• 产品与解决方案
  • 行业解决方案
  • 服务
  • 支持
  • 合作伙伴
  • 新华三人才研学中心
  • 关于我们

09-ACL和QoS配置指导

目录

02-QoS配置

本章节下载 02-QoS配置  (886.68 KB)

docurl=/cn/Service/Document_Software/Document_Center/Routers/Catalog/SR_Router/SR8800/Configure/Operation_Manual/H3C_SR8800_CG-R3725P02-6W101/09/201601/906925_30005_0.htm

02-QoS配置

  录

1 QoS简介

1.1 概述

1.2 QoS服务模型简介

1.2.1 Best-Effort服务模型

1.2.2 IntServ服务模型

1.2.3 DiffServ服务模型

1.3 QoS技术综述

1.3.1 QoS技术在网络中的位置

1.3.2 QoS技术在设备中的处理顺序

2 QoS配置方式

2.1 配置方式介绍

2.1.1 非QoS策略配置方式

2.1.2 QoS策略配置方式

2.2 QoS策略配置方式的步骤

2.2.2 定义类

2.2.3 定义流行为

2.2.4 定义策略

2.2.5 应用策略

2.2.6 QoS策略配置举例

2.2.7 QoS策略显示和维护

3 优先级映射

3.1 优先级映射简介

3.1.1 概述

3.1.2 优先级介绍

3.1.3 优先级映射表

3.2 优先级映射配置任务简介

3.3 配置优先级映射

3.3.1 配置优先级映射表

3.3.2 配置优先级信任模式

3.3.3 配置端口优先级

3.3.4 配置Primap

3.4 优先级映射显示和维护

3.5 优先级映射典型配置举例

4 流量监管、流量整形和接口限速

4.1 流量监管、流量整形和接口限速简介

4.1.1 流量评估与令牌桶

4.1.2 流量监管

4.1.3 流量整形

4.1.4 接口限速

4.2 流量监管配置

4.3 流量整形配置

4.4 接口限速配置

4.5 流量整形/接口限速显示和维护

5 硬件实现拥塞管理

5.1 硬件实现拥塞管理简介

5.1.1 拥塞的产生、影响和对策

5.1.2 拥塞管理策略

5.2 硬件实现拥塞管理配置任务简介

5.3 队列调度策略配置方式

5.3.1 队列调度策略简介

5.3.2 配置队列调度策略

5.3.3 队列调度策略显示和维护

5.3.4 队列调度策略典型配置举例

5.4 WFQ队列配置

5.4.1 配置WFQ队列

5.4.2 配置举例

5.5 基于类的队列的配置

5.5.1 配置概述

5.5.2 定义类

5.5.3 定义流行为

5.5.4 定义策略

5.5.5 应用策略

5.5.6 基于类的队列的显示和维护

5.5.7 基于类的队列典型配置举例

6 拥塞避免

6.1 拥塞避免简介

6.2 WRED配置的说明

6.2.1 WRED的配置方式

6.2.2 WRED的参数说明

6.3 以WRED表配置方式配置WRED

6.4 WRED显示和维护

6.5 WRED典型配置举例

7 流量过滤

7.1 流量过滤简介

7.2 配置流量过滤

7.3 流量过滤配置举例

7.3.1 流量过滤配置举例

8 重标记

8.1 重标记简介

8.2 配置重标记

8.3 重标记配置举例

8.3.1 重标记配置举例

9 流量重定向

9.1 流量重定向简介

9.2 配置流量重定向

9.3 流量重定向配置举例

10 全局CAR

10.1 全局CAR简介

10.2 配置聚合CAR

10.3 聚合CAR显示和维护

11 流量统计

11.1 流量统计简介

11.2 配置流量统计

11.3 流量统计显示和维护

11.4 流量统计配置举例

12 报文统计

12.1 报文统计简介

12.2 配置报文统计

12.3 报文统计显示和维护

12.4 报文统计配置举例

13 端口队列统计

13.1 端口队列统计简介

13.2 配置端口队列统计

13.3 端口队列统计显示与维护

14 QoS管道模式

15 附录

15.1 附录 A 缩略语表

15.2 附录 B 缺省优先级映射表

15.2.1 不带颜色优先级映射表

15.2.2 带颜色优先级映射表

15.3 附录 C 各种优先级介绍

15.3.1 IP优先级和DSCP优先级

15.3.2 802.1p优先级

15.3.3 EXP优先级

 


1 QoS简介

说明

本文中的“SPC单板”指的是单板丝印以“SPC”开头(如SPC-GT48L)的单板,“SPE单板”指的是单板丝印以“SPE”开头(如SPE-1020-E-II)的单板,“MPE单板”指的是单板丝印以“MPE”开头(如MPE-1004)的单板。

 

1.1  概述

QoS即服务质量。对于网络业务,服务质量包括传输的带宽、传送的时延、数据的丢包率等。在网络中可以通过保证传输的带宽、降低传送的时延、降低数据的丢包率以及时延抖动等措施来提高服务质量。

网络资源总是有限的,只要存在抢夺网络资源的情况,就会出现服务质量的要求。服务质量是相对网络业务而言的,在保证某类业务的服务质量的同时,可能就是在损害其它业务的服务质量。例如,在网络总带宽固定的情况下,如果某类业务占用的带宽越多,那么其他业务能使用的带宽就越少,可能会影响其他业务的使用。因此,网络管理者需要根据各种业务的特点来对网络资源进行合理的规划和分配,从而使网络资源得到高效利用。

下面从QoS服务模型出发,对目前使用最多、最成熟的一些QoS技术逐一进行描述。在特定的环境下合理地使用这些技术,可以有效地提高服务质量。

1.2  QoS服务模型简介

通常QoS提供以下三种服务模型:

·     Best-Effort service(尽力而为服务模型)

·     Integrated service(综合服务模型,简称IntServ)

·     Differentiated service(区分服务模型,简称DiffServ)

1.2.1  Best-Effort服务模型

Best-Effort是一个单一的服务模型,也是最简单的服务模型。对Best-Effort服务模型,网络尽最大的可能性来发送报文。但对时延、可靠性等性能不提供任何保证。

Best-Effort服务模型是网络的缺省服务模型,通过FIFO队列来实现。它适用于绝大多数网络应用,如FTP、E-Mail等。

1.2.2  IntServ服务模型

IntServ是一个综合服务模型,它可以满足多种QoS需求。该模型使用RSVP协议,RSVP运行在从源端到目的端的每个设备上,可以监视每个流,以防止其消耗资源过多。这种体系能够明确区分并保证每一个业务流的服务质量,为网络提供最细粒度化的服务质量区分。

但是,IntServ模型对设备的要求很高,当网络中的数据流数量很大时,设备的存储和处理能力会遇到很大的压力。IntServ模型可扩展性很差,难以在Internet核心网络实施。

说明

RSVP的相关内容请参见“MPLS配置指导”中的“MPLS TE”。

 

1.2.3  DiffServ服务模型

DiffServ是一个多服务模型,它可以满足不同的QoS需求。与IntServ不同,它不需要通知网络为每个业务预留资源。区分服务实现简单,扩展性较好。

本文提到的技术都是基于DiffServ服务模型。

1.3  QoS技术综述

QoS技术包括流分类、流量监管、流量整形、接口限速、拥塞管理、拥塞避免等。下面对常用的技术简单进行一下介绍。

1.3.1  QoS技术在网络中的位置

图1-1 常用QoS技术在网络中的位置

 

图1-1所示,流分类、流量监管、流量整形、拥塞管理和拥塞避免主要完成如下功能:

