04-MPLS TE配置
本章节下载: 04-MPLS TE配置 (447.16 KB)
网络拥塞是影响骨干网络性能的主要问题。拥塞的原因可能是网络资源不足,也可能是网络资源负载不均衡导致的局部拥塞。TE(Traffic Engineering,流量工程)可以用来解决负载不均衡导致的拥塞问题。
流量工程通过实时监控网络的流量和网络单元的负载,动态调整流量管理参数、路由参数和资源约束参数等,使网络运行状态迁移到理想状态,优化网络资源的使用,避免负载不均衡导致的拥塞。
MPLS TE结合了MPLS技术与流量工程,通过建立沿着指定路径的LSP隧道进行资源预留,使网络流量绕开拥塞节点,达到平衡网络流量的目的。
MPLS TE是一种可扩展性好、简单的流量工程解决方案,受到了服务提供商的青睐。通过MPLS TE技术,服务提供商能够在已有的MPLS骨干网上简单地部署流量工程,充分利用现有的网络资源提供多样化的服务,同时可以优化网络资源,并进行科学的网络管理。
CRLSP(Constraint-based Routed Label Switched Paths,基于约束路由的LSP)是基于一定约束条件建立的LSP。与普通LSP不同,CRLSP的建立不仅依赖路由信息,还需要满足其他一些条件,比如带宽需求等。
MPLS TE可以通过静态和动态两种方式建立CRLSP。
MPLS TE隧道是从头节点到目的节点的一条虚拟点到点连接。通常情况下,MPLS TE隧道由一条CRLSP构成。在部署CRLSP备份或需要将流量通过多条路径传输时,需要为同一种流量建立多条CRLSP,在这种情况下,MPLS TE隧道由一组CRLSP构成。
头节点上MPLS TE隧道由MPLS TE模式的Tunnel接口标识。当流量的出接口为Tunnel接口时,该流量将通过构成MPLS TE隧道的CRLSP来转发。
静态建立CRLSP是指在流量经过的每一跳设备上(包括Ingress、Transit和Egress)分别手工指定入标签、出标签、流量所需的带宽等信息,从而建立满足约束条件的CRLSP。该方式的优点是配置简单,缺点是不能根据网络的变化动态调整建立的CRLSP。
静态CRLSP的详细介绍,请参见“MPLS配置指导”中的“静态CRLSP”。
动态建立CRLSP是指根据动态路由协议计算出路径后,通过标签分发协议(如RSVP-TE)通告标签,并在经过的节点上为流量预留所需的带宽资源,从而建立满足约束条件的CRLSP。该方式的优点是能根据网络的变化动态调整建立的CRLSP,且支持CRLSP备份等功能,缺点是配置复杂。
目前,设备上支持的MPLS TE标签分发协议为RSVP-TE。RSVP(Resource Reservation Protocol,资源预留协议)是一种用来在网络上请求预留资源的信令协议。RSVP经扩展后可以支持MPLS标签的分发,并在传送标签绑定消息的同时携带资源预留信息,这种扩展后的RSVP称为RSVP-TE。
RSVP的详细介绍,请参见“MPLS配置指导”中的“RSVP”。
当MPLS TE隧道建立之后,流量不会自动通过MPLS TE隧道转发,需要通过如下方法配置流量沿MPLS TE隧道转发。
使用静态路由转发流量,是指定义一条通过Tunnel接口到达目的网络地址的静态路由,把流量引入到MPLS TE隧道上进行转发。
静态路由是将流量引入MPLS TE隧道的最简便、直观的方法。该方法的缺点是:如果多个目的网络的流量都需要引入到MPLS TE隧道上,则需要配置多条静态路由,配置和维护难度比较大。
有关静态路由的介绍请参见“三层技术-IP路由配置指导”中的“静态路由”。
使用PBR(Policy-based routing,基于策略的路由)转发流量,是指定义策略路由,在策略路由中将匹配ACL规则的流量的出接口指定为Tunnel接口,并在流量的入接口上应用该策略路由,从而实现将流量引入到MPLS TE隧道上进行转发。
策略路由方式不仅可以根据目的IP地址来匹配需要通过Tunnel接口转发的流量,还可以根据源IP地址、协议类型等来匹配流量。与静态路由方式相比,策略路由方式更加灵活,但是配置比较复杂。
有关策略路由的介绍请参见“三层技术-IP路由配置指导”中的“策略路由”。
make-before-break是一种在尽可能不丢失数据,也不占用额外带宽的前提下改变MPLS TE隧道的机制。
如果在新的CRLSP建立之前拆除旧的CRLSP,则会导致流量转发中断。通过make-before-break机制可以确保新CRLSP建立、并将流量切换到新的CRLSP后,再拆除旧CRLSP,从而有效地避免流量转发中断。此时,存在的问题是:如果新的CRLSP和旧CRLSP部分路径相同,则在这些路径上需要重复为新旧CRLSP预留带宽,造成带宽资源的浪费。make-before-break机制采用SE资源预留风格解决这个问题。
资源预留风格是RSVP-TE协议在建立CRLSP时预留带宽资源的方式。MPLS TE隧道使用的资源预留风格由隧道的Ingress节点决定,并通过RSVP协议通知给各个节点。
目前,设备支持以下两种资源预留风格:
· FF(Fixed-Filter,固定过滤器):为每个发送者单独预留资源,同一会话中的不同发送者不能共享资源。
· SE(Shared-Explicit,共享显式):为同一个会话中的不同发送者预留同一个资源,不同发送者之间可以共享资源。该方式主要用于make-before-break。
在图1-1中,假设需要建立一条Router A到Router D的CRLSP,保留30M带宽,起初建立的路径是Router A→Router B→Router C→Router D。
现在希望将带宽增大为40M,Router A→Router B→Router C→Router D路径不能满足要求。而如果选择Router A→Router E→Router C→Router D,则Router C→Router D需要同时预留30M和40M带宽,也存在带宽不够的问题。
采用make-before-break机制,新建立的CRLSP在Router C→Router D可以共享原CRLSP的带宽,不需要为新CRLSP和旧CRLSP重复预留带宽。新CRLSP建立成功后,流量切换到新CRLSP上,之后拆除原CRLSP,从而有效地避免了流量中断。
CRLSP备份是指通过备份CRLSP对主CRLSP进行保护。当Ingress感知到主CRLSP不可用时,将流量切换到备份CRLSP上,当主CRLSP路径恢复后再将流量切换回来,以实现对主CRLSP的备份保护。
CRLSP备份有两种备份方法:
· 热备份:创建主CRLSP后随即创建备份CRLSP。主CRLSP失效时,直接将流量切换至备份CRLSP。
· 普通备份:指主CRLSP失效后创建备份CRLSP。
一条MPLS TE双向隧道由正、反两个单向的CRLSP组成。MPLS TE双向隧道的建立有如下几种方式:
· Co-routed方式:对RSVP-TE协议进行扩展,通过RSVP-TE信令协议建立MPLS TE双向隧道,即通过Path消息将上游LSR分配的标签通告给下游LSR,在Path消息传递的过程中建立一个方向的CRLSP,再通过Resv消息将下游LSR分配的标签通告给上游LSR,在Resv消息传递的过程中建立另一个方向的CRLSP。Co-routed方式建立的MPLS TE双向隧道的正、反两个方向CRLSP使用的是相同的路径。
· Associated方式:通过配置手工将两条方向相反的单向CRLSP绑定,从而形成MPLS TE双向隧道。绑定在一起的两条单向CRLSP可以通过不同的方式建立,例如一个方向上的CRLSP使用静态方式建立,而另一个方向上的CRLSP使用RSVP-TE信令建立。绑定在一起的两条单向CRLSP使用的路径可以不同。
通过RSVP-TE信令协议建立MPLS TE隧道、Path消息、Resv消息的详细介绍,请参见“MPLS配置指导”中的“RSVP”。
与MPLS TE相关的协议规范有:
· RFC 2702:Requirements for Traffic Engineering Over MPLS
· RFC 3564:Requirements for Support of Differentiated Service-aware MPLS Traffic Engineering
· RFC 4124:Protocol Extensions for Support of Diffserv-aware MPLS Traffic Engineering
· RFC 4125:Maximum Allocation Bandwidth Constraints Model for Diffserv-aware MPLS Traffic Engineering
· RFC 4127:Russian Dolls Bandwidth Constraints Model for Diffserv-aware MPLS Traffic Engineering
· ITU-T Recommendation Y.1720:Protection switching for MPLS networks
MPLS TE隧道采用静态CRLSP时,MPLS TE的配置主要包括以下几步:
(1) 在MPLS TE隧道经过的各个节点和接口上开启MPLS TE能力。
(2) 在MPLS TE隧道的Ingress节点上创建Tunnel接口,指定隧道的目的端地址(即Egress的地址)。
(3) 在MPLS TE隧道经过的各个节点上创建静态CRLSP,配置方法请参见“MPLS配置指导”中的“静态CRLSP”。
(4) 在MPLS TE隧道的Ingress节点上配置Tunnel接口引用已经创建的静态CRLSP。
(5) 在MPLS TE隧道的Ingress节点上配置静态路由或策略路由,将流量引入MPLS TE隧道。
MPLS TE隧道采用RSVP-TE动态建立的CRLSP时,MPLS TE的配置主要包括以下几步:
(1) 在MPLS TE隧道经过的各个节点和接口上开启MPLS TE能力和RSVP能力。开启RSVP能力的方法,请参见“MPLS配置指导”中的“RSVP”。
