1. Enter system view.
system-view
2. Delete all IPv6 static routes, including the default route.
delete ipv6 [ vpn-instance vpn-instance-name ] static-routes all
Configuring BFD for IPv6 static routes
About BFD for IPv6 static routes
BFD provides a general purpose, standard, and medium- and protocol-independent fast failure detection mechanism. It can uniformly and quickly detect the failures of the bidirectional forwarding paths between two routers for protocols, such as routing protocols and MPLS. BFD for IPv6 static routes tests the reachability of the next hop for each IPv6 static route. If a next hop is unreachable, BFD deletes the associated IPv6 static route.
For more information about BFD, see High Availability Configuration Guide.
Restrictions and guidelines for BFD
Enabling BFD for a flapping route could worsen the situation.
Configuring BFD control packet mode
About BFD control packet mode
This mode uses BFD control packets to detect the status of a link bidirectionally at a millisecond level.
BFD control packet mode can be applied to IPv6 static routes with a direct next hop or with an indirect next hop.
Restrictions and guidelines for BFD control packet mode
If you use BFD control packet mode at the local end, you must use this mode also at the peer end.
Configuring BFD control packet mode for an IPv6 static route (direct next hop)
1. Enter system view.
system-view
2. Configure BFD control packet mode for an IPv6 static route.
ipv6 route-static [ vpn-instance s-vpn-instance-name ] ipv6-address prefix-length interface-type interface-number next-hop-address bfd control-packet [ bfd-source ipv6-address ] [ preference preference ] [ tag tag-value ] [ description text ]
By default, BFD control packet mode for an IPv6 static route is not configured.
3. (Optional.) Configure BFD session parameters for the IPv6 static route.
ipv6 route-static bfd interface-type interface-number next-hop-address { detect-multiplier detect-multiplier | min-receive-interval min-receive-interval | min-transmit-interval min-transmit-interval } *
By default, no BFD session parameters are specifically configured for an IPv6 static route. The IPv6 static route uses the session parameters configured for the BFD module (common BFD session parameters).
Configuring BFD control packet mode for an IPv6 static route (indirect next hop)
1. Enter system view.
system-view
2. Configure BFD control packet mode for an IPv6 static route.
ipv6 route-static [ vpn-instance s-vpn-instance-name ] ipv6-address prefix-length [ vpn-instance d-vpn-instance-name ] { next-hop-address bfd control-packet bfd-source ipv6-address } [ preference preference ] [ tag tag-value ] [ description text ]
By default, BFD control packet mode for an IPv6 static route is not configured.
3. (Optional.) Configure BFD session parameters for the IPv6 static route.
ipv6 route-static bfd [ vpn-instance d-vpn-instance-name ] next-hop-address source-ipv6 ipv6-address { detect-multiplier detect-multiplier | min-receive-interval min-receive-interval | min-transmit-interval min-transmit-interval } *
By default, no BFD session parameters are specifically configured for an IPv6 static route. The IPv6 static route uses the session parameters configured for the BFD module (common BFD session parameters).
Configuring BFD echo packet mode
About BFD echo packet mode
With BFD echo packet mode enabled for a static route, the output interface sends BFD echo packets to the destination device, which loops the packets back to test the link reachability.
Restrictions and guidelines
You do not need to configure BFD echo packet mode at the peer end.
Do not use BFD for a static route with the output interface in spoofing state.
Procedure
1. Enter system view.
system-view
2. Configure the source address of echo packets.
bfd echo-source-ipv6 ipv6-address
By default, the source address of echo packets is not configured.
The source address of echo packets must be a global unicast address.
For more information about this command, see High Availability Command Reference.
3. Configure BFD echo packet mode for an IPv6 static route.
ipv6 route-static [ vpn-instance s-vpn-instance-name ] ipv6-address prefix-length interface-type interface-number next-hop-address bfd echo-packet [ bfd-source ipv6-address ] [ preference preference ] [ tag tag-value ] [ description text ]
By default, BFD echo packet mode for an IPv6 static route is not configured.