·     流分类:采用一定的规则识别符合某类特征的报文,它是对网络业务进行区分服务的前提和基础。

·     流量监管:对进入或流出设备的特定流量进行监管。当流量超出设定值时,可以采取限制或惩罚措施,以保护网络资源不受损害。可以作用在接口入方向和出方向。

·     流量整形:一种主动调整流的输出速率的流量控制措施,用来使流量适配下游设备可供给的网络资源,避免不必要的报文丢弃,通常作用在接口出方向。

·     拥塞管理:就是当拥塞发生时如何制定一个资源的调度策略,以决定报文转发的处理次序,通常作用在接口出方向。

·     拥塞避免:监督网络资源的使用情况,当发现拥塞有加剧的趋势时采取主动丢弃报文的策略,通过调整队列长度来解除网络的过载,通常作用在接口出方向。

1.3.2  QoS技术在设备中的处理顺序

(1)     首先通过流分类对各种业务进行识别和区分,它是后续各种动作的基础;

(2)     通过各种动作对特性的业务进行处理。这些动作需要和流分类关联起来才有意义。具体采取何种动作,与所处的阶段以及网络当前的负载状况有关。例如,当报文进入网络时进行流量监管;流出节点之前进行流量整形;拥塞时对队列进行拥塞管理;拥塞加剧时采取拥塞避免措施等。

 


2 QoS配置方式

2.1  配置方式介绍

QoS的配置方式分为QoS策略配置方式和非QoS策略配置方式两种。

有些QoS功能只能使用其中一种方式来配置,有些使用两种方式都可以进行配置。在实际应用中,两种配置方式也可以结合起来使用。

2.1.1  非QoS策略配置方式

非QoS策略配置方式是指不通过QoS策略来进行配置。例如,接口限速功能可以通过直接在接口上配置来实现。

2.1.2  QoS策略配置方式

QoS策略配置方式是指通过配置QoS策略来实现QoS功能。

QoS策略包含了三个要素:类、流行为、策略。用户可以通过QoS策略将指定的类和流行为绑定起来,灵活地进行QoS配置。

1. 类

类的要素包括:类的名称和类的规则。

用户可以通过命令定义一系列的规则来对报文进行分类。

2. 流行为

流行为用来定义针对报文所做的QoS动作。

流行为的要素包括:流行为的名称和流行为中定义的动作。

用户可以通过命令在一个流行为中定义多个动作。

3. 策略

策略用来将指定的类和流行为绑定起来,对分类后的报文执行流行为中定义的动作。

策略的要素包括:策略名称、绑定在一起的类和流行为的名称。

用户可以在一个策略中定义多个类与流行为的绑定关系。

2.2  QoS策略配置方式的步骤

图2-1所示:

图2-1 QoS策略配置方式的步骤

 

2.2.2  定义类

定义类首先要创建一个类名称,然后在此类视图下配置其匹配规则。

表2-1 定义类

操作

命令

说明

进入系统视图

system-view

-

定义类并进入类视图

traffic classifier classifier-name [ operator { and | or } ]

必选

缺省为and,即类视图下各匹配规则之间的关系为逻辑与

·     and:报文只有匹配了所有的规则,设备才认为报文属于这个类

·     or:报文只要匹配了类中的任何一个规则,设备就认为报文属于这个类

定义匹配数据包的规则

if-match match-criteria

必选

具体规则请参见QoS命令手册中的命令if-match的介绍

 

2.2.3  定义流行为

定义流行为首先需要创建一个流行为名称,然后可以在此流行为视图下根据需要配置相应的流行为。每个流行为由一组QoS动作组成。

表2-2 定义流行为

操作

命令

说明

进入系统视图

system-view

-

定义一个流行为并进入流行为视图

traffic behavior behavior-name

必选

配置流行为

流行为就是对应符合流分类的报文做出相应的QoS动作,例如流量监管、流量过滤、流量重定向、重标记、流量统计等,具体情况请参见本文相关章节

 

2.2.4  定义策略

在策略视图下为使用的类指定对应的流行为。以某种匹配规则将流区分为不同的类,再结合不同的流行为就能很灵活的实现各种QoS功能。

表2-3 在策略中为类指定流行为

操作

命令

说明

进入系统视图

system-view

-

定义策略并进入策略视图

qos policy policy-name

必选

在策略中为类指定采用的流行为

classifier classifier-name behavior behavior-name

必选

 

说明

如果QoS策略在定义流分类规则时引用了ACL,ACL规则中的deny表示匹配的报文不执行QoS策略中C-B对中的动作,ACL规则中的permit表示匹配的报文执行QoS策略中C-B对中的动作。

 

2.2.5  应用策略

QoS策略支持以下应用方式:

·     基于接口应用QoS策略:QoS策略对通过接口接收或发送的流量生效。

·     基于VLAN应用QoS策略:QoS策略对通过同一个VLAN内所有接口接收或发送的流量生效。

·     基于全局应用QoS策略:QoS策略对所有流量生效。

QoS策略的优先级由高到低依次为:全局QoS策略、接口QoS策略、VLAN中的QoS策略。

QoS策略应用后,用户仍然可以修改QoS策略中的流分类规则和流行为,以及二者的对应关系。当流分类规则中匹配的是ACL时,允许删除或修改该ACL(包括向该ACL中添加、删除和修改规则)。

说明

因为VLAN不支持配置自定义流模板,所以当满足以下两个条件时,接口上配置的QoS策略生效,而接口所属的VLAN上配置的QoS策略不生效:

·     当接口以及接口所属的VLAN配置了同方向的QoS策略;

·     当接口上应用了用户自定义的流模板,随着QoS策略下发到接口后,自定义的流模板生效。

 

1. 基于接口应用QoS策略

一个策略可以应用于多个接口。接口的每个方向(出和入两个方向)只能应用一个策略。

表2-4 在接口上应用策略

操作

命令

说明

进入系统视图

system-view

-

进入接口视图、端口组视图或子接口视图

进入接口视图

interface interface-type interface-number

三者必选其一

进入接口视图后,下面进行的配置只在当前接口生效;进入端口组视图后,下面进行的配置将在端口组中的所有端口生效;进入子接口视图后,下面进行的配置只在当前子接口生效

进入端口组视图

port-group manual port-group-name

进入子接口视图

interface interface-type interface-number.subnumber

在接口上应用关联的策略

qos apply policy policy-name { inbound | outbound }

必选

 

说明

·     除链路层协议为X.25、LAPB协议的接口外,所有物理接口都可以应用QoS策略。

·     如果QoS策略应用在接口的出方向,则QoS策略对本地协议报文不起作用。本地协议报文是设备内部发起的某些报文,它是维持设备正常运行的重要协议报文。为了确保这些报文能够被不受影响的发送出去,即便在接口的出方向应用了QoS策略,本地协议报文也不会受到QoS策略的限制,从而降低了因配置QoS而误将这些报文丢弃或进行其他处理的风险。一些常见的本地协议报文如下:链路维护报文、IS-IS、OSPF、RIP、BGP、LDP、RSVP、SSH等。

·     将端口加入了端口隔离组且配置为隔离组的普通端口后,则应用在此端口上入方向的策略所对应的流行为只有accountingfilter denycar cir committed-information-rate red discard、流镜像几个动作能生效,其他动作都不能生效。

·     对于MPE单板,在接口出方向上不能同时配置QoS策略和包过滤防火墙(firewall packet-filter)功能。

 

2. 基于VLAN应用QoS策略

基于VLAN应用QoS策略可以方便对某个VLAN上的所有流量进行管理。

表2-5 基于VLAN应用的QoS策略

操作

命令

说明

进入系统视图

system-view

-

应用QoS策略到指定的VLAN

qos vlan-policy policy-name vlan vlan-id-list { inbound | outbound }

必选

 

说明

·     基于VLAN应用的QoS策略不能应用在动态VLAN上。例如,在运行GVRP协议的情况下,设备可能会动态创建VLAN,QoS策略不能应用在该动态VLAN上。

·     当某个单板资源不足导致VLAN应用QoS策略下发或者刷新失败时,用户可以执行undo qos vlan-policy vlan命令进行手工删除。

 

