• 产品与解决方案
  • 行业解决方案
  • 服务
  • 支持
  • 合作伙伴
  • 新华三人才研学中心
  • 关于我们

06-三层技术-IP业务配置指导

目录

12-隧道配置

本章节下载 12-隧道配置  (557.14 KB)

docurl=/cn/Service/Document_Software/Document_Center/Routers/Catalog/SR_Router/SR8800-F/Configure/Operation_Manual/H3C_SR8800-F_CG-R7951PXX-6W102/06/202008/1323124_30005_0.htm

12-隧道配置


1 隧道

说明

本章仅介绍隧道接口的配置,有关隧道模式的介绍请参见后续章节。

本文中的“SPC类单板”仅代表单板丝印以“SPC”开头的单板。

 

1.1  隧道简介

隧道技术是一种封装技术,即一种网络协议将其他网络协议的数据报文封装在自己的报文中,然后在网络中传输。封装后的数据报文在网络中传输的路径,称为隧道。隧道是一条虚拟的点对点连接,隧道的两端需要对数据报文进行封装及解封装。隧道技术就是指包括数据封装、传输和解封装在内的全过程。

1.2  支持的隧道技术

目前支持的隧道技术包括:

·     GRE(Generic Routing Encapsulation,通用路由封装)隧道,GRE的相关介绍和配置请参见“三层技术-IP业务配置指导”中的“GRE”。

·     MPLS TE(Multiprotocol Label Switching Traffic Engineering,多协议标记交换流量工程)隧道,MPLS TE的相关介绍和配置请参见“MPLS配置指导”中的“MPLS TE”。

·     VXLAN(Virtual eXtensible LAN,可扩展虚拟局域网络)隧道和VXLAN-DCI(VXLAN Data Center Interconnect,VXLAN数据中心互联)隧道,VXLAN和VXLAN-DCI的相关介绍和配置请参见“VXLAN配置指导”中的“VXLAN”。

·     IPv6 over IPv4隧道和IPv4 over IPv4隧道。

1.3  隧道配置限制和指导

·     当隧道源接口或隧道流量的入接口位于SPC类单板、CSPC类单板(CSPC-GE16XP4L-E、CSPC-GE24L-E和CSPC-GP24GE8XP2L-E除外)和CMPE-1104单板上时,隧道封装后的报文不能根据目的地址和路由表进行第二次三层转发,需要将封装后的报文发送给业务环回组,由业务环回组将报文回送给转发模块后,再进行三层转发。因此,需要创建tunnel类型的业务环回组,以实现隧道报文的接收和发送。关于业务环回组的创建和配置,请参见“二层技术-以太网交换配置指导”中的“业务环回组”。

·     仅CSPEX类单板(CSPEX-1204和CSPEX-1104-E除外)支持配置隧道目的端地址所属的VPN实例。

·     主备倒换或备用主控板拔出时,建立在主控板或备用主控板上的隧道接口不会被删除,若再配置相同的隧道接口,系统会提示隧道接口已经存在。如果需要删除隧道接口,请使用undo interface tunnel命令。

1.4  配置Tunnel接口

1.4.1  功能简介

隧道两端的设备上,需要创建虚拟的三层接口,即Tunnel接口,以便隧道两端的设备利用Tunnel接口发送报文、识别并处理来自隧道的报文。

1.4.2  Tunnel接口配置任务简介

Tunnel接口配置任务如下:

(1)     创建Tunnel接口

(2)     (可选)配置封装后隧道报文的属性

(3)     (可选)配置隧道目的端地址所属的VPN实例

(4)     (可选)恢复当前Tunnel接口的缺省配置

1.4.3  创建Tunnel接口

(1)     进入系统视图。

system-view

(2)     创建Tunnel接口,指定隧道模式,并进入Tunnel接口视图。

interface tunnel number mode { ds-lite-aftr | gre | ipv4-ipv4 |  ipv6-ipv4 [ 6to4 | isatap ] | mpls-te | vxlan | vxlan-dci }

在隧道的两端应配置相同的隧道模式,否则可能造成报文传输失败。

(3)     设置隧道的源端地址或源接口。

source { ipv4-address | ipv6-address | interface-type interface-number }

缺省情况下,未设置隧道的源端地址和源接口。

如果设置的是隧道的源端地址,则该地址将作为封装后隧道报文的源IP地址;如果设置的是隧道的源接口,则该接口的主IP地址将作为封装后隧道报文的源IP地址。

(4)     设置隧道的目的端地址。

destination { ipv4-address | ipv6-address | dhcp-alloc interface-type interface-number }

缺省情况下,未设置隧道的目的端地址。

隧道的目的端地址是对端接收报文的接口的地址,该地址将作为封装后隧道报文的目的地址。

(5)     (可选)配置接口描述信息。

description text

缺省情况下,接口描述信息为“该接口的接口名 Interface”。

(6)     (可选)配置Tunnel接口的MTU值。

mtu size

缺省情况下,隧道接口的状态始终为Down时,Tunnel接口的MTU值为1500字节;隧道接口的状态当前为Up时,隧道的MTU值为根据隧道目的地址查找路由而得到的出接口的MTU值减隧道封装报文头长度

如果CSPC-GE16XP4L-E、CSPC-GE24L-E、CSPC-GP24GE8XP2L-E单板和CSPEX类单板的接口作为流量的入接口且流量出接口的MTU配置值小于1280时,该流量的IP报文会根据MTU值1280来进行分片。有这些单板在位时,建议将出接口的MTU值配置成1280以上

如果SPC类单板、CSPC类单板(CSPC-GE16XP4L-E、CSPC-GE24L-E和CSPC-GP24GE8XP2L-E除外)和CMPE-1104单板的接口作为流量的入接口,则该流量的IP报文不支持根据出接口配置的MTU值进行分片

(7)     (可选)配置Tunnel接口的期望带宽。

bandwidth bandwidth-value

缺省情况下,接口的期望带宽=接口的最大速率÷1000(kbit/s)。

期望带宽供业务模块使用,不会对接口实际带宽造成影响。

(8)     (可选)关闭Tunnel接口。

shutdown

缺省情况下,Tunnel接口处于开启状态。

1.4.4  配置封装后隧道报文的属性

(1)     进入系统视图。

system-view

(2)     进入Tunnel接口视图。

interface tunnel number

(3)     设置封装后隧道报文的ToS。

tunnel tos tos-value

缺省情况下,封装后隧道报文的ToS值与封装前原始IP报文的ToS值相同。

(4)     设置封装后隧道报文的TTL值。

tunnel ttl ttl-value

缺省情况下,封装后隧道报文的TTL值为255。

1.4.5  配置隧道目的端地址所属的VPN实例

1. 配置限制和指导

·     隧道的源端地址和目的端地址必须属于相同的VPN实例,否则隧道接口链路状态无法UP。在隧道的源接口上通过ip binding vpn-instance命令可以指定隧道源端地址所属的VPN实例。ip binding vpn-instance命令的详细介绍,请参见“MPLS命令参考”中的“MPLS L3VPN”。