The next hop IPv6 address must be a global unicast address.
4. (Optional.) Configure BFD session parameters for the IPv6 static route.
ipv6 route-static bfd interface-type interface-number next-hop-address { detect-multiplier detect-multiplier | min-echo-receive-interval min-echo-receive-interval } *
By default, no BFD session parameters are specifically configured for an IPv6 static route. The IPv6 static route uses the session parameters configured for the BFD module (common BFD session parameters).
Configuring IPv6 static route FRR
About IPv6 static route FRR
A link or router failure on a path can cause packet loss. IPv6 static route fast reroute (FRR) enables fast rerouting to minimize the impact of link or node failures.
As shown in Figure 1, upon a link failure, packets are directed to the backup next hop to avoid traffic interruption. You can enable FRR to automatically select a backup next hop (which must be configured in advance).
Restrictions and guidelines for IPv6 static route FRR
Do not use IPv6 static route FRR and BFD (for an IPv6 static route) at the same time.
Equal-cost routes do not support IPv6 static route FRR.
Besides the configured IPv6 static route for FRR, the device must have another route to reach the destination. When the state of the primary link (with Layer 3 interfaces staying up) changes from bidirectional to unidirectional or down, IPv6 static route FRR quickly redirects traffic to the backup next hop. When the Layer 3 interfaces of the primary link are down, IPv6 static route FRR temporarily redirects traffic to the backup next hop. In addition, the device searches for another route to reach the destination and redirects traffic to the new path if a route is found. If no route is found, traffic interruption occurs.
Configuring IPv6 static route FRR to automatically select a backup next hop
1. Enter system view.
system-view
2. Configure IPv6 static route FRR to automatically select a backup next hop.
ipv6 route-static fast-reroute auto
By default, IPv6 static route FRR is disabled from automatically selecting a backup next hop.
Enabling BFD echo packet mode for IPv6 static route FRR
About BFD echo packet mode
By default, IPv6 static route FRR uses IPv6 ND to detect primary link failures. For quicker IPv6 static route FRR, use BFD echo packet mode on the primary link of redundant links to detect link failure.
Procedure
1. Enter system view.
system-view
2. Configure the source IP address of BFD echo packets.
bfd echo-source-ipv6 ipv6-address
By default, the source IPv6 address of BFD echo packets is not configured.
You must specify a global unicast address as the source IPv6 address of BFD echo packets.
For more information about this command, see BFD commands in High Availability Command Reference.
3. Enable BFD echo packet mode for IPv6 static route FRR.
ipv6 route-static primary-path-detect bfd echo
By default, BFD echo packet mode is disabled for IPv6 static route FRR.
Display and maintenance commands for IPv6 static routing
Execute display commands in any view.
Task |
Command |
Display IPv6 static route information. |
display ipv6 routing-table protocol static [ inactive | verbose ] |
Display IPv6 static route next hop information. |
display ipv6 route-static nib [ nib-id ] [ verbose ] |
Display IPv6 static routing table information. |
display ipv6 route-static routing-table [ vpn-instance vpn-instance-name ] [ ipv6-address prefix-length ] |
IPv6 static routing configuration examples
Example: Configuring basic IPv6 static route
Network configuration
As shown in Figure 2, configure IPv6 static routes so that hosts can reach each other.
Procedure
1. Configure IPv6 addresses for interfaces. (Details not shown.)
2. Configure IPv6 static routes:
# Configure the default IPv6 route on Router A.
<RouterA> system-view
[RouterA] ipv6 route-static :: 0 4::2
# Configure two IPv6 static routes on Router B.
<RouterB> system-view
[RouterB] ipv6 route-static 1:: 64 4::1
[RouterB] ipv6 route-static 3:: 64 5::1
# Configure the default IPv6 route on Router C.
<RouterC> system-view
[RouterC] ipv6 route-static :: 0 5::2
3. Configure the IPv6 addresses for all hosts and configure the default gateway of Host A, Host B, and Host C as 1::1, 2::1, and 3::1.