3. 基于全局应用QoS策略

基于全局应用QoS策略可以方便对设备上的所有流量进行管理。

表2-6 基于全局应用QoS策略

操作

命令

说明

进入系统视图

system-view

-

基于全局应用QoS策略

qos apply policy policy-name global { inbound | outbound }

必选

 

说明

·     当某个单板资源不足导致全局应用QoS策略下发或者刷新失败时,用户可以执行undo qos apply policy global命令进行手工删除。

·     基于全局应用QoS策略仅在MPE单板(仅入方向)和SPC单板上生效。

 

2.2.6  QoS策略配置举例

(1)     组网需求

配置一个策略test_policy,策略里指定类为test_class的数据的流行为是test_behavior,并把该策略分别应用到下列两个范围:

·     GigabitEthernet2/1/1入接口;

·     VLAN 200、300、400、500、600、700、800、900入方向上。

(2)     配置步骤

# 配置QoS策略test_policy。

<Sysname> system-view

[Sysname] qos policy test_policy

[Sysname-qospolicy-test_policy] classifier test_class behavior test_behavior

[Sysname-qospolicy-test_policy] quit

# 把策略test_policy应用到接口GigabitEthernet2/1/1入方向上。

[Sysname] interface GigabitEthernet2/1/1

[Sysname-GigabitEthernet2/1/1] qos apply policy test_policy inbound

[Sysname-GigabitEthernet2/1/1] quit

# 把策略test_policy应用到指定VLAN的入方向上。

[Sysname] qos vlan-policy test_policy vlan 200 300 400 500 600 700 800 900 inbound

2.2.7  QoS策略显示和维护

在任意视图下执行display命令可以显示QoS策略的运行情况,通过查看显示信息验证配置的效果。

在用户视图下执行reset命令可以清除QoS策略的统计信息。

表2-7 QoS策略显示和维护

操作

命令

显示配置的类信息

display traffic classifier user-defined [ classifier-name ] [ | { begin | exclude | include } regular-expression ]

显示配置的流行为信息

display traffic behavior user-defined [ behavior-name ] [ | { begin | exclude | include } regular-expression ]

显示用户定义策略的配置信息

display qos policy user-defined [ policy-name [ classifier classifier-name ] ] [ | { begin | exclude | include } regular-expression ]

显示指定接口或所有接口上策略的配置信息和运行情况

display qos policy interface [ interface-type interface-number ] [ inbound | outbound ] [ | { begin | exclude | include } regular-expression ]

显示VLAN应用QoS策略的信息

display qos vlan-policy { name policy-name | vlan vlan-id } [ slot slot-number ] [ inbound | outbound ] [ | { begin | exclude | include } regular-expression ]

显示全局应用QoS策略的信息

display qos policy global [ slot slot-number ] [ inbound | outbound ] [ | { begin | exclude | include } regular-expression ]

清除VLAN应用QoS策略的统计信息

reset qos vlan-policy [ vlan vlan-id ] [ inbound | outbound ]

清除全局应用QoS策略的统计信息

reset qos policy global [ inbound | outbound ]

 


3 优先级映射

3.1  优先级映射简介

3.1.1  概述

报文在进入设备以后,设备会根据自身情况和相应规则(primap、remark)分配或修改报文的各种优先级的值,为队列调度和拥塞控制服务。

优先级映射功能通过报文所携带的优先级字段来映射其他优先级字段值,就可以获得各种用以决定报文调度能力的各种优先级字段,从而可以全面有效的控制报文的转发调度能力。

3.1.2  优先级介绍

优先级用于标识报文传输的优先程度,可以分为两类:报文携带优先级和设备调度优先级。

报文携带优先级包括:802.1p优先级、DSCP优先级、IP优先级、EXP优先级等。这些优先级都是根据公认的标准和协议生成,体现了报文自身的优先等级。相关介绍请参见15.3  附录 C 各种优先级介绍

设备调度优先级是指报文在设备内转发时所使用的优先级,只对当前设备自身有效。设备调度优先级包括以下几种:

·     本地优先级(LP):设备为报文分配的一种具有本地意义的优先级,每个本地优先级对应一个队列,本地优先级值越大的报文,进入的队列优先级越高,从而能够获得优先的调度。

·     丢弃优先级(DP):在进行报文丢弃时参考的参数,丢弃优先级值越大的报文越被优先丢弃。

·     用户优先级(UP):设备对于进入的流量,会自动获取报文的优先级,这种报文优先级称为用户优先级。对于不同类型的报文,用户优先级所代表的优先级字段不同。对于二层报文,用户优先级取自802.1p优先级;对于三层报文,用户优先级取自IP优先级;对于MPLS报文,用户优先级取自EXP。

3.1.3  优先级映射表

设备提供了多张优先级映射表,分别对应相应的优先级映射关系。

通常情况下,可以通过查找缺省优先级映射表(15.2  附录 B 缺省优先级映射表)来为报文分配相应的优先级。如果缺省优先级映射表无法满足用户需求,可以根据实际情况对映射表进行修改。

3.2  优先级映射配置任务简介

我们常用的方式有三种:配置优先级信任模式、配置端口优先级和通过QoS策略配置(配置Primap)。

如果配置了优先级信任模式,即表示设备信任当前进来流量的报文优先级,会自动解析报文的优先级或者标志位,然后按照映射表映射到报文的优先级参数。

如果没有配置优先级信任模式,并且配置了端口优先级值,则表明设备不信任所接收报文的优先级,而是使用端口优先级,按照映射表映射到报文的优先级参数。

建议进行各项配置的时候先整体规划网络QoS。

表3-1 优先级映射配置任务简介

配置任务

说明

详细配置

配置优先级映射表

可选

3.3.1 

配置优先级信任模式

可选

3.3.2 

配置端口优先级

可选

3.3.3 

配置Primap

可选

3.3.4 

 

3.3  配置优先级映射

3.3.1  配置优先级映射表

设备提供了多张优先级映射表,分别对应相应的优先级映射关系。

表3-2 优先级映射表

优先级映射

描述

dscp-dscp

DSCP到DSCP映射表,仅对IP报文生效

up-dot1p

用户优先级到802.1p优先级映射表

up-dscp

用户优先级到DSCP映射表

up-up

用户优先级到用户优先级映射表

up-dp

用户优先级到丢弃优先级映射表

up-lp

用户优先级到本地优先级映射表

up-rpr

用户优先级到RPR优先级映射表

up-fc

用户优先级到转发类映射表

up-exp

用户优先级到EXP优先级映射表

 

1. 配置优先级映射表(不带颜色)

表3-3 配置优先级映射表(不带颜色)

操作

命令

说明

进入系统视图

system-view

-

进入指定的优先级映射表视图

qos map-table { dscp-dscp | inbound { up-dp | up-lp | up-up } | outbound { up-dp | up-fc | up-lp | up-rpr } }

必选

用户根据需要进入相应的优先级映射表视图

配置指定优先级映射表参数,定义优先级映射关系

import import-value-list export export-value

必选

新配置的映射项将覆盖原有映射项

 

说明

在配置DSCP到DSCP的优先级映射规则时,只有奇数的映射输入参数所配置的映射关系能生效,偶数输入参数所配置的映射关系不生效,其实际映射效果与比其大1的奇数输入参数配置的映射效果一致。所以如果要配置偶数输入参数的映射关系,只能通过配置比其值大1的奇数输入参数的映射关系来实现。

 

2. 配置优先级映射表(带颜色)

经过CAR处理的报文被分成了三种颜色(绿色、黄色、红色),为了对不同颜色报文进行优先级映射,设备提供了多张带颜色优先级映射表,分别对应相应颜色的优先级映射关系。

表3-4 配置优先级映射表(带颜色)

操作

命令

说明

进入系统视图

system-view

-

进入指定的带颜色优先级映射表视图

qos map-table color { green | red | yellow } { up-dot1p | up-dscp | up-lp | up-exp }