·     仅CSPEX类单板(CSPEX-1204和CSPEX-1104-E除外)支持配置隧道目的端地址所属的VPN实例。

2. 配置步骤

(1)     进入系统视图。

system-view

(2)     进入Tunnel接口视图。

interface tunnel number

(3)     配置隧道目的端地址所属的VPN实例。

tunnel vpn-instance vpn-instance-name

缺省情况下,隧道目的端地址属于公网,设备查找公网路由表转发隧道封装后的报文。

1.4.6  恢复当前Tunnel接口的缺省配置

1. 配置限制和指导

注意

接口下的某些配置恢复到缺省情况后,会对设备上当前运行的业务产生影响。建议您在执行本配置前,完全了解其对网络产生的影响。

 

您可以在执行default命令后通过display this命令确认执行效果。对于未能成功恢复缺省的配置,建议您查阅相关功能的命令手册,手工执行恢复该配置缺省情况的命令。如果操作仍然不能成功,您可以通过设备的提示信息定位原因。

2. 配置步骤

(1)     进入系统视图。

system-view

(2)     进入Tunnel接口视图。

interface tunnel number

(3)     恢复当前接口的缺省配置。

default

1.5  隧道接口显示和维护

在任意视图下执行display命令可以显示隧道配置后的运行情况,通过查看显示信息验证配置的效果。

在用户视图下执行reset命令可以清除Tunnel接口的统计信息。

表1-1 隧道显示和维护

操作

命令

显示Tunnel接口的相关信息

display interface [ tunnel [ number ] ] [ brief [ description | down ] ]

显示Tunnel接口的IPv6相关信息

display ipv6 interface [ tunnel [ number ] ] [ brief ]

清除Tunnel接口的统计信息

reset counters interface [ tunnel [ number ] ]

 

1.6  隧道常见故障处理

1.6.1  Tunnel接口未处于up状态

1. 故障现象

在Tunnel接口上配置了相关的参数后(例如隧道的源端地址、目的端地址和隧道模式),Tunnel接口仍未处于up状态。

2. 故障分析

Tunnel接口未处于up状态的原因可能是隧道起点的物理接口没有处于up状态,或隧道的目的端地址不可达。

3. 处理过程

使用display interfacedisplay ipv6 interface命令查看隧道起点的物理接口状态为up还是down。如果物理接口状态是down的,请检查网络连接。

使用display ipv6 routing-tabledisplay ip routing-table命令查看是否目的端地址通过路由可达。如果路由表中没有保证隧道通讯的路由表项,请配置相关路由。


2 IPv6 over IPv4隧道

2.1  IPv6 over IPv4 隧道简介

2.1.1  IPv6 over IPv4隧道原理

图2-1所示,IPv6 over IPv4隧道是在IPv6数据报文前封装上IPv4的报文头,通过隧道使IPv6报文穿越IPv4网络,实现隔离的IPv6网络互通。IPv6 over IPv4隧道两端的设备必须支持IPv4/IPv6双协议栈,即同时支持IPv4协议和IPv6协议。

图2-1 IPv6 over IPv4隧道原理图

 

IPv6 over IPv4隧道对报文的处理过程如下:

(1)     IPv6网络中的主机发送IPv6报文,该报文到达隧道的源端设备Device A。

(2)     Device A根据路由表判定该报文要通过隧道进行转发后,在IPv6报文前封装上IPv4的报文头,通过隧道的实际物理接口将报文转发出去。IPv4报文头中的源IP地址为隧道的源端地址,目的IP地址为隧道的目的端地址。

(3)     封装报文通过隧道到达隧道目的端设备(或称隧道终点)Device B,Device B判断该封装报文的目的地是本设备后,将对报文进行解封装。

(4)     Device B根据解封装后的IPv6报文的目的地址处理该IPv6报文。如果目的地就是本设备,则将IPv6报文转给上层协议处理;否则,查找路由表转发该IPv6报文。

2.1.2  IPv6 over IPv4隧道模式分类

根据隧道终点的IPv4地址的获取方式不同,隧道分为“配置隧道”和“自动隧道”。

·     如果IPv6 over IPv4隧道终点的IPv4地址不能从IPv6报文的目的地址中自动获取,需要进行手工配置,这样的隧道称为“配置隧道”。

·     如果IPv6报文的目的地址中嵌入了IPv4地址,则可以从IPv6报文的目的地址中自动获取隧道终点的IPv4地址,这样的隧道称为“自动隧道”。

表2-1所示,根据对IPv6报文的封装方式的不同,IPv6 over IPv4隧道分为以下几种模式。

表2-1 IPv6 over IPv4隧道模式

隧道类型

隧道模式

隧道源端/目的端地址

IPv6报文目的地址格式

配置隧道

IPv6 over IPv4手动隧道

源端/目的端地址为手工配置的IPv4地址

普通的IPv6地址

自动隧道

6to4隧道

源端地址为手工配置的IPv4地址,目的端地址不需配置

6to4地址,其格式为:

2002:IPv4-destination-address::/48

其中,IPv4-destination-address表示隧道的目的端地址

ISATAP(Intra-Site Automatic Tunnel Addressing Protocol,站点内自动隧道寻址协议)隧道

源端地址为手工配置的IPv4地址,目的端地址不需配置

ISATAP地址,其格式为:

Prefix:0:5EFE:IPv4-destination-address/64

其中,IPv4-destination-address表示隧道的目的端地址

 

2.1.3  IPv6 over IPv4手动隧道

IPv6 over IPv4手动隧道是点到点之间的链路。建立手动隧道需要在隧道两端手工指定隧道的源端和目的端地址。

手动隧道可以建立在连接IPv4网络和IPv6网络的两个边缘路由器之间,实现隔离的IPv6网络跨越IPv4网络通信;也可以建立在边缘路由器和IPv4/IPv6双栈主机之间,实现隔离的IPv6网络跨越IPv4网络与双栈主机通信。