Verifying the configuration
# Display the IPv6 static route information on Router A.
[RouterA] display ipv6 routing-table protocol static
Summary Count : 1
Static Routing table Status : <Active>
Summary Count : 1
Destination: :: Protocol : Static
NextHop : 4::2 Preference: 60
Interface : GE3/1/2 Cost : 0
Static Routing table Status : <Inactive>
Summary Count : 0
# Display the IPv6 static route information on Router B.
[RouterB] display ipv6 routing-table protocol static
Summary Count : 2
Static Routing table Status : <Active>
Summary Count : 2
Destination: 1::/64 Protocol : Static
NextHop : 4::1 Preference: 60
Interface : GE3/1/1 Cost : 0
Destination: 3::/64 Protocol : Static
NextHop : 5::1 Preference: 60
Interface : GE3/1/2 Cost : 0
Static Routing table Status : <Inactive>
Summary Count : 0
# Use the ping command to test reachability.
Ping6(56 data bytes) 4::1 --> 3::1, press CTRL_C to break
56 bytes from 3::1, icmp_seq=0 hlim=62 time=0.700 ms
56 bytes from 3::1, icmp_seq=1 hlim=62 time=0.351 ms
56 bytes from 3::1, icmp_seq=2 hlim=62 time=0.338 ms
56 bytes from 3::1, icmp_seq=3 hlim=62 time=0.373 ms
56 bytes from 3::1, icmp_seq=4 hlim=62 time=0.316 ms
--- Ping6 statistics for 3::1 ---
5 packet(s) transmitted, 5 packet(s) received, 0.0% packet loss
round-trip min/avg/max/std-dev = 0.316/0.416/0.700/0.143 ms
Example: Configuring BFD for IPv6 static routes (direct next hop)
Network configuration
As shown in Figure 3:
· Configure an IPv6 static route to subnet 120::/64 on Router A.
· Configure an IPv6 static route to subnet 121::/64 on Router B.
· Enable BFD for both routes.
· Configure an IPv6 static route to subnet 120::/64 and an IPv6 static route to subnet 121::/64 on Router C.
When the link between Router A and Router B through the Layer 2 switch fails, BFD can detect the failure immediately and inform Router A and Router B to communicate through Router C.
Table 1 Interface and IP address assignment
Device |
Interface |
IPv6 address |
Router A |
GE3/1/1 |
12::1/64 |
Router A |
GE3/1/2 |
10::102/64 |
Router B |
GE3/1/1 |
12::2/64 |
Router B |
GE3/1/2 |
13::1/64 |
Router C |
GE3/1/1 |
10::100/64 |
Router C |
GE3/1/2 |
13::2/64 |
Procedure
1. Configure IPv6 addresses for interfaces. (Details not shown.)
2. Configure IPv6 static routes and BFD:
# Configure IPv6 static routes on Router A, and enable BFD control packet mode for the IPv6 static route that traverses GigabitEthernet 3/1/1.
<RouterA> system-view
[RouterA] interface gigabitethernet 3/1/1
[RouterA-GigabitEthernet3/1/1] bfd min-transmit-interval 500
[RouterA-GigabitEthernet3/1/1] bfd min-receive-interval 500
[RouterA-GigabitEthernet3/1/1] bfd detect-multiplier 9
[RouterA-GigabitEthernet3/1/1] quit
[RouterA] ipv6 route-static 120:: 64 gigabitethernet 3/1/1 12::2 bfd control-packet
[RouterA] ipv6 route-static 120:: 64 10::100 preference 65
[RouterA] quit
# Configure IPv6 static routes on Router B, and enable BFD control packet mode for the IPv6 static route that traverses the Layer 2 switch.