必选

用户根据需要进入相应的带颜色优先级映射表视图

配置指定带颜色优先级映射表参数,定义优先级映射关系

import import-value-list export export-value

必选

新配置的映射项将覆盖原有映射项

 

3.3.2  配置优先级信任模式

根据报文自身的优先级,查找优先级映射表,为报文分配优先级参数,可以通过配置优先级信任模式的方式来实现。

·     对于SPE单板:如果在某个端口上配置端口优先级信任模式,那么此端口会自动解析报文的优先级,如果是二层转发的报文,会选择报文中的802.1p作为报文优先级;如果是三层转发的报文,会选择报文中的IP优先级作为报文优先级;如果是MPLS报文,会选择报文中的EXP作为报文优先级,然后以此优先级去查找优先级映射表。在不信任模式下,以端口优先级作为报文优先级去查找优先级映射表。

·     对于SPC单板和MPE单板:如果在某个端口上配置端口优先级信任模式,那么此端口会自动解析报文的优先级,如果是非IP报文,会选择报文中的802.1p作为报文优先级;如果是IP报文,会选择报文中的IP优先级作为报文优先级;如果是MPLS报文,会选择报文中的EXP作为报文优先级,然后以此优先级去查找优先级映射表。在不信任模式下,以端口优先级作为报文优先级去查找优先级映射表。

表3-5 配置优先级信任模式

操作

命令

说明

进入系统视图

system-view

-

进入接口视图、端口组视图或子接口视图

进入接口视图

interface interface-type interface-number

三者必选其一

进入接口视图后,下面进行的配置只在当前接口生效;进入端口组视图后,下面进行的配置将在端口组中的所有端口生效;进入子接口视图后,下面进行的配置只在当前子接口生效

进入端口组视图

port-group manual port-group-name

进入子接口视图

interface interface-type interface-number.subnumber

配置优先级信任模式

qos trust auto

必选

缺省情况下,端口信任模式为untrust,信任端口的默认优先级

 

说明

仅SPE单板支持在子接口上配置qos trust auto命令。

 

3.3.3  配置端口优先级

按照接收端口的端口优先级,通过一一映射为报文分配相应的优先级。

表3-6 配置端口优先级

操作

命令

说明

进入系统视图

system-view

-

进入接口视图、端口组视图或子接口视图

进入接口视图

interface interface-type interface-number

三者必选其一

进入接口视图后,下面进行的配置只在当前接口生效;进入端口组视图后,下面进行的配置将在端口组中的所有端口生效;进入子接口视图后,下面进行的配置只在当前子接口生效

进入端口组视图

port-group manual port-group-name

进入子接口视图

interface interface-type interface-number.subnumber

配置端口优先级

qos priority priority-value

必选

缺省情况下,端口优先级为0

 

说明

·     仅SPE单板支持在子接口上配置qos priority命令。

·     对于MPE单板,仅以太网接口、POS接口和ATM接口支持配置qos priority命令。

 

3.3.4  配置Primap

Primap配置和类结合,可以将指定流的报文优先级根据映射表进行重新配置。

表3-7 配置Primap(不带颜色)

操作

命令

说明

进入系统视图

system-view

-

定义类并进入类视图

traffic classifier classifier-name [ operator { and | or } ]

-

定义匹配数据包的规则

if-match match-criteria

-

退出类视图

quit

-

定义一个流行为并进入流行为视图

traffic behavior behavior-name

-

配置使用相应的优先级映射表为报文获取其他的优先级参数

primap pre-defined dscp-dscp

必选

退出流行为视图

quit

-

定义策略并进入策略视图

qos policy policy-name

-

在策略中为类指定采用的流行为

classifier classifier-name behavior behavior-name

-

退出策略视图

quit

-

应用QoS策略

基于接口

2.2.5  1. 基于接口应用QoS策略

-

基于VLAN

2.2.5  2. 基于VLAN应用QoS策略

-

基于全局

2.2.5  3. 基于全局应用QoS策略

-

 

表3-8 配置Primap(带颜色)

操作

命令

说明

进入系统视图

system-view

-

定义类并进入类视图

traffic classifier classifier-name [ operator { and | or } ]

-

定义匹配数据包的规则

if-match match-criteria

-

退出类视图

quit

-

定义一个流行为并进入流行为视图

traffic behavior behavior-name

-

配置流量监管动作

car cir committed-information-rate [ cbs committed-burst-size [ ebs excess-burst-size ] ] [ pir peak-information-rate ] [ red { discard | pass } ]

必选

配置使用相应的带颜色优先级映射表为报文获取其他的优先级参数

primap pre-defined color { up-dot1p | up-dscp | up-exp | up-lp }

必选

配置使用报文的颜色标记报文的丢弃优先级

primap color-map-dp

可选

映射关系为:红色对应丢弃优先级2,黄色对应丢弃优先级1,绿色对应丢弃优先级0。此映射关系固定,不能修改

仅应用在出方向

退出流行为视图

quit

-

定义策略并进入策略视图

qos policy policy-name

-

在策略中为类指定采用的流行为

classifier classifier-name behavior behavior-name

-

退出策略视图

quit

-

应用QoS策略

基于接口

2.2.5  1. 基于接口应用QoS策略

-

基于VLAN

2.2.5  2. 基于VLAN应用QoS策略

-

基于全局

2.2.5  3. 基于全局应用QoS策略

-

 

说明

如果定义primap动作,用户必须根据自己的需求配置优先级映射表。

 

3.4  优先级映射显示和维护

在完成上述配置后,在任意视图下执行display命令可以显示配置后优先级映射的运行情况,通过查看显示信息验证配置的效果。

表3-9 优先级映射显示和维护

操作

命令

显示指定优先级映射表配置情况

display qos map-table [ dscp-dscp | inbound [ up-dp | up-lp | up-up ] | outbound [ up-dp | up-fc | up-lp | up-rpr ] ] [ | { begin | exclude | include } regular-expression ]

显示指定带颜色优先级映射表配置情况

display qos map-table color [ green | yellow | red ] [ up-dot1p | up-dscp | up-lp | up-exp ] [ | { begin | exclude | include } regular-expression ]

显示端口优先级信任模式信息

display qos trust interface [ interface-type interface-number ] [ | { begin | exclude | include } regular-expression ]

 

3.5  优先级映射典型配置举例

1. 组网需求

·     公司企业网通过设备Router实现各部门之间的互连,网络根据部门划分为不同VLAN;

·     要求设备Router在进行报文处理时,能够根据报文的优先级选择入队列;

·     映射关系使用用户定义的映射关系。

2. 组网图

图3-1 优先级信任模式组网图

 

3. 配置步骤

# 进入系统视图。

<Router> system-view

# 进入接收报文方向的up-up优先级映射表视图,修改映射表参数。

[Router] qos map-table inbound up-up

[Router-maptbl-in-up-up] import 0 1 export 0

[Router-maptbl-in-up-up] import 2 3 export 1

[Router-maptbl-in-up-up] import 4 5 export 2

[Router-maptbl-in-up-up] import 6 7 export 3

[Router-maptbl-in-up-up] quit

# 配置GigabitEthernet2/1/1信任优先级模式为auto。

[Router] interface GigabitEthernet 2/1/1

[Router-GigabitEthernet2/1/1] qos trust auto

[Router-GigabitEthernet2/1/1] quit

# 配置GigabitEthernet2/1/2信任优先级模式为auto。

[Router] interface GigabitEthernet 2/1/2

[Router-GigabitEthernet2/1/2] qos trust auto

[Router-GigabitEthernet2/1/2] quit

# 配置GigabitEthernet2/1/3信任优先级模式为auto。

[Router] interface GigabitEthernet 2/1/3

[Router-GigabitEthernet2/1/3] qos trust auto

[Router-GigabitEthernet2/1/3] quit

# 配置GigabitEthernet2/1/4信任优先级模式为auto。

[Router] interface GigabitEthernet 2/1/4

[Router-GigabitEthernet2/1/4] qos trust auto

 