2.1.4  6to4隧道

1. 普通6to4隧道

6to4隧道是点到多点的自动隧道,主要建立在边缘路由器之间,用于通过IPv4网络连接多个IPv6孤岛。

6to4隧道两端采用特殊的6to4地址,其格式为:2002:abcd:efgh:子网号::接口ID/48。其中:2002表示固定的IPv6地址前缀;abcd:efgh为用16进制表示的IPv4地址(如1.1.1.1可以表示为0101:0101),用来唯一标识一个6to4网络(如果IPv6孤岛中的主机都采用6to4地址,则该IPv6孤岛称为6to4网络),6to4网络的边缘路由器上连接IPv4网络的接口地址需要配置为此IPv4地址;子网号用来在6to4网络内划分子网;子网号和接口ID共同标识了一个主机在6to4网络内的位置。通过6to4地址中嵌入的IPv4地址可以自动确定隧道的终点,使隧道的建立非常方便。

6to4地址中采用一个全球唯一的IPv4地址标识了一个6to4网络,克服了IPv4兼容IPv6自动隧道的局限性。

2. 6to4中继

6to4隧道只能用于前缀为2002::/16的6to4网络之间的通信,但在IPv6网络中也会使用像2001::/16这样的IPv6网络地址。为了实现6to4网络和其它IPv6网络的通信,必须有一台6to4路由器作为网关转发到IPv6网络的报文,这台路由器就叫做6to4中继(6to4 relay)路由器。

如下图所示,在6to4网络的边缘路由器Device A上配置一条到达IPv6网络(非6to4网络)的静态路由,下一跳地址指向6to4中继路由器Device C的6to4地址,这样,所有去往该IPv6网络的报文都会被转发到6to4中继路由器,之后再由6to4中继路由器转发到IPv6网络中,从而实现6to4网络与IPv6网络的互通。

图2-2 6to4隧道和6to4中继原理图

 

2.1.5  ISATAP隧道

ISATAP隧道是点到多点的自动隧道技术,为IPv6主机通过IPv4网络接入IPv6网络提供了一个较好的解决方案。

使用ISATAP隧道时,IPv6报文的目的地址要采用特殊的ISATAP地址。ISATAP地址格式为:Prefix:0:5EFE:abcd:efgh/64。其中,64位的Prefix为任何合法的IPv6单播地址前缀;abcd:efgh为用16进制表示的32位IPv4地址(如1.1.1.1可以表示为0101:0101),该IPv4地址不要求全球唯一。通过ISATAP地址中嵌入的IPv4地址可以自动确定隧道的终点,使隧道的建立非常方便。

ISATAP隧道主要用于跨越IPv4网络在IPv6主机与边缘路由器之间、两个边缘路由器之间建立连接。

图2-3 ISATAP隧道原理图

 

2.2  IPv6 over IPv4隧道配置任务简介

IPv6 over IPv4隧道配置任务如下:

(1)     配置IPv6 over IPv4隧道

请选择以下一项任务进行配置:

¡     配置IPv6 over IPv4手动隧道

¡     配置6to4隧道

¡     配置ISATAP隧道

(2)     (可选)配置丢弃含有IPv4兼容IPv6地址的IPv6报文

2.3  配置IPv6 over IPv4手动隧道

2.3.1  配置限制和指导

·     在本端设备上为隧道指定的目的端地址,应该与在对端设备上为隧道指定的源端地址相同;在本端设备上为隧道指定的源端地址,应该与在对端设备上为隧道指定的目的端地址相同。

·     在同一台设备上,隧道模式相同的Tunnel接口建议不要同时配置完全相同的源端地址和目的端地址。

·     如果封装前IPv6报文的目的IPv6地址与Tunnel接口的IPv6地址不在同一个网段,则必须配置通过Tunnel接口到达目的IPv6地址的转发路由,以便需要进行封装的报文能正常转发。用户可以配置静态路由,指定到达目的IPv6地址的路由出接口为本端Tunnel接口或下一跳为对端Tunnel接口地址。用户也可以配置动态路由,在Tunnel接口使能动态路由协议。在隧道的两端都要进行此项配置,配置的详细情况请参见“三层技术-IP路由配置指导”中的“IPv6静态路由”或其他路由协议配置。

2.3.2  配置步骤

(1)     进入系统视图。

system-view

(2)     进入模式为IPv6 over IPv4手动隧道的Tunnel接口视图。

interface tunnel number [ mode ipv6-ipv4 ]

(3)     设置Tunnel接口的IPv6地址。

详细配置方法,请参见“三层技术-IP业务配置指导”中的“IPv6基础”。

(4)     设置隧道的源端地址或源接口。

source { ipv4-address | interface-type interface-number }

缺省情况下,未设置隧道的源端地址和源接口。

如果设置的是隧道的源端地址,则该地址将作为封装后隧道报文的源IP地址;如果设置的是隧道的源接口,则该接口的主IP地址将作为封装后隧道报文的源IP地址。

(5)     设置隧道的目的端地址。

destination ipv4-address

缺省情况下,未设置隧道的目的端地址。

隧道的目的端地址是对端接收报文的接口的地址,该地址将作为封装后隧道报文的目的地址。

2.3.3  IPv6 over IPv4手动隧道典型配置举例

1. 组网需求

图2-4所示,两个IPv6网络分别通过Router A和Router B与IPv4网络连接,要求在Router A和Router B之间建立IPv6 over IPv4隧道,使两个IPv6网络可以互通。由于隧道终点的IPv4地址不能从IPv6报文的目的地址中自动获取,因此,需要配置IPv6 over IPv4手动隧道。

2. 组网图

图2-4 IPv6 over IPv4手动隧道组网图

 

3. 配置步骤

说明

在开始下面的配置之前,请确保Router A和Router B之间IPv4报文路由可达。

 