<RouterB> system-view
[RouterB] interface gigabitethernet 3/1/1
[RouterB-GigabitEthernet3/1/1] bfd min-transmit-interval 500
[RouterB-GigabitEthernet3/1/1] bfd min-receive-interval 500
[RouterB-GigabitEthernet3/1/1] bfd detect-multiplier 9
[RouterB-GigabitEthernet3/1/1] quit
[RouterB] ipv6 route-static 121:: 64 gigabitethernet 3/1/1 12::1 bfd control-packet
[RouterB] ipv6 route-static 121:: 64 13::2 preference 65
[RouterB] quit
# Configure IPv6 static routes on Router C.
<RouterC> system-view
[RouterC] ipv6 route-static 120:: 64 13::1
[RouterC] ipv6 route-static 121:: 64 10::102
Verifying the configuration
# Display BFD sessions on Router A.
<RouterA> display bfd session
Total sessions: 1 Up sessions: 1 Init mode: Active
IPv6 session working in control packet mode:
Local discr: 513 Remote discr: 33
Source IP: 12::1
Destination IP: 12::2
Session state: Up Interface: GE3/1/1
Hold time: 2012ms
The output shows that the BFD session has been created.
# Display IPv6 static routes on Router A.
<RouterA> display ipv6 routing-table protocol static
Summary Count : 1
Static Routing table Status : <Active>
Summary Count : 1
Destination: 120::/64 Protocol : Static
NextHop : 12::2 Preference: 60
Interface : GE3/1/1 Cost : 0
Static Routing table Status : <Inactive>
Summary Count : 0
The output shows that Router A communicates with Router B through GigabitEthernet 3/1/1. The link over GigabitEthernet 3/1/1 fails.
# Display IPv6 static routes on Router A.
<RouterA> display ipv6 routing-table protocol static
Summary Count : 1
Static Routing table Status : <Active>
Summary Count : 1
Destination: 120::/64 Protocol : Static
NextHop : 10::100 Preference: 65
Interface : GE3/1/2 Cost : 0
Static Routing table Status : <Inactive>
Summary Count : 0
The output shows that Router A communicates with Router B through GigabitEthernet 3/1/2.
Example: Configuring BFD for IPv6 static routes (indirect next hop)
Network configuration
As shown in Figure 4:
· Router A has a route to interface Loopback 1 (2::9/128) on Router B, and the output interface is GigabitEthernet 3/1/1.
· Router B has a route to interface Loopback 1 (1::9/128) on Router A, and the output interface is GigabitEthernet 3/1/1.
· Router D has a route to 1::9/128, and the output interface is GigabitEthernet 3/1/1. It also has a route to 2::9/128, and the output interface is GigabitEthernet 3/1/2.
Configure the following:
· Configure an IPv6 static route to subnet 120::/64 on Router A.
· Configure an IPv6 static route to subnet 121::/64 on Router B.
· Enable BFD for both routes.
· Configure an IPv6 static route to subnet 120::/64 and an IPv6 static route to subnet 121::/64 on both Router C and Router D.
When the link between Router A and Router B through Router D fails, BFD can detect the failure immediately and Router A and Router B can communicate through Router C.
Table 2 Interface and IP address assignment
Device |
Interface |
IPv6 address |
Router A |
GE3/1/1 |
12::1/64 |
Router A |
GE3/1/2 |
10::102/64 |
Router A |
Loop1 |
1::9/128 |
Router B |
GE3/1/1 |
11::2/64 |
Router B |
GE3/1/2 |
13::1/64 |
Router B |
Loop1 |
2::9/128 |
Router C |
GE3/1/1 |
10::100/64 |
Router C |
GE3/1/2 |
13::2/64 |
Router D |
GE3/1/1 |
12::2/64 |
Router D |
GE3/1/2 |
11::1/64 |
Procedure
1. Configure IPv6 addresses for interfaces. (Details not shown.)
2. Configure IPv6 static routes and BFD:
# Configure IPv6 static routes on Router A and enable BFD control packet mode for the IPv6 static route that traverses Router D.