4 流量监管、流量整形和接口限速

4.1  流量监管、流量整形和接口限速简介

如果不限制用户发送的流量,那么大量用户不断突发的数据只会使网络更拥挤。为了使有限的网络资源能够更好地发挥效用,更好地为更多的用户服务,必须对用户的流量加以限制。比如限制每个时间间隔某个流只能得到承诺分配给它的那部分资源,防止由于过分突发所引发的网络拥塞。

流量监管、流量整形和接口限速都可以通过对流量规格的监督来限制流量及其资源的使用,它们有一个前提条件,就是要知道流量是否超出了规格,然后才能根据评估结果实施调控。一般采用令牌桶(Token Bucket)对流量的规格进行评估。

4.1.1  流量评估与令牌桶

1. 令牌桶的特点

令牌桶可以看作是一个存放一定数量令牌的容器。系统按设定的速度向桶中放置令牌,当桶中令牌满时,多出的令牌溢出,桶中令牌不再增加。

2. 用令牌桶评估流量

在用令牌桶评估流量规格时,是以令牌桶中的令牌数量是否足够满足报文的转发为依据的。如果桶中存在足够的令牌可以用来转发报文,称流量遵守或符合这个规格,否则称为不符合或超标。

评估流量时令牌桶的参数包括:

·     平均速率:向桶中放置令牌的速率,即允许的流的平均速度。通常配置为CIR。

·     突发尺寸:令牌桶的容量,即每次突发所允许的最大的流量尺寸。通常配置为CBS,突发尺寸必须大于最大报文长度。

每到达一个报文就进行一次评估。每次评估,如果桶中有足够的令牌可供使用,则说明流量控制在允许的范围内,此时要从桶中取走与报文转发权限相当的令牌数量;否则说明已经耗费太多令牌,流量超标了。

3. 复杂评估

为了评估更复杂的情况,实施更灵活的调控策略,可以配置两个令牌桶(简称C桶和E桶)。例如流量监管中有四个参数:

·     CIR:表示向C桶中投放令牌的速率,即C桶允许传输或转发报文的平均速率;

·     CBS:表示C桶的容量,即C桶瞬间能够通过的承诺突发流量;

·     PIR:表示向E桶中投放令牌的速率,即E桶允许传输或转发报文的最大速率;

·     EBS:表示E桶的容量,即E桶瞬间能够通过的超出突发流量。

CBS和EBS是由两个不同的令牌桶承载的。每次评估时,依据下面的情况,可以分别实施不同的流控策略:

·     如果C桶有足够的令牌,报文被标记为green,即绿色报文;

·     如果C桶令牌不足,但E桶有足够的令牌,报文被标记为yellow,即黄色报文;

·     如果C桶和E桶都没有足够的令牌,报文被标记为red,即红色报文。

4.1.2  流量监管

说明

流量监管支持入/出两个方向,为了方便描述,下文以出方向为例。

 

流量监管就是对流量进行控制,通过监督进入网络的流量速率,对超出部分的流量进行“惩罚”,使进入的流量被限制在一个合理的范围之内,以保护网络资源和运营商的利益。例如可以限制HTTP报文不能占用超过50%的网络带宽。如果发现某个连接的流量超标,流量监管可以选择丢弃报文,或重新配置报文的优先级。

图4-1 流量监管示意图

 

流量监管广泛的用于监管进入Internet服务提供商ISP的网络流量。流量监管还包括对所监管流量的流分类服务,并依据不同的评估结果,实施预先设定好的监管动作。这些动作可以是:

·     转发:比如对评估结果为“符合”的报文继续转发。

·     丢弃:比如对评估结果为“不符合”的报文进行丢弃。

·     改变优先级并转发:比如对评估结果为“符合”的报文,将之标记为其它的优先级后再进行转发。

·     改变优先级并进入下一级监管:比如对评估结果为“符合”的报文,将之标记为其它的优先级后再进入下一级的监管。

·     进入下一级的监管:流量监管可以进行分级,每级关注和监管更具体的目标。

4.1.3  流量整形

说明

流量整形仅支持出方向。

 

流量整形是一种主动调整流量输出速率的措施。一个典型应用是基于下游网络节点的流量监管指标来控制本地流量的输出。

流量整形与流量监管的主要区别在于,流量整形对流量监管中需要丢弃的报文进行缓存——通常是将它们放入缓冲区或队列内,如图4-2所示。当令牌桶有足够的令牌时,再均匀的向外发送这些被缓存的报文。流量整形与流量监管的另一区别是,整形可能会增加延迟,而监管几乎不引入额外的延迟。

图4-2 流量整形示意图

 

例如,在图4-3所示的应用中,设备Router A向Router B发送报文。Router B要对Router A发送来的报文进行流量监管,对超出规格的流量直接丢弃。

图4-3 流量整形的应用

 

为了减少报文的无谓丢失,可以在Router A的出口对报文进行流量整形处理。将超出流量整形特性的报文缓存在Router A中。当可以继续发送下一批报文时,流量整形再从缓冲队列中取出报文进行发送。这样,发向Router B的报文将都符合Router B的流量规定。

4.1.4  接口限速

说明

接口限速仅支持出方向。

 

利用接口限速可以在一个物理接口上限制发送报文(包括紧急报文)的总速率。

接口限速也是采用令牌桶进行流量控制。如果在设备的某个接口上配置了接口限速,所有经由该接口发送的报文首先要经过接口限速的令牌桶进行处理。如果令牌桶中有足够的令牌,则报文可以发送;否则,报文将进入QoS队列进行拥塞管理。这样,就可以对通过该物理接口的报文流量进行控制。

图4-4 接口限速处理过程示意图

 

由于采用了令牌桶控制流量,当令牌桶中存有令牌时,可以允许报文的突发性传输;当令牌桶中没有令牌时,报文必须等到桶中生成了新的令牌后才可以继续发送。这就限制了报文的流量不能大于令牌生成的速度,达到了限制流量,同时允许突发流量通过的目的。

与流量监管相比,物理接口限速能够限制在物理接口上通过的所有报文。当用户只要求对所有报文限速时,使用物理接口限速比较简单。

4.2  流量监管配置

表4-1 流量监管配置

操作

命令

说明

进入系统视图

system-view

-

定义类并进入类视图

traffic classifier classifier-name [ operator { and | or } ]

-

定义匹配数据包的规则

if-match match-criteria

-

退出类视图

quit

-

定义一个流行为并进入流行为视图

traffic behavior behavior-name

-

配置流量监管动作

car cir committed-information-rate [ cbs committed-burst-size [ ebs excess-burst-size ] ] [ pir peak-information-rate ] [ red { discard | pass } ]

必选

退出流行为视图

quit

-

定义策略并进入策略视图

qos policy policy-name

-

在策略中为类指定采用的流行为

classifier classifier-name behavior behavior-name

-

退出策略视图

quit

-

应用QoS策略

基于接口

2.2.5  1. 基于接口应用QoS策略

-

基于VLAN

2.2.5  2. 基于VLAN应用QoS策略

-

基于全局

2.2.5  3. 基于全局应用QoS策略

-

 

4.3  流量整形配置

流量整形配置分为以下两种:

·     基于队列的流量整形配置:为某一个队列的数据包设置整形参数。

·     适配所有流的流量整形配置:为所有的流设置整形参数。

1. 基于队列的流量整形配置

表4-2 基于队列的流量整形配置

操作

命令

说明

进入系统视图

system-view

-

进入接口视图或端口组视图

进入接口视图

interface interface-type interface-number

二者必选其一

进入接口视图后,下面进行的配置只在当前接口生效;进入端口组视图后,下面进行的配置将在端口组中的所有端口生效

进入端口组视图

port-group manual port-group-name

在接口配置流量整形

qos gts queue queue-number cir committed-information-rate [ cbs committed-burst-size ]