(1)     配置Router A

# 配置接口GigabitEthernet3/1/2的地址。

<RouterA> system-view

[RouterA] interface gigabitethernet 3/1/2

[RouterA-GigabitEthernet3/1/2] ip address 192.168.100.1 255.255.255.0

[RouterA-GigabitEthernet3/1/2] quit

# 配置接口GigabitEthernet3/1/1的IPv6地址。

[RouterA] interface gigabitethernet 3/1/1

[RouterA-GigabitEthernet3/1/1] ipv6 address 3002::1 64

[RouterA-GigabitEthernet3/1/1] quit

# 创建模式为IPv6 over IPv4手动隧道的接口Tunnel0。

[RouterA] interface tunnel 0 mode ipv6-ipv4

# 配置Tunnel0接口的IPv6地址。

[RouterA-Tunnel0] ipv6 address 3001::1/64

# 配置Tunnel0接口的源接口为GigabitEthernet3/1/2。

[RouterA-Tunnel0] source gigabitethernet 3/1/2

# 配置Tunnel0接口的目的端地址(Router B的GigabitEthernet3/1/2的IP地址)。

[RouterA-Tunnel0] destination 192.168.50.1

[RouterA-Tunnel0] quit

# 配置从Router A经过Tunnel0接口到IPv6 network 2的静态路由。

[RouterA] ipv6 route-static 3003:: 64 tunnel 0

(2)     配置Router B

# 配置接口GigabitEthernet3/1/2的地址。

<RouterB> system-view

[RouterB] interface gigabitethernet 3/1/2

[RouterB-GigabitEthernet3/1/2] ip address 192.168.50.1 255.255.255.0

[RouterB-GigabitEthernet3/1/2] quit

# 配置接口GigabitEthernet3/1/1的IPv6地址。

[RouterB] interface gigabitethernet 3/1/1

[RouterB-GigabitEthernet3/1/1] ipv6 address 3003::1 64

[RouterB-GigabitEthernet3/1/1] quit

# 创建模式为IPv6 over IPv4手动隧道的接口Tunnel0。

[RouterB] interface tunnel 0 mode ipv6-ipv4

# 配置Tunnel0接口的IPv6地址。

[RouterB-Tunnel0] ipv6 address 3001::2/64

# 配置Tunnel0接口的源接口为GigabitEthernet3/1/2。

[RouterB-Tunnel0] source gigabitethernet 3/1/2

# 配置Tunnel0接口的目的端地址(Router A的GigabitEthernet3/1/2的IP地址)。

[RouterB-Tunnel0] destination 192.168.100.1

[RouterB-Tunnel0] quit

# 配置从Router B经过Tunnel0接口到IPv6 network 1的静态路由。

[RouterB] ipv6 route-static 3002:: 64 tunnel 0

4. 验证配置

# 完成上述配置后,在Router A和Router B上分别执行display ipv6 interface命令,可以看出Tunnel0接口处于up状态。(具体显示信息略)

# 从Router A和Router B上可以Ping通对端的GigabitEthernet3/1/1接口的IPv6地址。下面仅以Router A为例。

[RouterA] ping ipv6 3003::1

Ping6(56 data bytes) 3001::1 --> 3003::1, press CTRL_C to break

56 bytes from 3003::1, icmp_seq=0 hlim=64 time=45.000 ms

56 bytes from 3003::1, icmp_seq=1 hlim=64 time=10.000 ms

56 bytes from 3003::1, icmp_seq=2 hlim=64 time=4.000 ms

56 bytes from 3003::1, icmp_seq=3 hlim=64 time=10.000 ms

56 bytes from 3003::1, icmp_seq=4 hlim=64 time=11.000 ms

 

--- Ping6 statistics for 3003::1 ---

5 packet(s) transmitted, 5 packet(s) received, 0.0% packet loss

round-trip min/avg/max/std-dev = 4.000/16.000/45.000/14.711 ms

2.4  配置6to4隧道

2.4.1  配置限制和指导

·     6to4隧道不需要配置隧道的目的端地址,因为隧道的目的端地址可以通过6to4 IPv6地址中嵌入的IPv4地址自动获得。

·     对于自动隧道,隧道模式相同的Tunnel接口建议不要同时配置完全相同的源端地址。

·     如果封装前IPv6报文的目的IPv6地址与Tunnel接口的IPv6地址不在同一个网段,则必须配置通过Tunnel接口到达目的IPv6地址的转发路由,以便需要进行封装的报文能正常转发。对于自动隧道,用户只能配置静态路由,指定到达目的IPv6地址的路由出接口为本端Tunnel接口或下一跳为对端Tunnel接口地址,不支持动态路由。在隧道的两端都要进行转发路由的配置,配置的详细情况请参见“三层技术-IP路由配置指导”中的“IPv6静态路由”。

2.4.2  配置步骤

(1)     进入系统视图。

system-view

(2)     进入模式为6to4隧道的Tunnel接口视图。

interface tunnel number [ mode ipv6-ipv4 6to4 ]

(3)     设置Tunnel接口的IPv6地址。

详细配置方法,请参见“三层技术-IP业务配置指导”中的“IPv6基础”。

(4)     设置隧道的源端地址或源接口。

source { ipv4-address | interface-type interface-number }

缺省情况下,未设置隧道的源端地址和源接口。

如果设置的是隧道的源端地址,则该地址将作为封装后隧道报文的源IP地址;如果设置的是隧道的源接口,则该接口的主IP地址将作为封装后隧道报文的源IP地址。

2.4.3  6to4隧道典型配置举例

1. 组网需求

图2-5所示,两个6to4网络通过网络边缘6to4 router(Router A和Router B)与IPv4网络相连。在Router A和Router B之间建立6to4隧道,实现6to4网络中的主机Host A和Host B之间的互通。

2. 组网图

图2-5 6to4隧道组网图

 

3. 配置思路

为了实现6to4网络之间的互通,除了配置6to4隧道外,还需要为6to4网络内的主机及6to4 router配置6to4地址。

·     Router A上接口GigabitEthernet3/1/2的IPv4地址为2.1.1.1/24,转换成6to4地址后的前缀为2002:0201:0101::/48,Host A的地址必须使用该前缀。

·     Router B上接口GigabitEthernet3/1/2的IPv4地址为5.1.1.1/24,转换成6to4地址后的前缀为2002:0501:0101::/48,Host B的地址必须使用该前缀。

4. 配置步骤

说明

在开始下面的配置之前,请确保Router A和Router B之间IPv4报文路由可达。

 