(2) 在MPLS TE隧道的Ingress节点上创建Tunnel接口,指定隧道的目的端地址(即Egress的地址)。
(3) 在MPLS TE隧道经过的各个节点上配置IGP路由协议。
(4) 在MPLS TE隧道的Ingress节点上配置通过RSVP-TE,沿着根据IGP路由协议计算出的路径建立CRLSP。
(5) 在MPLS TE隧道的Ingress节点上配置静态路由或策略路由,将流量引入MPLS TE隧道。
除了上述配置外,用户还可以根据实际需要配置MPLS TE双向隧道等功能。
表1-1 MPLS TE配置任务简介
配置任务 |
说明 |
详细配置 |
|
开启MPLS TE能力 |
必选 |
||
配置Tunnel接口 |
必选 |
||
配置MPLS TE隧道 |
配置MPLS TE隧道采用静态CRLSP |
二者必选其一 |
|
配置MPLS TE隧道采用RSVP-TE动态建立的CRLSP |
|||
配置流量转发 |
配置静态路由使流量沿MPLS TE隧道转发 |
二者必选其一 |
|
配置策略路由使流量沿MPLS TE隧道转发 |
|||
配置MPLS TE双向隧道 |
可选 |
||
配置CRLSP备份 |
可选 只有使用RSVP-TE信令协议建立的MPLS TE隧道支持本配置 |
MPLS TE隧道经过的各个节点和接口上都需要开启MPLS TE能力。
在开启MPLS TE能力之前,需要完成以下任务:
· 配置静态路由或IGP协议保证各LSR之间路由可达。
· 配置MPLS基本能力,详细配置请参见“MPLS配置指导”中的“MPLS基础”。
操作 |
命令 |
说明 |
进入系统视图 |
system-view |
- |
开启本节点的MPLS TE能力,并进入MPLS TE视图 |
mpls te |
缺省情况下,MPLS TE能力处于禁止状态 |
退回系统视图 |
quit |
- |
进入接口视图 |
interface interface-type interface-number |
- |
开启接口的MPLS TE能力 |
mpls te enable |
缺省情况下,接口上的MPLS TE能力处于禁止状态 |
MPLS TE隧道的属性都是在Tunnel接口视图下配置的。因此,在配置MPLS TE隧道之前,需要先创建MPLS TE隧道模式的Tunnel接口。有关Tunnel接口的介绍和更多配置请参见“三层技术-IP业务配置指导”中的“隧道”。
请在MPLS TE隧道的Ingress节点上执行本配置。
表1-3 配置Tunnel接口
操作 |
命令 |
说明 |
进入系统视图 |
system-view |
- |
创建模式为MPLS TE隧道的Tunnel接口,并进入Tunnel接口视图 |
interface tunnel tunnel-number mode mpls-te |
缺省情况下,设备上不存在任何Tunnel接口 |
配置Tunnel接口的IP地址 |
ip address ip-address { mask-length | mask } |
缺省情况下,未指定Tunnel接口的IP地址 |
配置隧道的目的端地址 |
destination ip-address |
缺省情况下,未指定隧道的目的端地址 |
MPLS TE隧道采用静态CRLSP的配置过程非常简单,只需要建立一条静态CRLSP、指定MPLS TE隧道采用静态方式建立、并配置MPLS TE隧道引用已建立的静态CRLSP即可。
表1-4 配置MPLS TE隧道采用静态CRLSP
操作 |
命令 |
说明 |
进入系统视图 |
system-view |
- |
建立静态CRLSP |
配置方法请参见“MPLS配置指导”中的“静态CRLSP” |
- |
进入模式为MPLS TE隧道的Tunnel接口视图 |
interface tunnel tunnel-number [ mode mpls-te ] |
在Ingress节点上执行本命令 |
配置使用静态CRLSP建立MPLS TE隧道 |
mpls te signaling static |
缺省情况下,MPLS TE使用RSVP-TE信令协议建立隧道 |
指定隧道引用的静态CRLSP |
mpls te static-cr-lsp lsp-name |
缺省情况下,隧道没有引用任何静态CRLSP |
表1-5 配置任务简介
配置任务 |
说明 |
详细配置 |
使用RSVP-TE建立MPLS TE隧道 |
必选 |
|
调整MPLS TE隧道的建立 |
可选 |
执行本配置前,需要通过rsvp、rsvp enable命令在MPLS TE隧道经过的所有节点和接口上都开启RSVP能力,详细介绍请参见“MPLS配置指导”中的“RSVP”。
请在MPLS TE隧道的Ingress节点上执行本配置。
表1-6 配置使用RSVP-TE建立MPLS TE隧道
操作 |
命令 |
说明 |
进入系统视图 |
system-view |
- |
进入模式为MPLS TE隧道的Tunnel接口视图 |
interface tunnel tunnel-number [ mode mpls-te ] |
- |
配置使用RSVP-TE信令协议建立隧道 |
mpls te signaling rsvp-te |
缺省情况下,MPLS TE使用RSVP-TE信令协议建立隧道 |
在实施本节的配置任务之前,需要明确理解这些配置对系统可能造成的影响,以免影响MPLS TE隧道的建立。
请在MPLS TE隧道的Ingress节点上执行本节中的配置。
配置隧道建立时进行环路检测后,将自动启动该隧道的路由记录功能,而不管用户是否配置了mpls te record-route命令。隧道经过的节点根据记录的路由信息,判断是否出现环路。
操作 |
命令 |
说明 |
进入系统视图 |
system-view |
- |
进入模式为MPLS TE隧道的Tunnel接口视图 |
interface tunnel tunnel-number [ mode mpls-te ] |
- |
配置隧道建立时进行环路检测 |
mpls te loop-detection |
缺省情况下,隧道建立时不进行环路检测 |
路由记录和标签记录功能用来记录MPLS TE隧道经过的各个节点及各个节点分配的标签值,以便用户根据记录的信息了解MPLS TE隧道经过的路径和标签分配情况。在MPLS TE隧道出现故障时,用户也可以根据记录的信息对故障进行定位。
操作 |
命令 |
说明 |
|
进入系统视图 |
system-view |
- |
|
进入模式为MPLS TE隧道的Tunnel接口视图 |
interface tunnel tunnel-number [ mode mpls-te ] |
- |
|
开启隧道的路由记录或标签记录功能 |
仅开启路由记录功能 |
mpls te record-route |
缺省情况下,隧道的路由记录和标签记录功能处于关闭状态 |
同时开启路由记录和标签记录功能 |
mpls te record-route label |
MPLS TE隧道建立失败后,隧道的Ingress节点等待隧道重建时间间隔后,将尝试重新建立隧道,直到隧道建立成功或尝试建立隧道的次数达到配置的最大值。如果尝试建立隧道的次数达到配置的最大值时仍未成功建立隧道,则等待较长的一段时间后,重复上述过程。
操作 |
命令 |
说明 |
进入系统视图 |
system-view |
- |
进入模式为MPLS TE隧道的Tunnel接口视图 |
interface tunnel tunnel-number [ mode mpls-te ] |
- |
配置尝试建立隧道的最大次数 |
mpls te retry times |
缺省情况下,尝试建立隧道的最大次数为3次 |
配置隧道重建的时间间隔 |
mpls te timer retry seconds |
缺省情况下,隧道重建的时间间隔为2秒 |
表1-10 配置RSVP资源预留风格
操作 |
命令 |
说明 |
进入系统视图 |
system-view |
- |
进入模式为MPLS TE隧道的Tunnel接口视图 |
interface tunnel tunnel-number [ mode mpls-te ] |
- |
配置隧道的资源预留风格 |
mpls te resv-style { ff | se } |
缺省情况下,隧道的资源预留风格为SE 在目前的MPLS TE应用中,隧道的建立通常采用make-before-break方式。因此,推荐使用SE资源预留风格 |
请在MPLS TE隧道的Ingress节点上执行本节中的配置。
操作 |
命令 |
说明 |
进入系统视图 |
system-view |
- |
配置静态路由使流量沿MPLS TE隧道转发 |
静态路由命令的详细介绍请参见“三层技术-IP路由命令参考”中的“静态路由” |
缺省情况下,设备上不存在任何静态路由 本命令中指定的接口应为MPLS TE隧道模式的Tunnel接口 |
本配置中各命令的详细介绍,请参见“三层技术-IP路由命令参考”中的“策略路由”。
操作 |
命令 |
说明 |
|
进入系统视图 |
system-view |
- |
|
创建策略节点,并进入策略节点视图 |
policy-based-route policy-name [ deny | permit ] node node-number |
缺省情况下,没有创建策略节点 |
|
设置ACL匹配规则 |
if-match acl { acl-number | name acl-name } |
缺省情况下,未设置ACL匹配规则 |
|
设置报文的发送接口为Tunnel接口 |
apply output-interface { tunnel tunnel-number [ track track-entry-number ] }&<1-n> |
- |
|
退回系统视图 |
quit |
- |
|
应用策略路由 |
开启本地策略路由 |
ip local policy-based-route policy-name |
二者选其一 缺省情况下,没有应用策略路由 |