<RouterA> system-view
[RouterA] bfd multi-hop min-transmit-interval 500
[RouterA] bfd multi-hop min-receive-interval 500
[RouterA] bfd multi-hop detect-multiplier 9
[RouterA] ipv6 route-static 120:: 64 2::9 bfd control-packet bfd-source 1::9
[RouterA] ipv6 route-static 120:: 64 10::100 preference 65
[RouterA] ipv6 route-static 2::9 128 12::2
[RouterA] quit
# Configure IPv6 static routes on Router B and enable BFD control packet mode for the IPv6 static route that traverses Router D.
<RouterB> system-view
[RouterB] bfd multi-hop min-transmit-interval 500
[RouterB] bfd multi-hop min-receive-interval 500
[RouterB] bfd multi-hop detect-multiplier 9
[RouterB] ipv6 route-static 121:: 64 1::9 bfd control-packet bfd-source 2::9
[RouterB] ipv6 route-static 121:: 64 13::2 preference 65
[RouterB] ipv6 route-static 1::9 128 11::1
[RouterB] quit
# Configure IPv6 static routes on Router C.
<RouterC> system-view
[RouterC] ipv6 route-static 120:: 64 13::1
[RouterC] ipv6 route-static 121:: 64 10::102
# Configure IPv6 static routes on Router D.
<RouterD> system-view
[RouterD] ipv6 route-static 120:: 64 11::2
[RouterD] ipv6 route-static 121:: 64 12::1
[RouterD] ipv6 route-static 2::9 128 11::2
[RouterD] ipv6 route-static 1::9 128 12::1
Verifying the configuration
# Display BFD sessions on Router A.
<RouterA> display bfd session
Total sessions: 1 Up sessions: 1 Init mode: Active
IPv6 session working in control packet mode:
Local discr: 513 Remote discr: 33
Source IP: 1::9
Destination IP: 2::9
Session state: Up Interface: N/A
Hold time: 2012ms
The output shows that the BFD session has been created.
# Display IPv6 static routes on Router A.
<RouterA> display ipv6 routing-table protocol static
Summary Count : 1
Static Routing table Status : <Active>
Summary Count : 1
Destination: 120::/64 Protocol : Static
NextHop : 2::9 Preference: 60
Interface : GE3/1/1 Cost : 0
Static Routing table Status : <Inactive>
Summary Count : 0
The output shows that Router A communicates with Router B through GigabitEthernet 3/1/1. The link over GigabitEthernet 3/1/1 fails.
# Display IPv6 static routes on Router A.
<RouterA> display ipv6 routing-table protocol static
Summary Count : 1
Static Routing table Status : <Active>
Summary Count : 1
Destination: 120::/64 Protocol : Static
NextHop : 10::100 Preference: 65
Interface : GE3/1/2 Cost : 0
Static Routing table Status : <Inactive>
Summary Count : 0
The output shows that Router A communicates with Router B through GigabitEthernet 3/1/2.
Example: Configuring IPv6 static route FRR
Network configuration
As shown in Figure 5, configure IPv6 static routes on Router A, Router B, and Router C, and configure IPv6 static route FRR. When Link A becomes unidirectional, traffic can be switched to Link B immediately.
Table 3 Interface and IP address assignment
Device |
Interface |
IP address |
Router A |
GE3/1/1 |
13::1/64 |
Router A |
GE3/1/2 |
12::1/64 |
Router A |
Loopback 0 |
1::9/128 |
Router B |
GE3/1/1 |
23::2/64 |
Router B |
GE3/1/2 |
12::2/64 |
Router B |
Loopback 0 |
2::9/128 |
Router C |
GE3/1/1 |
13::3/64 |
Router C |
GE3/1/2 |
23::3/64 |
Procedure
1. Configure IPv6 addresses for interfaces. (Details not shown.)
2. Configure IPv6 static route FRR to automatically select a backup next hop:
# Configure IPv6 static routes on Router A, and configure IPv6 static route FRR to automatically select a backup next hop.