必选

 

2. 适配所有流的流量整形配置

表4-3 适配所有流的流量整形配置

操作

命令

说明

进入系统视图

system-view

-

进入接口视图、端口组视图或子接口视图

进入接口视图

interface interface-type interface-number

三者必选其一

进入接口视图后,下面进行的配置只在当前接口生效;进入端口组视图后,下面进行的配置将在端口组中的所有端口生效;进入子接口视图后,下面进行的配置只在当前子接口生效

进入端口组视图

port-group manual port-group-name

进入子接口视图

interface interface-type interface-number.subnumber

在接口配置流量整形

qos gts any cir committed-information-rate [ cbs committed-burst-size ]

必选

 

说明

·     qos gts queue命令仅在以太网主接口和POS主接口上支持。

·     qos gts queue命令在链路类型为FR的POS接口上不生效。

·     qos gts any命令在MFR接口、链路类型为FR的POS接口和链路类型为FR的串口上不生效。

·     支持qos gts any命令的子接口,目前仅包括SPE单板上的三层以太网子接口、MPE单板的接口子卡MIC-GP4L上的三层以太网子接口。

·     cir的取值建议不要超过所配置接口的带宽值,否则可能会导致配置失败。

·     qos lrqos gts any命令不能在同一接口、端口组或子接口上同时配置。

 

4.4  接口限速配置

配置接口限速就是限制接口向外发送数据的速率。

表4-4 接口限速配置过程

操作

命令

说明

进入系统视图

system-view

-

进入接口视图、端口组视图或子接口视图

进入接口视图

interface interface-type interface-number

三者必选其一

进入接口视图后,下面进行的配置只在当前接口生效;进入端口组视图后,下面进行的配置将在端口组中的所有端口生效;进入子接口视图后,下面进行的配置只在当前子接口生效

进入端口组视图

port-group manual port-group-name

进入子接口视图

interface interface-type interface-number.subnumber

配置接口限速

qos lr outbound cir committed-information-rate [ cbs committed-burst-size ]

必选

 

说明

·     qos lr命令在MFR接口、链路类型为FR的POS接口和链路类型为FR的串口上不生效。

·     cir的取值建议不要超过所配置接口的带宽值,否则可能会导致配置失败。

·     支持qos lr的子接口,目前仅包括SPE单板上的三层以太网子接口、MPE单板的接口子卡MIC-GP4L上的三层以太网子接口。

·     qos lrqos gts any命令不能在同一接口、端口组或子接口上同时配置。

 

4.5  流量整形/接口限速显示和维护

在完成上述配置后,在任意视图下执行display命令可以显示配置后流量整形/接口限速的运行情况,通过查看显示信息验证配置的效果。

表4-5 流量整形/接口限速显示和维护

操作

命令

显示流量整形配置运行信息

display qos gts interface [ interface-type interface-number ] [ | { begin | exclude | include } regular-expression ]

显示接口的LR配置和统计信息

display qos lr interface [ interface-type interface-number ] [ | { begin | exclude | include } regular-expression ]

 


5 硬件实现拥塞管理

5.1  硬件实现拥塞管理简介

5.1.1  拥塞的产生、影响和对策

所谓拥塞,是指当前供给资源相对于正常转发处理需要资源的不足,从而导致服务质量下降的一种现象。

在复杂的Internet分组交换环境下,拥塞极为常见。以图5-1中的两种情况为例:

图5-1 流量拥塞示意图

 

拥塞有可能会引发一系列的负面影响:

·     拥塞增加了报文传输的延迟和抖动,可能会引起报文重传,从而导致更多的拥塞产生。

·     拥塞使网络的有效吞吐率降低,造成网络资源的利用率降低。

·     拥塞加剧会耗费大量的网络资源(特别是存储资源),不合理的资源分配甚至可能导致系统陷入资源死锁而崩溃。

在分组交换以及多用户业务并存的复杂环境下,拥塞又是不可避免的,因此必须采用适当的方法来解决拥塞。

拥塞管理的中心内容就是当拥塞发生时如何制定一个资源的调度策略,以决定报文转发的处理次序。拥塞管理的处理包括队列的创建、报文的分类、将报文送入不同的队列、队列调度等。

5.1.2  拥塞管理策略

对于拥塞管理,一般采用队列技术,使用一个队列算法对流量进行分类,之后用某种优先级别算法将这些流量发送出去。每种队列算法都是用以解决特定的网络流量问题,并对带宽资源的分配、延迟、抖动等有着十分重要的影响。

队列调度对不同优先级的报文进行分级处理,优先级高的会得到优先发送。这里介绍四种常用的队列:SP队列、WRR队列、WFQ队列和CBQ队列。

1. SP队列

图5-2 SP队列示意图

 

SP队列是针对关键业务类型应用设计的。关键业务有一个重要的特点,即在拥塞发生时要求优先获得服务以减小响应的延迟。以图5-2为例,优先队列将端口的8个输出队列分成8类,依次为7、6、5、4、3、2、1、0队列,它们的优先级依次降低。

在队列调度时,SP严格按照优先级从高到低的次序优先发送较高优先级队列中的分组,当较高优先级队列为空时,再发送较低优先级队列中的分组。这样,将关键业务的分组放入较高优先级的队列,将非关键业务的分组放入较低优先级的队列,可以保证关键业务的分组被优先传送,非关键业务的分组在处理关键业务数据的空闲间隙被传送。

SP的缺点是:拥塞发生时,如果较高优先级队列中长时间有分组存在,那么低优先级队列中的报文将一直得不到服务。

2. WRR队列

图5-3 WRR队列示意图

 

WRR队列在队列之间进行轮流调度,保证每个队列都得到一定的服务时间。以端口有8个输出队列为例,WRR可为每个队列配置一个加权值(依次为w7、w6、w5、w4、w3、w2、w1、w0),加权值表示获取资源的比重。如一个100Mbps的端口,配置它的WRR队列的加权值为50、50、30、30、10、10、10、10(依次对应w7、w6、w5、w4、w3、w2、w1、w0),这样可以保证加权值为10的队列至少获得5Mbps的带宽,避免了采用SP调度时低优先级队列中的报文可能长时间得不到服务的缺点。

WRR队列还有一个优点是,虽然多个队列的调度是轮询进行的,但对每个队列不是固定地分配服务时间片——如果某个队列为空,那么马上换到下一个队列调度,这样带宽资源可以得到充分的利用。

用户可以根据需要将输出队列划分为WRR优先级队列组1和WRR优先级队列组2,进行队列调度时,设备优先在队列号大的队列所在的WRR优先级队列组中进行轮询调度,只有当该优先级队列组中没有报文发送时,设备才在另一WRR优先级队列组中进行轮询调度。

3. WFQ队列

图5-4 WFQ队列

 

在介绍WFQ加权公平队列前,先要理解公平队列FQ。FQ是为了公平地分享网络资源,尽可能使所有流的延迟和抖动达到最优而推出的。它照顾了各方面的利益,主要表现在:

·     不同的队列获得公平的调度机会,从总体上均衡各个流的延迟。

·     短报文和长报文获得公平的调度:如果不同队列间同时存在多个长报文和短报文等待发送,应当顾及短报文的利益,让短报文优先获得调度,从而在总体上减少各个流的报文间的抖动。

与FQ相比,WFQ在计算报文调度次序时增加了优先权方面的考虑。从统计上,WFQ使高优先权的报文获得优先调度的机会多于低优先权的报文。在出队的时候,WFQ按流的优先权来分配每个流应占有出口的带宽。优先权的数值越小,所得的带宽越少。优先权的数值越大,所得的带宽越多。

例如:接口中当前共有3个流,它们的优先权分别为1、2、3,则带宽总配额为所有流的和。即1+2+3=6,每个流所占带宽比例为:自己的优先权重/所有流的优先权重之和。即每个流可得的带宽分别为:1/6,2/6,3/6。