对接口转发的报文应用策略 |
interface interface-type interface-number |
||
ip policy-based-route policy-name |
在配置MPLS TE双向隧道之前,需完成以下任务:
· 在隧道两端都关闭PHP功能,为倒数第二跳分配非空标签。
· 建立Co-routed方式MPLS TE双向隧道前,必须配置建立隧道使用的信令协议为RSVP-TE,且必须通过mpls te resv-style命令配置资源预留方式为FF方式。
· 如果Associated方式MPLS TE双向隧道中的某条单向CRLSP采用RSVP-TE信令建立,则必须通过mpls te resv-style命令配置该CRLSP的资源预留方式为FF方式。
配置MPLS TE双向隧道时,需要在隧道的两端都建立MPLS TE隧道接口,并在隧道接口下启用双向隧道功能。
· 对于Co-routed方式双向隧道,隧道的两端需要分别配置为主动方(Active)和被动方(Passive),在被动方需要指定关联的反向CRLSP。
· 对于Associated方式双向隧道,隧道的两端都需要指定关联的反向CRLSP。
表1-13 配置Co-routed方式MPLS TE双向隧道的主动方
操作 |
命令 |
说明 |
进入系统视图 |
system-view |
- |
进入模式为MPLS TE隧道的Tunnel接口视图 |
interface tunnel tunnel-number [ mode mpls-te ] |
- |
在MPLS TE隧道接口上启用双向隧道功能,并指定本端为Co-routed方式MPLS TE双向隧道的主动方 |
mpls te bidirectional co-routed active |
缺省情况下,未启用MPLS TE隧道接口的双向隧道功能,MPLS TE隧道接口上建立的隧道为MPLS TE单向隧道 |
表1-14 配置Co-routed方式MPLS TE双向隧道的被动方
操作 |
命令 |
说明 |
进入系统视图 |
system-view |
- |
进入模式为MPLS TE隧道的Tunnel接口视图 |
interface tunnel tunnel-number [ mode mpls-te ] |
- |
在MPLS TE隧道接口上启用双向隧道功能,并指定本端为Co-routed方式MPLS TE双向隧道的被动方 |
mpls te bidirectional co-routed passive reverse-lsp lsr-id ingress-lsr-id tunnel-id tunnel-id |
缺省情况下,未启用MPLS TE隧道接口的双向隧道功能,MPLS TE隧道接口上建立的隧道为MPLS TE单向隧道 |
表1-15 配置Associated方式MPLS TE双向隧道
操作 |
命令 |
说明 |
进入系统视图 |
system-view |
- |
进入模式为MPLS TE隧道的Tunnel接口视图 |
interface tunnel tunnel-number [ mode mpls-te ] |
- |
在MPLS TE隧道接口上启用双向隧道功能,并指定双向隧道建立方式为Associated方式 |
mpls te bidirectional associated reverse-lsp { lsp-name lsp-name | lsr-id ingress-lsr-id tunnel-id tunnel-id } } |
缺省情况下,未启用MPLS TE隧道接口的双向隧道功能,MPLS TE隧道接口上建立的隧道为MPLS TE单向隧道 |
CRLSP备份用于端到端的路径保护,对整条CRLSP提供保护。只有使用RSVP-TE信令协议建立的MPLS TE隧道支持CRLSP备份。
请在MPLS TE隧道的Ingress节点上执行本配置。
操作 |
命令 |
说明 |
进入系统视图 |
system-view |
- |
进入模式为MPLS TE隧道的Tunnel接口视图 |
interface tunnel tunnel-number [ mode mpls-te ] |
- |
开启当前隧道的备份功能,并配置使用的备份模式 |
mpls te backup { hot-standby | ordinary } |
缺省情况下,隧道不进行备份 |
在完成上述配置后,在任意视图下执行display命令可以显示配置后MPLS TE的运行情况,通过查看显示信息验证配置的效果。
表1-17 MPLS TE的显示和维护
操作 |
命令 |
显示MPLS TE隧道接口的信息 |
display mpls te tunnel-interface [ tunnel number ] |
· 设备Switch A、Switch B和Switch C运行IS-IS;
· 使用静态CRLSP建立一条Switch A到Switch C的MPLS TE隧道。
图1-2 静态CRLSP配置组网图
(1) 配置各接口的IP地址
按照图1-2配置各接口的IP地址和掩码,具体配置过程略。
(2) 配置IS-IS协议发布接口所在网段的路由,包括Loopback接口
# 配置Switch A。
<SwitchA> system-view
[SwitchA] isis 1
[SwitchA-isis-1] network-entity 00.0005.0000.0000.0001.00
[SwitchA-isis-1] quit
[SwitchA] interface vlan-interface 1
[SwitchA-Vlan-interface1] isis enable 1
[SwitchA-Vlan-interface1] quit
[SwitchA] interface loopback 0
[SwitchA-LoopBack0] isis enable 1
[SwitchA-LoopBack0] quit
# 配置Switch B。
<SwitchB> system-view
[SwitchB] isis 1
[SwitchB-isis-1] network-entity 00.0005.0000.0000.0002.00
[SwitchB-isis-1] quit
[SwitchB] interface vlan-interface 1
[SwitchB-Vlan-interface1] isis enable 1
[SwitchB-Vlan-interface1] quit
[SwitchB] interface vlan-interface 2
[SwitchB-Vlan-interface2] isis enable 1
[SwitchB-Vlan-interface2] quit
[SwitchB] interface loopback 0
[SwitchB-LoopBack0] isis enable 1
[SwitchB-LoopBack0] quit
# 配置Switch C。
<SwitchC> system-view
[SwitchC] isis 1
[SwitchC-isis-1] network-entity 00.0005.0000.0000.0003.00
[SwitchC-isis-1] quit
[SwitchC] interface vlan-interface 2
[SwitchC-Vlan-interface2] isis enable 1
[SwitchC-Vlan-interface2] quit
[SwitchC] interface loopback 0
[SwitchC-LoopBack0] isis enable 1
[SwitchC-LoopBack0] quit
配置完成后,在各设备上执行display ip routing-table命令,可以看到相互之间都学到了到对方的路由,包括Loopback接口对应的主机路由。
(3) 配置LSR ID、开启MPLS能力和MPLS TE能力
# 配置Switch A。
[SwitchA] mpls lsr-id 1.1.1.1
[SwitchA-mpls] mpls te
[SwitchA-mpls] quit
[SwitchA] interface vlan-interface 1
[SwitchA-Vlan-interface1] mpls enable
[SwitchA-Vlan-interface1] mpls te enable
[SwitchA-Vlan-interface1] quit
# 配置Switch B。
[SwitchB] mpls lsr-id 2.2.2.2
[SwitchB-mpls] mpls te
[SwitchB-mpls] quit
[SwitchB] interface vlan-interface 1
[SwitchB-Vlan-interface1] mpls enable
[SwitchB-Vlan-interface1] mpls te enable
[SwitchB-Vlan-interface1] quit
[SwitchB] interface vlan-interface 2
[SwitchB-Vlan-interface2] mpls enable
[SwitchB-Vlan-interface2] mpls te enable
[SwitchB-Vlan-interface2] quit
# 配置Switch C。
[SwitchC] mpls lsr-id 3.3.3.3
[SwitchC-mpls] mpls te
[SwitchC-mpls] quit
[SwitchC] interface vlan-interface 2
[SwitchC-Vlan-interface2] mpls enable
[SwitchC-Vlan-interface2] mpls te enable
[SwitchC-Vlan-interface2] quit
(4) 配置MPLS TE隧道