<RouterA> system-view
[RouterA] ipv6 route-static 2::9 128 gigabitethernet 3/1/2 12::2
[RouterA] ipv6 route-static 2::9 128 gigabitethernet 3/1/1 13::3 preference 70
[RouterA] ipv6 route-static 23:: 64 gigabitethernet 3/1/2 12::2
[RouterA] ipv6 route-static 23:: 64 gigabitethernet 3/1/1 13::3 preference 70
[RouterA] ipv6 route-static fast-reroute auto
# Configure IPv6 static routes on Router B, and configure IPv6 static route FRR to automatically select a backup next hop.
<RouterB> system-view
[RouterB] ipv6 route-static 1::9 128 gigabitethernet 3/1/2 12::1
[RouterB] ipv6 route-static 1::9 128 gigabitethernet 3/1/1 23::3 preference 70
[RouterB] ipv6 route-static 13:: 64 gigabitethernet 3/1/2 12::1
[RouterB] ipv6 route-static 13:: 64 gigabitethernet 3/1/1 23::3 preference 70
[RouterB] ipv6 route-static fast-reroute auto
3. Configure IPv6 static routes on Router C.
<RouterC> system-view
[RouterC] ipv6 route-static 1::9 128 gigabitethernet 3/1/1 13::1
[RouterC] ipv6 route-static 2::9 128 gigabitethernet 3/1/2 23::2
Verifying the configuration
# Display route 2::9/128 on Router A to view the backup next hop information.
[RouterA] display ipv6 routing-table 2::9 verbose
Summary Count : 1
Destination: 2::9/128
Protocol: Static
Process ID: 0
SubProtID: 0x1 Age: 00h09m12s
Cost: 0 Preference: 60
IpPre: N/A QosLocalID: N/A
Tag: 0 State: Active Adv
OrigTblID: 0x0 OrigVrf: default-vrf
TableID: 0xa OrigAs: 0
NibID: 0x21000002 LastAs: 0
AttrID: 0xffffffff Neighbor: ::
Flags: 0x10040 OrigNextHop: 12::2
Label: NULL RealNextHop: 12::2
BkLabel: NULL BkNextHop: 13::3
SRLabel: NULL BkSRLabel: NULL
SIDIndex: NULL InLabel: NULL
Tunnel ID: Invalid Interface: GigabitEthernet3/1/2
BkTunnel ID: Invalid BkInterface: GigabitEthernet3/1/1
FtnIndex: 0x0 TrafficIndex: N/A
Connector: N/A PathID: 0x0
# Display route 1::9/128 on Router B to view the backup next hop information.
[RouterB] display ipv6 routing-table 1::9 verbose
Summary Count : 1
Destination: 1::9/128
Protocol: Static
Process ID: 0
SubProtID: 0x1 Age: 00h09m57s
Cost: 0 Preference: 60
IpPre: N/A QosLocalID: N/A
Tag: 0 State: Active Adv
OrigTblID: 0x0 OrigVrf: default-vrf
TableID: 0xa OrigAs: 0
NibID: 0x21000002 LastAs: 0
AttrID: 0xffffffff Neighbor: ::
Flags: 0x10040 OrigNextHop: 12::1
Label: NULL RealNextHop: 12::1
BkLabel: NULL BkNextHop: 23::3
SRLabel: NULL BkSRLabel: NULL
SIDIndex: NULL InLabel: NULL
Tunnel ID: Invalid Interface: GigabitEthernet3/1/2
BkTunnel ID: Invalid BkInterface: GigabitEthernet3/1/1
FtnIndex: 0x0 TrafficIndex: N/A
Connector: N/A PathID: 0x0
Configuring an IPv6 default route
A default IPv6 route is used to forward packets that match no entry in the routing table.
A default IPv6 route can be configured in either of the following ways:
· The network administrator can configure a default route with a destination prefix of ::/0. For more information, see "Configuring IPv6 static routing."
· Some dynamic routing protocols can generate a default IPv6 route. For example, an upstream router running OSPFv3 can generate a default IPv6 route and advertise it to other routers. These routers install the default IPv6 route with the next hop being the upstream router. For more information, see the respective chapters on those routing protocols in this configuration guide.