(1)     配置Router A

# 配置接口GigabitEthernet3/1/2的地址。

<RouterA> system-view

[RouterA] interface gigabitethernet 3/1/2

[RouterA-GigabitEthernet3/1/2] ip address 2.1.1.1 24

[RouterA-GigabitEthernet3/1/2] quit

# 配置接口GigabitEthernet3/1/1的地址为6to4地址2002:0201:0101:1::1/64。

[RouterA] interface gigabitethernet 3/1/1

[RouterA-GigabitEthernet3/1/1] ipv6 address 2002:0201:0101:1::1/64

[RouterA-GigabitEthernet3/1/1] quit

# 创建模式为6to4隧道的接口Tunnel0。

[RouterA] interface tunnel 0 mode ipv6-ipv4 6to4

# 配置Tunnel0接口的IPv6地址。

[RouterA-Tunnel0] ipv6 address 3001::1/64

# 配置Tunnel0接口的源接口为GigabitEthernet3/1/2。

[RouterA-Tunnel0] source gigabitethernet 3/1/2

[RouterA-Tunnel0] quit

# 配置到目的地址2002::/16,下一跳为Tunnel接口的静态路由。

[RouterA] ipv6 route-static 2002:: 16 tunnel 0

(2)     配置Router B

# 配置接口GigabitEthernet3/1/2的地址。

<RouterB> system-view

[RouterB] interface gigabitethernet 3/1/2

[RouterB-GigabitEthernet3/1/2] ip address 5.1.1.1 24

[RouterB-GigabitEthernet3/1/2] quit

# 配置接口GigabitEthernet3/1/1的地址为6to4地址2002:0501:0101:1::1/64。

[RouterB] interface gigabitethernet 3/1/1

[RouterB-GigabitEthernet3/1/1] ipv6 address 2002:0501:0101:1::1/64

[RouterB-GigabitEthernet3/1/1] quit

# 创建模式为6to4隧道的接口Tunnel0。

[RouterB] interface tunnel 0 mode ipv6-ipv4 6to4

# 配置Tunnel0接口的IPv6地址。

[RouterB-Tunnel0] ipv6 address 3002::1/64

# 配置Tunnel0接口的源接口为GigabitEthernet3/1/2。

[RouterB-Tunnel0] source gigabitethernet 3/1/2

[RouterB-Tunnel0] quit

# 配置到目的地址2002::/16,下一跳为Tunnel接口的静态路由。

[RouterB] ipv6 route-static 2002:: 16 tunnel 0

5. 验证配置

完成以上配置之后,Host A与Host B可以互相Ping通。

D:\>ping6 -s 2002:201:101:1::2 2002:501:101:1::2

 

Pinging 2002:501:101:1::2

from 2002:201:101:1::2 with 32 bytes of data:

 

Reply from 2002:501:101:1::2: bytes=32 time=13ms

Reply from 2002:501:101:1::2: bytes=32 time=1ms

Reply from 2002:501:101:1::2: bytes=32 time=1ms

Reply from 2002:501:101:1::2: bytes=32 time<1ms

 

Ping statistics for 2002:501:101:1::2:

    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),

Approximate round trip times in milli-seconds:

    Minimum = 0ms, Maximum = 13ms, Average = 3ms

2.4.4  6to4中继典型配置举例

1. 组网需求

图2-6所示,Router A为6to4路由器,其IPv6侧的网络使用6to4地址。Router B作为6to4中继路由器,它和IPv6网络(2001::/16)相连。要求在Router A和Router B之间配置6to4隧道,使得6to4网络中的主机与IPv6网络中的主机互通。

2. 组网图

图2-6 6to4中继组网图

 

3. 配置思路

6to4中继路由器的配置与6to4路由器的配置相同,但为实现6to4网络与IPv6网络的互通,需要在6to4路由器上配置到IPv6网络的路由,下一跳指向6to4中继路由器的6to4地址。6to4中继路由器上接口GigabitEthernet3/1/2的IPv4地址为6.1.1.1/24,转换成6to4地址后的前缀为2002:0601:0101::/48,6to4路由器上配置的到IPv6网络的路由下一跳可以是符合该前缀的任意一个地址。

4. 配置步骤

说明

在开始下面的配置之前,请确保Router A和Router B之间IPv4报文路由可达。

 

(1)     配置Router A

# 配置接口GigabitEthernet3/1/2的地址。

<RouterA> system-view

[RouterA] interface gigabitethernet 3/1/2

[RouterA-GigabitEthernet3/1/2] ip address 2.1.1.1 255.255.255.0

[RouterA-GigabitEthernet3/1/2] quit

# 配置接口GigabitEthernet3/1/1的地址为6to4地址2002:0201:0101:1::1/64。

[RouterA] interface gigabitethernet 3/1/1

[RouterA-GigabitEthernet3/1/1] ipv6 address 2002:0201:0101:1::1/64

[RouterA-GigabitEthernet3/1/1] quit

# 创建模式为6to4隧道的接口Tunnel0。

[RouterA] interface tunnel 0 mode ipv6-ipv4 6to4

# 配置Tunnel0接口的IPv6地址。

[RouterA-Tunnel0] ipv6 address 2002::1/64

# 配置Tunnel0接口的源接口为GigabitEthernet3/1/2。

[RouterA-Tunnel0] source gigabitethernet 3/1/2

[RouterA-Tunnel0] quit

# 配置到6to4中继的静态路由。

[RouterA] ipv6 route-static 2002:0601:0101:: 64 tunnel 0

# 配置到纯IPv6网络的缺省路由,指定路由的下一跳地址为6to4中继路由器的6to4地址。

[RouterA] ipv6 route-static :: 0 2002:0601:0101::1

(2)     配置Router B

# 配置接口GigabitEthernet3/1/2的地址。

<RouterB> system-view

[RouterB] interface gigabitethernet 3/1/2

[RouterB-GigabitEthernet3/1/2] ip address 6.1.1.1 255.255.255.0

[RouterB-GigabitEthernet3/1/2] quit

# 配置接口GigabitEthernet3/1/1的地址。

[RouterB] interface gigabitethernet 3/1/1

[RouterB-GigabitEthernet3/1/1] ipv6 address 2001::1/16

[RouterB-GigabitEthernet3/1/1] quit

# 创建模式为6to4隧道的接口Tunnel0。

[RouterB] interface tunnel 0 mode ipv6-ipv4 6to4

# 配置Tunnel0接口的IPv6地址。

[RouterB-Tunnel0] ipv6 address 2003::1/64

# 配置Tunnel0接口的源接口为GigabitEthernet3/1/2。

[RouterB-Tunnel0] source gigabitethernet 3/1/2

[RouterB-Tunnel0] quit

# 配置到目的地址2002::/16,下一跳为Tunnel接口的静态路由。

[RouterB] ipv6 route-static 2002:: 16 tunnel 0

5. 验证配置

完成以上配置之后,Host A与Host B可以互相Ping通。

D:\>ping6 -s 2002:201:101:1::2 2001::2

 

Pinging 2001::2

from 2002:201:101:1::2 with 32 bytes of data:

 

Reply from 2001::2: bytes=32 time=13ms

Reply from 2001::2: bytes=32 time=1ms

Reply from 2001::2: bytes=32 time=1ms

Reply from 2001::2: bytes=32 time<1ms

 

Ping statistics for 2001::2:

    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),

Approximate round trip times in milli-seconds:

    Minimum = 0ms, Maximum = 13ms, Average = 3ms

2.5  配置ISATAP隧道

2.5.1  配置限制和指导

·     ISATAP隧道不需要配置隧道的目的端地址,因为隧道的目的端地址可以通过ISATAP地址中嵌入的IPv4地址自动获得。

·     对于自动隧道,隧道模式相同的Tunnel接口建议不要同时配置完全相同的源端地址。

·     如果封装前IPv6报文的目的IPv6地址与Tunnel接口的IPv6地址不在同一个网段,则必须配置通过Tunnel接口到达目的IPv6地址的转发路由,以便需要进行封装的报文能正常转发。对于自动隧道,用户只能配置静态路由,指定到达目的IPv6地址的路由出接口为本端Tunnel接口或下一跳为对端Tunnel接口地址,不支持动态路由。在隧道的两端都要进行转发路由的配置,配置的详细情况请参见“三层技术-IP路由配置指导”中的“IPv6静态路由”。