# 在Switch A上配置MPLS TE隧道Tunnel0:目的地址为Switch C的LSR ID(3.3.3.3);采用静态CRLSP建立MPLS TE隧道。
[SwitchA] interface tunnel 0 mode mpls-te
[SwitchA-Tunnel0] ip address 6.1.1.1 255.255.255.0
[SwitchA-Tunnel0] destination 3.3.3.3
[SwitchA-Tunnel0] mpls te signaling static
[SwitchA-Tunnel0] quit
(5) 创建静态CRLSP
# 配置Switch A为静态CRLSP的Ingress节点,下一跳地址为2.1.1.2,出标签为20。
[SwitchA] static-cr-lsp ingress static-cr-lsp-1 nexthop 2.1.1.2 out-label 20
# 在Switch A上配置隧道Tunnel0引用名称为static-cr-lsp-1的静态CRLSP。
[SwitchA] interface Tunnel0
[SwitchA-Tunnel0] mpls te static-cr-lsp static-cr-lsp-1
[SwitchA-Tunnel0] quit
# 配置Switch B为静态CRLSP的Transit节点,入标签为20,下一跳地址为3.2.1.2,出标签为30。
[SwitchB] static-cr-lsp transit static-cr-lsp-1 in-label 20 nexthop 3.2.1.2 out-label 30
# 配置Switch C为静态CRLSP的Egress节点,入标签为30。
[SwitchC] static-cr-lsp egress static-cr-lsp-1 in-label 30
(6) 配置静态路由使流量沿MPLS TE隧道转发
# 在Switch A上配置静态路由,使得到达网络3.2.1.0/24的流量通过MPLS TE隧道接口Tunnel0转发。
[SwitchA] ip route-static 3.2.1.2 24 tunnel 0 preference 1
# 配置完成后,在Switch A上执行display interface tunnel命令,可以看到Tunnel接口的状态为up。
[SwitchA] display interface tunnel
Tunnel0
Current state: UP
Line protocol state: UP
Description: Tunnel0 Interface
Maximum Transmit Unit: 64000
Internet Address is 6.1.1.1/24 Primary
Tunnel source unknown, destination 3.3.3.3
Tunnel bandwidth 64 (kbps)
Tunnel TTL 255
Tunnel protocol/transport CR_LSP
Last clearing of counters: Never
Last 300 seconds input rate: 0 bytes/sec, 0 bits/sec, 0 packets/sec
Last 300 seconds output rate: 0 bytes/sec, 0 bits/sec, 0 packets/sec
Input: 0 packets, 0 bytes, 0 drops
Output: 0 packets, 0 bytes, 0 drops
# 在Switch A上执行display mpls te tunnel-interface命令,可以看到MPLS TE隧道的建立情况。
[SwitchA] display mpls te tunnel-interface
Tunnel Name : Tunnel 0
Tunnel State : Up (Main CRLSP up)
Tunnel Attributes :
LSP ID : 1 Tunnel ID : 0
Admin State : Normal
Ingress LSR ID : 1.1.1.1 Egress LSR ID : 3.3.3.3
Signaling : Static Static CRLSP Name : static-cr-lsp-1
Resv Style : -
Tunnel mode : -
Reverse-LSP name : -
Reverse-LSP LSR ID : - Reverse-LSP Tunnel ID: -
Class Type : - Tunnel Bandwidth : -
Reserved Bandwidth : -
Setup Priority : 0 Holding Priority : 0
Affinity Attr/Mask : -/-
Explicit Path : -
Backup Explicit Path : -
Metric Type : TE
Record Route : - Record Label : -
FRR Flag : - Backup Bandwidth Flag: -
Backup Bandwidth Type: - Backup Bandwidth : -
Route Pinning : -
Retry Limit : 10 Retry Interval : 2 sec
Reoptimization : - Reoptimization Freq : -
Backup Type : - Backup LSP ID : -
Auto Bandwidth : - Auto Bandwidth Freq : -
Min Bandwidth : - Max Bandwidth : -
Collected Bandwidth : -
# 在各设备上执行display mpls lsp或display mpls static-cr-lsp命令,可以看到静态CRLSP的建立情况。
[SwitchA] display mpls lsp
FEC Proto In/Out Label Interface/Out NHLFE
1.1.1.1/0/1 StaticCR -/20 Vlan1
2.1.1.2 Local -/- Vlan1
[SwitchB] display mpls lsp
FEC Proto In/Out Label Interface/Out NHLFE
- StaticCR 20/30 Vlan2
3.2.1.2 Local -/- Vlan2
[SwitchC] display mpls lsp
FEC Proto In/Out Label Interface/Out NHLFE
- StaticCR 30/- -
[SwitchA] display mpls static-cr-lsp
Name LSR Type In/Out Label Out Interface State
static-cr-lsp-1 Ingress Null/20 Vlan1 Up
[SwitchB] display mpls static-cr-lsp
Name LSR Type In/Out Label Out Interface State
static-cr-lsp-1 Transit 20/30 Vlan2 Up
[SwitchC] display mpls static-cr-lsp
Name LSR Type In/Out Label Out Interface State
static-cr-lsp1 Egress 30/Null - Up
# 在Switch A上执行display ip routing-table命令,可以看到路由表中有以Tunnel0为出接口的静态路由信息。
· 设备Switch A、Switch B、Switch C和Switch D运行IS-IS;
· 使用RSVP-TE建立一条从Switch A到Switch D的MPLS TE隧道。
图1-3 RSVP-TE配置MPLS TE隧道组网图
接口 |
IP地址 |
设备 |
接口 |
IP地址 |
|
Switch A |
Loop0 |
1.1.1.9/32 |
Switch D |
Loop0 |
4.4.4.9/32 |
|
Vlan-int1 |
10.1.1.1/24 |
|
Vlan-int3 |
30.1.1.2/24 |
Switch B |
Loop0 |
2.2.2.9/32 |
Switch C |
Loop0 |
3.3.3.9/32 |
|
Vlan-int1 |
10.1.1.2/24 |
|
Vlan-int3 |
30.1.1.1/24 |
|
Vlan-int2 |
20.1.1.1/24 |
|
Vlan-int2 |
20.1.1.2/24 |
(1) 配置各接口的IP地址
按照图1-3配置各接口的IP地址和掩码,具体配置过程略。
(2) 配置IS-IS协议发布接口所在网段的路由,包括Loopback接口
# 配置Switch A。
<SwitchA> system-view
[SwitchA] isis 1
[SwitchA-isis-1] network-entity 00.0005.0000.0000.0001.00
[SwitchA-isis-1] quit
[SwitchA] interface vlan-interface 1
[SwitchA-Vlan-interface1] isis enable 1
[SwitchA-Vlan-interface1] quit
[SwitchA] interface loopback 0
[SwitchA-LoopBack0] isis enable 1
[SwitchA-LoopBack0] quit
# 配置Switch B。
<SwitchB> system-view
[SwitchB] isis 1
[SwitchB-isis-1] network-entity 00.0005.0000.0000.0002.00
[SwitchB-isis-1] quit