硬件WFQ队列包含多个队列,分别对应各自的调度权重。硬件WFQ可以保证各个队列对应的调度权重。

4. CBQ队列

CBQ为用户提供了定义类的支持,为每个用户定义的类分配一个单独的FIFO预留队列,用来缓冲同一类的数据。在网络拥塞时,CBQ对报文根据用户定义的类规则进行匹配,并使其进入相应的队列,在入队列之前必须进行拥塞避免机制和带宽限制的检查。在报文出队列时,加权公平调度每个类对应的队列中的报文。

CBQ包括以下队列:

·     LLQ队列:即EF队列,为实时业务报文提供严格优先发送服务。在使用LLQ时将会为每个优先类指定可用最大带宽,该带宽值用于拥塞发生时监管流量。如果拥塞未发生,优先类允许使用超过分配的带宽。如果拥塞发生,优先类超过分配带宽的数据包将被丢弃。LLQ还可以指定Burst-size。

·     BQ队列:即AF队列。为AF业务提供严格、精确的带宽保证,并且保证各类AF业务之间按一定的比例关系进行队列调度。

·     加权公平调度队列:一个WFQ队列,用来支撑BE业务,使用接口剩余带宽进行发送。

系统在为报文匹配规则时,规则如下:

·     不同类之间按照C-B对的配置顺序逐一匹配,先配置先生效。

·     同一个类内的多个规则也是按照配置顺序逐一匹配,先配置先生效。

5.2  硬件实现拥塞管理配置任务简介

硬件实现拥塞管理共有三种配置方式,一种是单独的队列配置方式,即在接口视图或端口组视图下直接完成各队列的队列调度配置;一种是队列调度策略配置方式,将在“5.3  队列调度策略配置方式”中进行详细介绍;一种是QoS策略配置方式,将在“5.5  基于类的队列的配置”中进行详细介绍。

表5-1 硬件实现拥塞管理配置任务简介

配置任务

说明

详细配置

队列调度策略配置方式

配置队列调度策略

可选,仅MPE单板的接口子卡MIC-GP8L 和SPC单板支持

5.3 

单独的队列配置方式

配置WFQ队列

可选,仅SPE单板支持

5.4 

QoS策略配置方式

配置CBQ队列

可选,仅MPE单板的三层接口(除MIC-GP8L接口子卡外)和SPE单板支持

5.5 

 

5.3  队列调度策略配置方式

5.3.1  队列调度策略简介

队列调度策略配置方式是在一个策略中配置各个队列的调度参数,最后通过在接口应用该策略来实现拥塞管理功能。队列调度策略中队列的调度参数支持动态修改,从而方便修改已经应用到接口上的队列调度策略。

队列调度策略中的队列支持两种调度方式:SP和WRR。在一个队列调度策略中支持各队列调度方式的单独或混合配置。两种调度方式混合配置时,SP队列和WRR分组之间是严格优先级调度,调度优先级按队列号从大到小依次降低,WRR分组内部按权重进行调度。以SP和WRR混合配置为例,假设调度关系如图5-5所示:

图5-5 SP和WRR混合配置图

 

·     队列7(即图中的Q7,下同)优先级最高,该队列的报文优先发送。

·     队列6优先级次之,队列7为空时发送本队列的报文。

·     队列3、4、5之间按照权重轮询调度,在队列7、6为空时调度WRR分组1。

·     队列1、2之间按照权重轮询调度,在队列7、6、5、4、3为空时调度WRR分组2。

·     队列0优先级最低,其它队列的报文全部发送完毕后调度本队列。

缺省情况下,SPC单板的1、2、3、4队列加入WRR组优先组1使用加权轮询调度,0、5、6、7队列使用严格优先级调度;MPE单板的0~7队列采用严格优先级调度。

5.3.2  配置队列调度策略

配置队列调度策略时,用户首先要创建一个队列调度策略,然后进入队列调度策略视图进行队列调度参数的相关配置,最后将队列调度策略应用到接口。

表5-2 配置队列调度策略

操作

命令

说明

进入系统视图

system-view

-

创建队列调度策略并进入队列调度策略视图

qos qmprofile profile-name

必选

配置队列调度参数

配置严格优先级调度

queue queue-id sp

必选

对于刚创建的队列调度策略,缺省情况是1、2、3、4队列使用加权轮询调度,0、5、6、7队列使用严格优先级调度,用户可以根据需要修改队列调度策略

一个队列只能配置一种队列调度方式

同一个队列调度策略中的不同队列,可以配置不同的调度方式

配置加权轮询调度

queue queue-id wrr group group-id weight weight-value

退回系统视图

quit

-

进入以太网接口视图或端口组视图

进入以太网接口视图

interface interface-type interface-number

二者必选其一

进入接口视图后,下面进行的配置只在当前接口生效;进入端口组视图后,下面进行的配置将在端口组中的所有端口生效

进入端口组视图

port-group manual port-group-name

在接口上应用队列调度策略

qos apply qmprofile profile-name

必选

 

说明

·     每个接口只能应用一个队列调度策略。

·     每个WRR组内的队列号应该连续,否则可能出现调度不准确。

 

5.3.3  队列调度策略显示和维护

在完成上述配置后,在任意视图下执行display命令可以显示配置后队列调度策略的运行情况,通过查看显示信息验证配置的效果。

表5-3 队列调度策略显示和维护

操作

命令

显示队列调度策略的配置信息

display qos qmprofile configuration [ profile-name ] [ | { begin | exclude | include } regular-expression ]

显示接口的队列调度策略应用信息

display qos qmprofile interface [ interface-type interface-number ] [ | { begin | exclude | include } regular-expression ]

 

5.3.4  队列调度策略典型配置举例

1. 配置需求

接口GigabitEthernet3/0/1的队列调度方式如下:

·     队列7优先级最高,该队列报文优先发送。

·     队列4、5、6之间按照权重轮询调度,属于WRR分组1,调度权重分别为1、5、10,在队列7为空时调度WRR分组1。

·     队列1、2、3之间按照权重轮询调度,属于WRR分组2,调度权重分别为1、10、20,在队列7、6、5、4为空时调度WRR分组2。

·     队列0优先级最低,其它队列的报文全部发送完毕后调度本队列。

2. 配置步骤

# 进入系统视图。

<Sysname> system-view

# 创建队列调度策略qm1。

[Sysname] qos qmprofile qm1

[Sysname-qmprofile-qm1]

# 配置队列7为SP队列。

[Sysname-qmprofile-qm1] queue 7 sp

# 配置队列4、5、6属于WRR分组1,权重分别为1、5、10。

[Sysname-qmprofile-qm1] queue 4 wrr group 1 weight 1

[Sysname-qmprofile-qm1] queue 5 wrr group 1 weight 5

[Sysname-qmprofile-qm1] queue 6 wrr group 1 weight 10

# 配置队列1、2、3属于WRR分组2,权重分别为1、10、20。

[Sysname-qmprofile-qm1] queue 1 wrr group 2 weight 1

[Sysname-qmprofile-qm1] queue 2 wrr group 2 weight 10

[Sysname-qmprofile-qm1] queue 3 wrr group 2 weight 20

# 配置队列0为SP队列。

[Sysname-qmprofile-qm1] queue 0 sp

[Sysname-qmprofile-qm1] quit

# 把队列调度策略qm1应用到接口GigabitEthernet3/0/1上。

[Sysname] interface gigabitethernet 3/0/1

[Sysname-GigabitEthernet3/0/1] qos apply qmprofile qm1

配置完成后,接口GigabitEthernet3/0/1按指定方式进行队列调度。

5.4  WFQ队列配置

缺省情况下,SPE单板的接口输出队列调度方式为:

·     1、2、3、4队列之间采用WFQ调度方式,各队列的调度权重值都为1;