2.5.2  配置步骤

(1)     进入系统视图。

system-view

(2)     进入模式为ISATAP隧道的Tunnel接口视图。

interface tunnel number [ mode ipv6-ipv4 isatap ]

(3)     设置Tunnel接口的IPv6地址。

详细配置方法,请参见“三层技术-IP业务配置指导”中的“IPv6基础”。

(4)     设置隧道的源端地址或源接口。

source { ipv4-address | interface-type interface-number }

缺省情况下,未设置隧道的源端地址和源接口。

如果设置的是隧道的源端地址,则该地址将作为封装后隧道报文的源IP地址;如果设置的是隧道的源接口,则该接口的主IP地址将作为封装后隧道报文的源IP地址。

2.5.3  ISATAP隧道典型配置举例

1. 组网需求

图2-7所示,IPv6网络和IPv4网络通过ISATAP路由器相连,在IPv4网络侧分布着一些IPv6主机。要求将IPv4网络中的IPv6主机通过ISATAP隧道接入到IPv6网络。

2. 组网图

图2-7 ISATAP隧道组网图

 

3. 配置步骤

(1)     配置Router

# 配置接口GigabitEthernet3/1/2的地址。

<Router> system-view

[Router] interface gigabitethernet 3/1/2

[Router-GigabitEthernet3/1/2] ipv6 address 3001::1/64

[Router-GigabitEthernet3/1/2] quit

# 配置接口GigabitEthernet3/1/1的地址。

[Router] interface gigabitethernet 3/1/1

[Router-GigabitEthernet3/1/1] ip address 1.1.1.1 255.0.0.0

[Router-GigabitEthernet3/1/1] quit

# 创建模式为ISATAP隧道的接口Tunnel0。

[Router] interface tunnel 0 mode ipv6-ipv4 isatap

# 配置Tunnel0接口采用EUI-64格式形成IPv6地址。

[Router-Tunnel0] ipv6 address 2001:: 64 eui-64

# 配置Tunnel0接口的源接口为GigabitEthernet3/1/1。

[Router-Tunnel0] source gigabitethernet 3/1/1

# 取消对RA消息发布的抑制,使主机可以通过路由器发布的RA消息获取地址前缀等信息。

[Router-Tunnel0] undo ipv6 nd ra halt

[Router-Tunnel0] quit

(2)     配置ISATAP主机

ISATAP主机上的具体配置与主机的操作系统有关,下面仅以Windows XP操作系统为例进行说明。

# 在主机上安装IPv6协议。

C:\>ipv6 install

# 在Windows XP上,ISATAP接口通常为接口2,查看这个ISATAP接口的信息。

C:\>ipv6 if 2

Interface 2: Automatic Tunneling Pseudo-Interface

  Guid {48FCE3FC-EC30-E50E-F1A7-71172AEEE3AE}

  does not use Neighbor Discovery

  does not use Router Discovery

  routing preference 1

  EUI-64 embedded IPv4 address: 0.0.0.0

  router link-layer address: 0.0.0.0

    preferred link-local fe80::5efe:1.1.1.2, life infinite

  link MTU 1280 (true link MTU 65515)

  current hop limit 128

  reachable time 42500ms (base 30000ms)

  retransmission interval 1000ms

  DAD transmits 0

  default site prefix length 48

# 配置ISATAP路由器的IPv4地址。

C:\>netsh interface ipv6 isatap set router 1.1.1.1

# 完成上述配置后,再来查看ISATAP接口的信息。

C:\>ipv6 if 2

Interface 2: Automatic Tunneling Pseudo-Interface

  Guid {48FCE3FC-EC30-E50E-F1A7-71172AEEE3AE}

  does not use Neighbor Discovery

  uses Router Discovery

  routing preference 1

  EUI-64 embedded IPv4 address: 1.1.1.2

  router link-layer address: 1.1.1.1

    preferred global 2001::5efe:1.1.1.2, life 29d23h59m46s/6d23h59m46s (public)

    preferred link-local fe80::5efe:1.1.1.2, life infinite

  link MTU 1500 (true link MTU 65515)

  current hop limit 255

  reachable time 42500ms (base 30000ms)

  retransmission interval 1000ms

  DAD transmits 0

  default site prefix length 48

对比前后的接口信息,我们可以看到主机获取了2001::/64的前缀,自动生成全球单播地址2001::5efe:1.1.1.2,同时还有一行信息“uses Router Discovery”表明主机启用了路由器发现。

# 查看主机上的IPv6路由信息。

C:\>ipv6 rt

2001::/64 -> 2 pref 1if+8=9 life 29d23h59m43s (autoconf)

::/0 -> 2/fe80::5efe:1.1.1.1 pref 1if+256=257 life 29m43s (autoconf)

(3)     配置IPv6主机

# 配置一条到边界路由器隧道的路由。

C:\>netsh interface ipv6 set route 2001::/64 5 3001::1

4. 验证配置

# 在ISATAP主机上Ping IPv6主机的地址,可以Ping通,表明ISATAP隧道已经成功建立,ISATAP主机可访问IPv6网络中的主机。

C:\>ping 3001::2

 

Pinging 3001::2 with 32 bytes of data:

 

Reply from 3001::2: time=1ms

Reply from 3001::2: time=1ms

Reply from 3001::2: time=1ms

Reply from 3001::2: time=1ms

 

Ping statistics for 3001::2:

    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),

Approximate round trip times in milli-seconds:

    Minimum = 1ms, Maximum = 1ms, Average = 1ms

2.6  配置丢弃含有IPv4兼容IPv6地址的IPv6报文

1. 配置步骤

(1)     进入系统视图。

system-view

(2)     配置丢弃含有IPv4兼容IPv6地址的IPv6报文。

tunnel discard ipv4-compatible-packet

缺省情况下,不会丢弃含有IPv4兼容IPv6地址的IPv6报文。

 


3 IPv4 over IPv4隧道

3.1  IPv4 over IPv4 隧道简介

IPv4 over IPv4隧道(RFC 1853)是对IPv4报文进行封装,使得一个IPv4网络的报文能够在另一个IPv4网络中传输。例如,运行IPv4协议的两个子网位于不同的区域,并且这两个子网都使用私网地址时,可以通过建立IPv4 over IPv4隧道,实现两个子网的互联。