[SwitchB] interface vlan-interface 1
[SwitchB-Vlan-interface1] isis enable 1
[SwitchB-Vlan-interface1] quit
[SwitchB] interface vlan-interface 2
[SwitchB-Vlan-interface2] isis enable 1
[SwitchB-Vlan-interface2] quit
[SwitchB] interface loopback 0
[SwitchB-LoopBack0] isis enable 1
[SwitchB-LoopBack0] quit
# 配置Switch C。
<SwitchC> system-view
[SwitchC] isis 1
[SwitchC-isis-1] network-entity 00.0005.0000.0000.0003.00
[SwitchC-isis-1] quit
[SwitchC] interface vlan-interface 3
[SwitchC-Vlan-interface3] isis enable 1
[SwitchC-Vlan-interface3] quit
[SwitchC] interface vlan-interface 2
[SwitchC-Vlan-interface2] isis enable 1
[SwitchC-Vlan-interface2] quit
[SwitchC] interface loopback 0
[SwitchC-LoopBack0] isis enable 1
[SwitchC-LoopBack0] quit
# 配置Switch D。
<SwitchD> system-view
[SwitchD] isis 1
[SwitchD-isis-1] network-entity 00.0005.0000.0000.0004.00
[SwitchD-isis-1] quit
[SwitchD] interface vlan-interface 3
[SwitchD-Vlan-interface3] isis enable 1
[SwitchD-Vlan-interface3] quit
[SwitchD] interface loopback 0
[SwitchD-LoopBack0] isis enable 1
[SwitchD-LoopBack0] quit
# 配置完成后,在各设备上执行display ip routing-table命令,可以看到相互之间都学到了到对方的路由,包括Loopback接口对应的主机路由。
(3) 配置LSR ID,开启MPLS、MPLS TE和RSVP-TE能力
# 配置Switch A。
[SwitchA] mpls lsr-id 1.1.1.9
[SwitchA] mpls te
[SwitchA-te] quit
[SwitchA] rsvp
[SwitchA-rsvp] quit
[SwitchA] interface vlan-interface 1
[SwitchA-Vlan-interface1] mpls enable
[SwitchA-Vlan-interface1] mpls te enable
[SwitchA-Vlan-interface1] rsvp enable
[SwitchA-Vlan-interface1] quit
# 配置Switch B。
[SwitchB] mpls lsr-id 2.2.2.9
[SwitchB] mpls te
[SwitchB-te] quit
[SwitchB] rsvp
[SwitchB-rsvp] quit
[SwitchB] interface vlan-interface 1
[SwitchB-Vlan-interface1] mpls enable
[SwitchB-Vlan-interface1] mpls te enable
[SwitchB-Vlan-interface1] rsvp enable
[SwitchB-Vlan-interface1] quit
[SwitchB] interface vlan-interface 2
[SwitchB-Vlan-interface2] mpls enable
[SwitchB-Vlan-interface2] mpls te enable
[SwitchB-Vlan-interface2] rsvp enable
[SwitchB-Vlan-interface2] quit
# 配置Switch C。
[SwitchC] mpls lsr-id 3.3.3.9
[SwitchC] mpls te
[SwitchC-te] quit
[SwitchC] rsvp
[SwitchC-rsvp] quit
[SwitchC] interface vlan-interface 3
[SwitchC-Vlan-interface3] mpls enable
[SwitchC-Vlan-interface3] mpls te enable
[SwitchC-Vlan-interface3] rsvp enable
[SwitchC-Vlan-interface3] quit
[SwitchC] interface vlan-interface 2
[SwitchC-Vlan-interface2] mpls enable
[SwitchC-Vlan-interface2] mpls te enable
[SwitchC-Vlan-interface2] rsvp enable
[SwitchC-Vlan-interface2] quit
# 配置Switch D。
[SwitchD] mpls lsr-id 4.4.4.9
[SwitchD] mpls te
[SwitchD-te] quit
[SwitchD] rsvp
[SwitchD-rsvp] quit
[SwitchD] interface vlan-interface 3
[SwitchD-Vlan-interface3] mpls enable
[SwitchD-Vlan-interface3] mpls te enable
[SwitchD-Vlan-interface3] rsvp enable
[SwitchD-Vlan-interface3] quit
(4) 配置MPLS TE隧道
# 在Switch A上配置MPLS TE隧道Tunnel1:目的地址为Switch D的LSR ID(4.4.4.9);采用RSVP-TE信令协议建立MPLS TE隧道。
[SwitchA] interface tunnel 1 mode mpls-te
[SwitchA-Tunnel1] ip address 7.1.1.1 255.255.255.0
[SwitchA-Tunnel1] destination 4.4.4.9
[SwitchA-Tunnel1] mpls te signaling rsvp-te
[SwitchA-Tunnel1] quit
(5) 配置静态路由使流量沿MPLS TE隧道转发
# 在Switch A上配置静态路由,使得到达网络30.1.1.0/24的流量通过MPLS TE隧道接口Tunnel1转发。
[SwitchA] ip route-static 30.1.1.2 24 tunnel 1 preference 1
# 配置完成后,在Switch A上执行display interface tunnel命令可以看到隧道接口状态为up。
[SwitchA] display interface tunnel
Tunnel1 current state: UP
Line protocol current state: UP
Description: Tunnel1 Interface
The Maximum Transmit Unit is 64000
Internet Address is 7.1.1.1/24 Primary
Tunnel source unknown, destination 4.4.4.9
Tunnel bandwidth 64 (kbps)
Tunnel TTL 255
Tunnel protocol/transport CR_LSP
Last clearing of counters: Never
Last 300 seconds input rate: 0 bytes/sec, 0 bits/sec, 0 packets/sec
Last 300 seconds output rate: 6 bytes/sec, 48 bits/sec, 0 packets/sec
0 packets input, 0 bytes, 0 drops
177 packets output, 11428 bytes, 0 drops
# 在Switch A上执行display mpls te tunnel-interface命令可以看到隧道的详细信息。
[SwitchA] display mpls te tunnel-interface
Tunnel Name : Tunnel 1
Tunnel State : Up (Main CRLSP up, Shared-resource CRLSP down)
Tunnel Attributes :
LSP ID : 23331 Tunnel ID : 1
Admin State : Normal
Ingress LSR ID : 1.1.1.9 Egress LSR ID : 4.4.4.9
Signaling : RSVP-TE Static CRLSP Name : -
Resv Style : SE
Tunnel mode : -
Reverse-LSP name : -
Reverse-LSP LSR ID : - Reverse-LSP Tunnel ID: -
Class Type : CT0 Tunnel Bandwidth : 0 kbps
Reserved Bandwidth : 0 kbps