图3-1 IPv4 over IPv4隧道原理图

 

报文在隧道中传输经过封装与解封装两个过程,以图3-1为例说明这两个过程:

·     封装过程

Device A连接IPv4主机所在子网的接口收到IPv4报文后,首先交由IPv4协议栈处理。IPv4协议栈根据IPv4报文头中的目的地址判断该报文需要通过隧道进行转发,则将此报文发给Tunnel接口。

Tunnel接口收到此报文后,在IPv4报文外再封装一个IPv4报文头,封装的报文头中源IPv4地址为隧道的源端地址,目的IPv4地址为隧道的目的端地址。封装完成后将报文重新交给IPv4协议栈处理,IPv4协议栈根据添加的IPv4报文头查找路由表,转发报文。

·     解封装过程

解封装过程和封装过程相反。Device B从接口收到IPv4报文后,将其送到IPv4协议栈处理。IPv4协议栈检查接收到的IPv4报文头中的协议号。如果协议号为4(表示封装的报文为IPv4报文),则将此IPv4报文发送到隧道模块进行解封装处理。解封装之后的IPv4报文将重新被送到IPv4协议栈进行二次路由处理。

3.2  IPv4 over IPv4隧道配置限制和指导

·     在本端设备上为隧道指定的目的端地址,应该与在对端设备上为隧道指定的源端地址相同;在本端设备上为隧道指定的源端地址,应该与在对端设备上为隧道指定的目的端地址相同。

·     在同一台设备上,隧道模式相同的Tunnel接口建议不要同时配置完全相同的源端地址和目的端地址。

·     本端隧道接口的IPv4地址与隧道的目的端地址不能在同一个网段内。

·     如果封装前IPv4报文的目的IPv4地址与Tunnel接口的IPv4地址不在同一个网段,则必须配置通过Tunnel接口到达目的IPv4地址的转发路由,以便需要进行封装的报文能正常转发。用户可以配置静态路由,指定到达目的IPv4地址的路由出接口为本端Tunnel接口或下一跳为对端Tunnel接口地址。用户也可以配置动态路由,在Tunnel接口使能动态路由协议。在隧道的两端都要进行转发路由的配置,配置的详细情况请参见“三层技术-IP路由配置指导”中的“静态路由”或其他路由协议配置。

·     配置经过隧道接口的路由时,路由的目的地址不能与该隧道的目的端地址在同一个网段内。

3.3  配置IPv4 over IPv4隧道

(1)     进入系统视图。

system-view

(2)     进入模式为IPv4 over IPv4隧道的Tunnel接口视图。

interface tunnel number [ mode ipv4-ipv4 ]

(3)     设置Tunnel接口的IPv4地址。

ip address ip-address { mask | mask-length } [ sub ]

(4)     设置隧道的源端地址或源接口。

source { ipv4-address | interface-type interface-number }

缺省情况下,未设置隧道的源端地址和源接口。

如果设置的是隧道的源端地址,则该地址将作为封装后隧道报文的源IP地址;如果设置的是隧道的源接口,则该接口的主IP地址将作为封装后隧道报文的源IP地址。

(5)     设置隧道的目的端地址。

destination ipv4-address

缺省情况下,未设置隧道的目的端地址。

隧道的目的端地址是对端接收报文的接口的地址,该地址将作为封装后隧道报文的目的地址。

3.4  IPv4 over IPv4隧道典型配置举例

3.4.1  IPv4 over IPv4隧道基本组网配置举例

1. 组网需求

运行IP协议的两个子网Group 1和Group 2位于不同的区域,这两个子网都使用私网地址。通过在路由器Router A和路由器Router B之间建立IPv4 over IPv4隧道,实现两个子网的互联。

2. 组网图

图3-2 IPv4 over IPv4隧道组网图

 

3. 配置步骤

说明

在开始下面的配置之前,请确保Router A和Router B之间IPv4报文路由可达。

 