Setup Priority : 7 Holding Priority : 7
Affinity Attr/Mask : 0/0
Explicit Path : -
Backup Explicit Path : -
Metric Type : TE
Record Route : Disabled Record Label : Disabled
FRR Flag : Disabled Backup Bandwidth Flag: Disabled
Backup Bandwidth Type: - Backup Bandwidth : -
Route Pinning : Disabled
Retry Limit : 10 Retry Interval : 2 sec
Reoptimization : Disabled Reoptimization Freq : -
Backup Type : None Backup LSP ID : -
Auto Bandwidth : Disabled Auto Bandwidth Freq : -
Min Bandwidth : - Max Bandwidth : -
Collected Bandwidth : -
# 在Switch A上执行display ip routing-table命令,可以看到路由表中有以Tunnel1为出接口的静态路由信息。
· 设备Switch A、Switch B、Switch C和Switch D运行IS-IS;
· 使用RSVP-TE从Switch A到Switch D建立双向TE隧道。
图1-4 配置MPLS TE双向隧道组网图
设备 |
接口 |
IP地址 |
设备 |
接口 |
IP地址 |
Switch A |
Loop0 |
1.1.1.9/32 |
Switch D |
Loop0 |
4.4.4.9/32 |
|
Vlan-int1 |
10.1.1.1/24 |
|
Vlan-int3 |
30.1.1.2/24 |
Switch B |
Loop0 |
2.2.2.9/32 |
Switch C |
Loop0 |
3.3.3.9/32 |
|
Vlan-int1 |
10.1.1.2/24 |
|
Vlan-int3 |
30.1.1.1/24 |
|
Vlan-int2 |
20.1.1.1/24 |
|
Vlan-int2 |
20.1.1.2/24 |
(1) 配置各接口的IP地址
按照图1-4配置各接口的IP地址和掩码,具体配置过程略。
(2) 配置IS-IS协议发布接口所在网段的路由,包括Loopback接口
具体过程请参见“1.11.2 使用RSVP-TE配置MPLS TE隧道示例”。
(3) 配置LSR ID,开启MPLS、MPLS TE和RSVP-TE能力,并在Switch A和Switch D上配置为倒数第二跳分配非空标签
# 配置Switch A。
<SwitchA> system-view
[SwitchA] mpls lsr-id 1.1.1.9
[SwitchA] mpls label advertise non-null
[SwitchA] mpls te
[SwitchA-te] quit
[SwitchA] rsvp
[SwitchA-rsvp] quit
[SwitchA] interface vlan-interface 1
[SwitchA-Vlan-interface1] mpls enable
[SwitchA-Vlan-interface1] mpls te enable
[SwitchA-Vlan-interface1] rsvp enable
[SwitchA-Vlan-interface1] quit
# 配置Switch B。
<SwitchB> system-view
[SwitchB] mpls lsr-id 2.2.2.9
[SwitchB] mpls te
[SwitchB-te] quit
[SwitchB] rsvp
[SwitchB-rsvp] quit
[SwitchB] interface vlan-interface 1
[SwitchB-Vlan-interface1] mpls enable
[SwitchB-Vlan-interface1] mpls te enable
[SwitchB-Vlan-interface1] rsvp enable
[SwitchB-Vlan-interface1] quit
[SwitchB] interface vlan-interface 2
[SwitchB-Vlan-interface2] mpls enable
[SwitchB-Vlan-interface2] mpls te enable
[SwitchB-Vlan-interface2] rsvp enable
[SwitchB-Vlan-interface1] quit
# 配置Switch C。
<SwitchC> system-view
[SwitchC] mpls lsr-id 3.3.3.9
[SwitchC] mpls te
[SwitchC-te] quit
[SwitchC] rsvp
[SwitchC-rsvp] quit
[SwitchC] interface vlan-interface 3
[SwitchC-Vlan-interface3] mpls enable
[SwitchC-Vlan-interface3] mpls te enable
[SwitchC-Vlan-interface3] rsvp enable
[SwitchC-Vlan-interface3] quit
[SwitchC] interface vlan-interface 2
[SwitchC-Vlan-interface2] mpls enable
[SwitchC-Vlan-interface2] mpls te enable
[SwitchC-Vlan-interface2] rsvp enable
[SwitchC-Vlan-interface2] quit
# 配置Switch D。
<SwitchD> system-view
[SwitchD] mpls lsr-id 4.4.4.9
[SwitchD] mpls label advertise non-null
[SwitchD] mpls te
[SwitchD-te] quit
[SwitchD] rsvp
[SwitchD-rsvp] quit
[SwitchD] interface vlan-interface 3
[SwitchD-Vlan-interface3] mpls enable
[SwitchD-Vlan-interface3] mpls te enable
[SwitchD-Vlan-interface3] rsvp enable
[SwitchD-Vlan-interface3] quit
(4) 配置MPLS TE双向隧道
# 配置Switch A作为Co-routed方式双向隧道的active端。
[SwitchA] interface tunnel 1 mode mpls-te
[SwitchA-Tunnel1] ip address 7.1.1.1 255.255.255.0
[SwitchA-Tunnel1] destination 4.4.4.9
[SwitchA-Tunnel1] mpls te signaling rsvp-te
[SwitchA-Tunnel1] mpls te resv-style ff
[SwitchA-Tunnel1] mpls te bidirectional co-routed active
[SwitchA-Tunnel1] quit
# 配置Switch D作为Co-routed方式双向隧道的passive端。
[SwitchD] interface tunnel 4 mode mpls-te
[SwitchD-Tunnel4] ip address 8.1.1.1 255.255.255.0
[SwitchD-Tunnel4] destination 1.1.1.9
[SwitchD-Tunnel4] mpls te signaling rsvp-te
[SwitchD-Tunnel4] mpls te resv-style ff
[SwitchD-Tunnel4] mpls te bidirectional co-routed passive reverse-lsp lsr-id 1.1.1.9 tunnel-id 1
[SwitchD-Tunnel4] quit
# 配置完成后,在Switch A上执行display interface tunnel命令可以看到隧道接口状态为up。
[SwitchA] display interface tunnel
Tunnel1 current state: UP
Line protocol current state: UP
Description: Tunnel1 Interface
The Maximum Transmit Unit is 64000
Internet Address is 7.1.1.1/24 Primary
Tunnel source unknown, destination 4.4.4.9
Tunnel bandwidth 64 (kbps)
Tunnel protocol/transport CR_LSP
Last clearing of counters: Never
Last 300 seconds input rate: 0 bytes/sec, 0 bits/sec, 0 packets/sec
Last 300 seconds output rate: 0 bytes/sec, 0 bits/sec, 0 packets/sec
0 packets input, 0 bytes, 0 drops
0 packets output, 0 bytes, 0 drops