(1)     配置Router A

# 配置接口GigabitEthernet3/1/1的地址。

<RouterA> system-view

[RouterA] interface gigabitethernet 3/1/1

[RouterA-GigabitEthernet3/1/1] ip address 10.1.1.1 255.255.255.0

[RouterA-GigabitEthernet3/1/1] quit

# 配置接口GigabitEthernet4/1/1(隧道的实际物理接口)的地址。

[RouterA] interface gigabitethernet 4/1/1

[RouterA-GigabitEthernet4/1/1] ip address 2.1.1.1 255.255.255.0

[RouterA-GigabitEthernet4/1/1] quit

# 创建模式为IPv4 over IPv4隧道的接口Tunnel1。

[RouterA] interface tunnel 1 mode ipv4-ipv4

# 配置Tunnel1接口的IP地址。

[RouterA-Tunnel1] ip address 10.1.2.1 255.255.255.0

# 配置Tunnel1接口的源端地址(GigabitEthernet4/1/1的IP地址)。

[RouterA-Tunnel1] source 2.1.1.1

# 配置Tunnel1接口的目的端地址(RouterB的GigabitEthernet4/1/1的IP地址)。

[RouterA-Tunnel1] destination 3.1.1.1

[RouterA-Tunnel1] quit

# 配置从Router A经过Tunnel1接口到Group 2的静态路由。

[RouterA] ip route-static 10.1.3.0 255.255.255.0 tunnel 1

(2)     配置Router B

# 配置接口GigabitEthernet3/1/1的地址。

<RouterB> system-view

[RouterB] interface gigabitethernet 3/1/1

[RouterB-GigabitEthernet3/1/1] ip address 10.1.3.1 255.255.255.0

[RouterB-GigabitEthernet3/1/1] quit

# 配置接口GigabitEthernet4/1/1(隧道的实际物理接口)的地址。

[RouterB] interface gigabitethernet 4/1/1

[RouterB-GigabitEthernet4/1/1] ip address 3.1.1.1 255.255.255.0

[RouterB-GigabitEthernet4/1/1] quit

# 创建模式为IPv4 over IPv4隧道的接口Tunnel2。

[RouterB] interface tunnel 2 mode ipv4-ipv4

# 配置Tunnel2接口的IP地址。

[RouterB-Tunnel2] ip address 10.1.2.2 255.255.255.0

# 配置Tunnel2接口的源端地址(GigabitEthernet4/1/1的IP地址)。

[RouterB-Tunnel2] source 3.1.1.1

# 配置Tunnel2接口的目的端地址(Router A的GigabitEthernet4/1/1的IP地址)。

[RouterB-Tunnel2] destination 2.1.1.1

[RouterB-Tunnel2] quit

# 配置从Router B经过Tunnel2接口到Group 1的静态路由。

[RouterB] ip route-static 10.1.1.0 255.255.255.0 tunnel 2

4. 验证配置

# 完成上述配置后,在Router A和Router B上分别执行display interface tunnel命令,可以看出Tunnel接口处于up状态。(具体显示信息略)

# 从Router A和Router B上可以Ping通对端的GigabitEthernet3/1/1接口的IPv4地址。下面仅以Router A为例。

[RouterA] ping -a 10.1.1.1 10.1.3.1

Ping 10.1.3.1 (10.1.3.1) from 10.1.1.1: 56 data bytes, press CTRL_C to break

56 bytes from 10.1.3.1: icmp_seq=0 ttl=255 time=2.000 ms

56 bytes from 10.1.3.1: icmp_seq=1 ttl=255 time=1.000 ms

56 bytes from 10.1.3.1: icmp_seq=2 ttl=255 time=0.000 ms

56 bytes from 10.1.3.1: icmp_seq=3 ttl=255 time=1.000 ms

56 bytes from 10.1.3.1: icmp_seq=4 ttl=255 time=1.000 ms

 

--- Ping statistics for 10.1.3.1 ---

5 packet(s) transmitted, 5 packet(s) received, 0.0% packet loss

round-trip min/avg/max/std-dev = 0.000/1.000/2.000/0.632 ms

4 DS-Lite隧道

4.1  DS-Lite隧道简介

DS-Lite(Dual Stack Lite,轻量级双协议栈)技术综合了IPv4 over IPv6隧道技术和NAT(Network Address Translation,网络地址转换)技术,利用隧道技术实现通过IPv6网络连接隔离的IPv4网络,利用NAT技术实现不同的用户网络共享相同的IPv4地址空间,减缓IPv4地址的耗尽速度。

图4-1 DS-Lite组网图

 

图4-1所示,DS-Lite网络主要由几个部分组成:

·     DS-Lite隧道

DS-Lite隧道是B4设备和AFTR之间的IPv4 over IPv6隧道,用来实现IPv4报文跨越IPv6网络传输。

·     B4(Basic Bridging BroadBand,基本桥接宽带)设备

B4设备是位于用户网络侧、用来连接ISP(Internet Service Provider,互联网服务提供商)网络的设备,通常为用户网络的网关。B4设备作为DS-Lite隧道的一个端点,负责将用户网络的IPv4报文封装成IPv6报文发送给隧道的另一个端点,同时将从隧道接收到的IPv6报文解封装成IPv4报文发送给用户网络。

某些用户网络的主机也可以作为B4设备,直接连接到ISP网络,这样的主机称为DS-Lite主机。

·     AFTR(Address Family Transition Router,地址族转换路由器)

AFTR是ISP网络中的设备。AFTR同时作为DS-Lite隧道端点和NAT网关设备。

AFTR从DS-Lite隧道接收到B4设备发送的IPv6报文后,为该B4设备分配Tunnel ID,并记录B4设备的IPv6地址(报文中的源IPv6地址)与Tunnel ID的对应关系。AFTR对IPv6报文进行解封装,将解封装后的用户网络报文的源IPv4地址(私网地址)转换为公网地址,并将转换后的报文发送给目的IPv4主机。AFTR进行NAT转换时,同时记录NAT映射关系和Tunnel ID,以便实现不同B4设备连接的用户网络地址可以重叠。

AFTR接收到目的IPv4主机返回的应答报文后,将目的IPv4地址(公网地址)转换为对应的私网地址,并根据记录的Tunnel ID获取对应的B4设备的IPv6地址,作为封装后IPv6报文的目的地址。AFTR将NAT转换后的报文封装成IPv6报文通过隧道发送给B4设备。

提示

DS-Lite只支持用户网络内的IPv4主机主动访问公网上的IPv4主机;公网上的IPv4主机不能主动访问用户网络内的IPv4主机。

 

图4-2 DS-Lite报文转发流程

 

采用独立的网关设备作为B4设备时,报文转发过程中源和目的IP地址、源和目的端口号的变化如图4-2所示。报文转发过程的关键步骤为:

·     B4设备和AFTR对报文进行封装和解封装。

·     AFTR对IPv4报文进行NAT转换。

说明

图4-2所示为PAT模式的动态地址转换。使用静态地址转换时不同B4设备连接的用户网络地址不能重叠,因此DS-Lite隧道一般使用动态地址转换。有关NAT的详细介绍,请参见“NAT配置指导”中的“NAT”。

 

4.2  配置DS-Lite隧道

4.2.1  配置限制和指导

·     本设备暂不支持作为B4设备。

·     在同一台设备上,隧道模式相同的Tunnel接口建议不要同时配置完全相同的源端地址。

·     在AFTR端不能配置DS-Lite隧道的目的端地址。AFTR从隧道上接收到报文后,记录该报文的源IPv6地址(即B4设备的地址),将此地址作为隧道目的端的IPv6地址。

·     AFTR上的一个Tunnel接口可以和多个B4设备建立隧道连接。

·     在AFTR端,不需要配置通过Tunnel接口到达目的IPv4地址的转发路由。

·     AFTR连接IPv4公网的接口上需要配置NAT。

4.2.2  配置DS-Lite隧道的AFTR端

(1)     进入系统视图。

system-view

(2)     进入模式为AFTR端DS-Lite隧道的Tunnel接口视图。

interface tunnel number [ mode ds-lite-aftr ]

(3)     设置Tunnel接口的IPv4地址。

ip address ip-address { mask | mask-length } [ sub ]

(4)     设置隧道的源端地址或源接口。

source { ipv6-address | interface-type interface-number }

缺省情况下,未设置隧道的源端地址和源接口。

如果设置的是隧道的源端地址,则该地址将作为封装后隧道报文的源IPv6地址;如果设置的是隧道的源接口,则该接口下的最小地址将作为封装后隧道报文的源IPv6地址。

(5)     退回系统视图。

quit

(6)     进入AFTR连接IPv4公网的接口视图。

interface interface-type interface-number

(7)     开启接口的DS-Lite隧道功能。

ds-lite enable

缺省情况下,接口的DS-Lite隧道功能处于关闭状态。

只有开启该功能后,AFTR从IPv4公网接口接收到的IPv4报文才能够通过DS-Lite隧道正确地转发到B4设备。

(8)     在AFTR端显示已连接的B4设备的信息。

(独立运行模式)

display ds-lite b4 information [ slot slot-number ]

(IRF模式)

display ds-lite b4 information [ chassis chassis-number slot slot-number ]

不同款型规格的资料略有差异, 详细信息请向具体销售和400咨询。H3C保留在没有任何通知或提示的情况下对资料内容进行修改的权利!

新华三官网
联系我们