# 在Switch A上执行display mpls te tunnel-interface命令可以看到隧道的详细信息。
[SwitchA] display mpls te tunnel-interface
Tunnel Name : Tunnel 1
Tunnel State : Up (Main CRLSP up, Reverse CRLSP up)
Tunnel Attributes :
LSP ID : 30478 Tunnel ID : 1
Admin State : Normal
Ingress LSR ID : 1.1.1.9 Egress LSR ID : 4.4.4.9
Signaling : RSVP-TE Static CRLSP Name : -
Resv Style : FF
Tunnel mode : Co-routed, active
Reverse-LSP name : -
Reverse-LSP LSR ID : - Reverse-LSP Tunnel ID: -
Class Type : CT0 Tunnel Bandwidth : 0 kbps
Reserved Bandwidth : 0 kbps
Setup Priority : 7 Holding Priority : 7
Affinity Attr/Mask : 0/0
Explicit Path : -
Backup Explicit Path : -
Metric Type : TE
Record Route : Disabled Record Label : Disabled
FRR Flag : Disabled Backup Bandwidth Flag: Disabled
Backup Bandwidth Type: - Backup Bandwidth : -
Route Pinning : Disabled
Retry Limit : 10 Retry Interval : 2 sec
Reoptimization : Disabled Reoptimization Freq : -
Backup Type : None Backup LSP ID : -
Auto Bandwidth : Disabled Auto Bandwidth Freq : -
Min Bandwidth : - Max Bandwidth : -
Collected Bandwidth : -
# 在Swtich A上执行display mpls lsp verbose命令可以看到双向隧道的详细信息。
[SwitchA] display mpls lsp verbose
Destination : 4.4.4.9
FEC : 1.1.1.9/1/30478
Protocol : RSVP
LSR Type : Ingress
Service : -
NHLFE ID : 1027
State : Active
Out-Label : 1149
Nexthop : 10.1.1.2
Out-Interface: Vlan1
Destination : 4.4.4.9
FEC : 1.1.1.9/1/30478
Protocol : RSVP
LSR Type : Egress
Service : -
In-Label : 1151
State : Active
Nexthop : 127.0.0.1
Out-Interface: -
Destination : 10.1.1.2
FEC : 10.1.1.2
Protocol : Local
LSR Type : Ingress
Service : -
NHLFE ID : 1026
State : Active
Nexthop : 10.1.1.2
Out-Interface: Vlan1
# 在Swtich D上执行display interface tunnel命令可以看到隧道接口状态为up。
[SwitchD] display interface tunnel
Tunnel4 current state: UP
Line protocol current state: UP
Description: Tunnel8 Interface
The Maximum Transmit Unit is 64000
Internet Address is 8.1.1.1/24 Primary
Tunnel source unknown, destination 1.1.1.9
Tunnel bandwidth 64 (kbps)
Tunnel TTL 255
Tunnel protocol/transport CR_LSP
Last clearing of counters: Never
Last 300 seconds input rate: 0 bytes/sec, 0 bits/sec, 0 packets/sec
Last 300 seconds output rate: 0 bytes/sec, 0 bits/sec, 0 packets/sec
0 packets input, 0 bytes, 0 drops
0 packets output, 0 bytes, 0 drops
# 在Switch D上执行display mpls te tunnel-interface命令可以看到隧道的详细信息。
[SwitchD] display mpls te tunnel-interface
Tunnel Name : Tunnel 4
Tunnel State : Up (Main CRLSP up, Reverse CRLSP up)
Tunnel Attributes :
LSP ID : - Tunnel ID : 8
Admin State : Normal
Ingress LSR ID : - Egress LSR ID : -
Signaling : RSVP-TE Static CRLSP Name : -
Resv Style : FF
Tunnel mode : Co-routed, passive
Reverse-LSP name : -
Reverse-LSP LSR ID : 1.1.1.9 Reverse-LSP Tunnel ID: 1
Class Type : - Tunnel Bandwidth : -
Reserved Bandwidth : -
Setup Priority : - Holding Priority : -
Affinity Attr/Mask : -/-
Explicit Path : -
Backup Explicit Path : -
Metric Type : -
Record Route : - Record Label : -
FRR Flag : - Backup Bandwidth Flag: -
Backup Bandwidth Type: - Backup Bandwidth : -
Route Pinning : -
Retry Limit : - Retry Interval : -
Reoptimization : - Reoptimization Freq : -
Backup Type : - Backup LSP ID : -
Auto Bandwidth : - Auto Bandwidth Freq : -
Min Bandwidth : - Max Bandwidth : -
Collected Bandwidth : -
# 在Switch D上执行display mpls lsp verbose命令可以看到双向隧道的详细信息。
[SwitchD] display mpls lsp verbose
Destination : 4.4.4.9
FEC : 1.1.1.9/1/30478
Protocol : RSVP
LSR Type : Egress
Service : -
In-Label : 3
State : Active
Nexthop : 127.0.0.1
Out-Interface: -
Destination : 4.4.4.9
FEC : 1.1.1.9/1/30478
Protocol : RSVP
LSR Type : Ingress
Service : -
NHLFE ID : 1025
State : Active
Out-Label : 1150
Nexthop : 30.1.1.1
Out-Interface: Vlan3
Destination : 30.1.1.1
FEC : 30.1.1.1
Protocol : Local
LSR Type : Ingress
Service : -
NHLFE ID : 1024
State : Active
Nexthop : 30.1.1.1
Out-Interface: Vlan3
· 设备Switch A、Switch B、Switch C和Switch D运行IS-IS;
· 使用RSVP-TE从Switch A到Switch C建立一条MPLS TE隧道;
· MPLS TE隧道支持CRLSP热备份,即同时建立主备两条CRLSP,实现主CRLSP故障时将流量切换到备份CRLSP。
图1-5 CRLSP备份组网图
接口 |
IP地址 |
设备 |
接口 |
IP地址 |
|
Switch A |
Loop0 |
1.1.1.9/32 |
Switch D |
Loop0 |
4.4.4.9/32 |
|
Vlan-int1 |
10.1.1.1/24 |
|
Vlan-int4 |
30.1.1.2/24 |
|
Vlan-int4 |
30.1.1.1/24 |
|
Vlan-int3 |
40.1.1.1/24 |
Switch B |
Loop0 |
2.2.2.9/32 |
Switch C |
Loop0 |
3.3.3.9/32 |
|
Vlan-int1 |
10.1.1.2/24 |
|
Vlan-int2 |
20.1.1.2/24 |
|
Vlan-int2 |
20.1.1.1/24 |
|
Vlan-int3 |
40.1.1.2/24 |
(1) 配置各接口的IP地址
按照图1-5配置各接口的IP地址和掩码,包括各Loopback接口,具体配置过程略。
(2) 配置IS-IS协议发布接口所在网段的路由,包括Loopback接口(具体配置过程略)
(3) 配置LSR ID,开启MPLS、MPLS TE、RSVP-TE能力
# 配置Switch A。
<SwitchA> system-view
[SwitchA] mpls lsr-id 1.1.1.9
[SwitchA] mpls te
[SwitchA-te] quit
[SwitchA] rsvp
[SwitchA-rsvp] quit
[SwitchA] interface vlan-interface 1
[SwitchA-Vlan-interface1] mpls enable
[SwitchA-Vlan-interface1] mpls te enable
[SwitchA-Vlan-interface1] rsvp enable
[SwitchA-Vlan-interface1] quit
[SwitchA] interface vlan-interface 4
[SwitchA-Vlan-interface4] mpls enable
[SwitchA-Vlan-interface4] mpls te enable
[SwitchA-Vlan-interface4] rsvp enable
[SwitchA-Vlan-interface4] quit
# Switch B、Switch C和Switch D的配置与Switch A相似,此处不再赘述。
(4) 配置MPLS TE隧道
# 在Switch A上配置MPLS TE隧道Tunnel3:目的地址为Switch C的LSR ID(3.3.3.9);采用RSVP-TE信令协议建立MPLS TE隧道;隧道支持CRLSP热备份功能。
[SwitchA] interface tunnel 3 mode mpls-te
[SwitchA-Tunnel3] ip address 9.1.1.1 24
[SwitchA-Tunnel3] destination 3.3.3.9
[SwitchA-Tunnel3] mpls te signaling rsvp-te
[SwitchA-Tunnel3] mpls te backup hot-standby
[SwitchA-Tunnel3] quit
(5) 配置静态路由使流量沿MPLS TE隧道转发
# 在Switch A上配置静态路由,使得到达网络20.1.1.0/24的流量通过MPLS TE隧道接口Tunnel3转发。
[SwitchA] ip route-static 20.1.1.2 24 tunnel 3 preference 1
# 配置完成后,在Switch A上执行display interface tunnel命令,可以看到Tunnel3的状态为up。
[SwitchA] display interface tunnel
Tunnel3 current state: UP
Line protocol current state: UP
Description: Tunnel3 Interface
The Maximum Transmit Unit is 64000
Internet Address is 9.1.1.1/24 Primary
Tunnel source unknown, destination 3.3.3.9
Tunnel bandwidth 64 (kbps)
Tunnel TTL 255
Tunnel protocol/transport CR_LSP
Last clearing of counters: Never
Last 300 seconds input rate: 0 bytes/sec, 0 bits/sec, 0 packets/sec
Last 300 seconds output rate: 1802 bytes/sec, 14416 bits/sec, 0 packets/sec
0 packets input, 0 bytes, 0 drops
351 packets output, 3105652 bytes, 0 drops
# 在Switch A上执行display mpls lsp命令,可以看到存在两条CRLSP,出接口分别是Vlan-interface1和Vlan-interface4,即主CRLSP创建后,备份CRLSP也建立了。
[SwitchA] display mpls lsp
FEC Proto In/Out Label Interface/Out NHLFE
1.1.1.9/3/30106 RSVP -/1137 Vlan1
1.1.1.9/3/30107 RSVP -/1150 Vlan4
10.1.1.2 Local -/- Vlan1
30.1.1.2 Local -/- Vlan4
# 在Switch A上执行display rsvp lsp verbose命令,可以看到这两条CRLSP使用的路径。
[SwitchA] display rsvp lsp verbose
Tunnel name: Tunnel3
Destination: 3.3.3.9 Source: 1.1.1.9
Tunnel ID: 3 LSP ID: 30106
LSR type: Ingress Direction: Unidirectional
Setup priority: 7 Holding priority: 7
In-Label: - Out-Label: 1137
In-Interface: - Out-Interface: Vlan1
Nexthop: 10.1.1.2 Exclude-any: 0
Include-Any: 0 Include-all: 0
Average bitrate: 0 kbps Maximum burst: 1000.00 bytes
Path MTU: 1500 Class type: CT0
RRO number: 6
10.1.1.1/32 Flag: 0x00 (No FRR)
10.1.1.2/32 Flag: 0x00 (No FRR)
2.2.2.9/32 Flag: 0x20 (No FRR/Node-ID)
20.1.1.1/32 Flag: 0x00 (No FRR)
20.1.1.2/32 Flag: 0x00 (No FRR)
3.3.3.9/32 Flag: 0x20 (No FRR/Node-ID)
Fast Reroute protection: None
Tunnel name: Tunnel3
Destination: 3.3.3.9 Source: 1.1.1.9
Tunnel ID: 3 LSP ID: 30107
LSR type: Ingress Direction: Unidirectional
Setup priority: 7 Holding priority: 7
In-Label: - Out-Label: 1150
In-Interface: - Out-Interface: Vlan4
Nexthop: 30.1.1.2 Exclude-any: 0
Include-Any: 0 Include-all: 0
Average bitrate: 0 kbps Maximum burst: 1000.00 bytes
Path MTU: 1500 Class type: CT0
RRO number: 6
30.1.1.1/32 Flag: 0x00 (No FRR)
30.1.1.2/32 Flag: 0x00 (No FRR)
4.4.4.9/32 Flag: 0x20 (No FRR/Node-ID)
40.1.1.1/32 Flag: 0x00 (No FRR)
40.1.1.2/32 Flag: 0x00 (No FRR)
3.3.3.9/32 Flag: 0x20 (No FRR/Node-ID)
Fast Reroute protection: None
# 对隧道目的地址3.3.3.9进行Tracert操作,可以看出目前使用的是经过Switch B的CRLSP,不是经过Switch D的CRLSP。
[SwitchA] tracert –a 1.1.1.9 3.3.3.9
traceroute to 3.3.3.9 (3.3.3.9) from 1.1.1.9, 30 hops at most, 40 bytes each pac
ket, press CTRL_C to break
1 10.1.1.2 (10.1.1.2) 1.000 ms 1.000 ms 1.000 ms
2 * * *
# 在SwitchB的接口Vlan-interface2上执行shutdown命令,然后再对隧道目的地址进行Tracert操作,可以看到报文使用经过Switch D的CRLSP转发。
[SwitchA] tracert –a 1.1.1.9 3.3.3.9
traceroute to 3.3.3.9 (3.3.3.9) from 9.1.1.1, 30 hops at most, 40 bytes each pac
ket, press CTRL_C to break
1 30.1.1.2 (30.1.1.2) 3.000 ms 7.000 ms 3.000 ms
2 * * *
# 在Switch A上执行display mpls lsp命令,可以看到只剩下一条经过Switch D的CRLSP:
[SwitchA] display mpls lsp
FEC Proto In/Out Label Interface/Out NHLFE
1.1.1.9/3/48984 RSVP -/1150 Vlan4
30.1.1.2 Local -/- Vlan4
# 在Switch A上执行display ip routing-table命令,可以看到路由表中有以Tunnel3为出接口的静态路由信息。
不同款型规格的资料略有差异, 详细信息请向具体销售和400咨询。H3C保留在没有任何通知或提示的情况下对资料内容进行修改的权利!