·     5、6队列之间采用WFQ调度方式,各队列的调度权重值都为1;

·     0、7队列分别采用SP调度方式。

SP、WFQ之间采用严格优先级调度,调度优先级从高到低依次为7队列、5/6队列、1/2/3/4队列、0队列。

用户可以根据组网情况修改队列在WFQ调度时使用的调度权重值,或者为队列配置最小保证带宽值。对于配置了最小保证带宽值的队列,系统会根据所配置的最小保证带宽值为具有相同优先级的所有队列分别分配权重值。调度时,未超过队列最小保证带宽的流量将根据分配的权重值(SP队列上分配的权重值仅作用于超过队列最小保证带宽的流量)、队列原有的优先级及调度方式进行调度;超过队列最小保证带宽的流量,调度优先级将降级到和0队列的优先级一致,各队列降级后的流量将和0队列的流量一起竞争带宽,调度时将按照各队列的WFQ权重值进行轮询调度,各队列的WFQ的权重值如下:

·     0队列的缺省权重值为1,可以通过qos wfq queue weight schedule-value命令修改其权重值。

·     其他队列的权重值为配置了最小保证带宽后系统为其分配的权重值。

用户可以采取如下任意一种配置方式:

·     只在接口的任一队列上配置最小保证带宽值(在0队列上配置最小保证带宽值不生效);

·     只在接口的任一队列上配置WFQ权重值(在SP队列上配置的权重值无意义);

·     在不同优先级队列上分别配置队列最小保证带宽值或WFQ权重值,在同一优先级的队列上不能同时配置队列最小保证带宽值和WFQ权重值。

5.4.1  配置WFQ队列

表5-4 WFQ队列配置过程

操作

命令

说明

进入系统视图

system-view

-

进入接口视图、端口组视图或子接口视图

进入接口视图

interface interface-type interface-number

三者必选其一

进入接口视图后,下面进行的配置只在当前接口生效;进入端口组视图后,下面进行的配置将在端口组中的所有端口生效;进入子接口视图后,下面进行的配置只在当前子接口生效

进入端口组视图

port-group manual port-group-name

进入子接口视图

interface interface-type interface-number.subnumber

配置WFQ队列的调度权重值

qos wfq queue-id weight schedule-value

两者必选其一

qos wfq queue-id weight schedule-value命令支持在子接口上配置,且支持该命令的子接口仅限于SPE单板上的三层以太网子接口

配置WFQ队列的最小保证带宽值

qos bandwidth queue queue-id min bandwidth-value

显示WFQ队列配置

display qos wfq interface [ interface-type interface-number ] [ | { begin | exclude | include } regular-expression ]

可选

display命令可以在任意视图下执行

 

5.4.2  配置举例

1. 组网需求

配置队列2、3、4的权重分别为5、10、20。

2. 配置步骤

# 进入系统视图。

<Sysname> system-view

# 配置GigabitEthernet2/1/1的WFQ队列。

[Sysname] interface GigabitEthernet 2/1/1

[Sysname-GigabitEthernet2/1/1] qos wfq 2 weight 5

[Sysname-GigabitEthernet2/1/1] qos wfq 3 weight 10

[Sysname-GigabitEthernet2/1/1] qos wfq 4 weight 20

5.5  基于类的队列的配置

说明

·     当设备作为MPLS L2VPN或VPLS 的PE设备,且MPE单板的MIC-GP4L子卡上的接口作为AC侧接口时,不支持CBQ。

·     设备的每块MPE单板上最多支持有512个接口(包括子接口和主接口)同时配置有CBQ。

·     在MPE单板的接口上配置的CBQ都会预留一个默认的WFQ队列和一个默认的EF队列。

·     在MPE单板的三层聚合口的成员接口上配置CBQ,CBQ仅对聚合主接口生效,对三层聚合口的子接口不生效。

 

5.5.1  配置概述

基于类的队列CBQ的配置步骤如下:

(1)     定义类

(2)     定义流行为

(3)     定义策略

(4)     在接口视图的出方向应用QoS策略

5.5.2  定义类

定义类首先要创建一个类名称,然后在此类视图下配置其匹配规则。

表5-5 定义类

操作

命令

说明

进入系统视图

system-view

-

定义类并进入类映射视图

traffic classifier classifier-name [ operator { and | or } ]

必选

缺省为and,即类视图下各匹配规则之间的关系为逻辑与

定义匹配数据包的规则

if-match match-criteria

必选

 

说明

用户必须为每个QoS策略配置一个permit any 的缺省类,保证用户除EF和AF之外的流量入BE队列,即默认优先级队列。配置的缺省类还需要放在QoS策略的最后一个CB对。

 

5.5.3  定义流行为

定义流行为首先需要创建一个流行为名称,然后在此流行为视图下配置其特性。

1. 配置确保转发的流量保证带宽

表5-6 配置确保转发的流量保证带宽

操作

命令

说明

进入系统视图

system-view

-

定义一个流行为并进入流行为视图

traffic behavior behavior-name

必选

配置确保转发的流量保证带宽

queue af bandwidth bandwidth

必选

配置AF队列的权重

weight weight-value

可选

缺省情况下,AF队列的权重为1

AF队列中超出最小保证带宽值的流量将采用WFQ调度

本命令仅MPE单板支持

 

说明

·     本配置在流行为视图下不能与queue efqueue wfq命令同时使用。

·     该行为只能应用在接口的出方向。

·     保证带宽表示确保转发流量可占用且肯定转发成功的流量,无论接口上流量是否拥塞,这部分流量肯定能够转发成功;而超过该带宽限制的多余AF流量,会跟BE流量竞争带宽,这部分流量能有多少转发成功视接口上的拥塞情况而定。

 

2. 配置加速转发的流量保证带宽

表5-7 配置加速转发的流量保证带宽

操作

命令

说明

进入系统视图

system-view

-

定义一个流行为并进入流行为视图

traffic behavior behavior-name

必选

配置加速转发的流量保证带宽

queue ef bandwidth bandwidth [ cbs burst ]

必选

 

说明

·     本配置在流行为视图下不能与queue afqueue wfqwred命令同时使用。

·     该行为只能应用在接口的出方向。

·     对于bandwidth,范围为64~10000000,单位是kbps;对于cbs,范围为1600~1000000000,单位是byte;如果不配置,默认为bandwidth的25倍。

·     加速转发带宽表示加速转发流量可占用且肯定转发成功的流量,无论接口上流量是否拥塞,这部分流量肯定能够转发成功;而超过该带宽限制的多余EF流量,视接口上的拥塞情况而定,不能保证转发成功。

 

3. 配置采用公平队列

表5-8 配置采用公平队列

操作

命令

说明

进入系统视图

system-view

-

定义一个流行为并进入流行为视图

traffic behavior behavior-name

必选

配置采用公平队列

queue wfq

必选

配置WFQ队列的权重

weight weight-value

可选

缺省情况下,WFQ队列的权重为1

本命令仅MPE单板支持

 

说明

·     本配置在流行为视图下不能与queue efqueue af命令同时使用。

·     该行为只能应用在接口的出方向。

 

4. 配置丢弃方式为随机丢弃方式

表5-9 配置丢弃方式为随机丢弃方式

操作

命令

说明

进入系统视图

system-view

-

定义一个流行为并进入流行为视图

traffic behavior behavior-name

必选

配置丢弃方式为随机丢弃方式

wred [ dscp | ip-precedence ]

必选

dscp:表明在为一个包计算丢弃概率时使用的是DSCP值

ip-precedence:表明在为一个包计算丢弃概率时使用的是IP优先级值,作为缺省配置

 

说明

·     本配置在流行为视图下不能与queue ef命令同时使用。

·     wred [ dscp | ip-precedence ]命令必须在配置了queue afqueue wfq后使用。

·     该行为只能应用在接口的出方向。

 

5.5.4  定义策略

表5-10 在策略中为类指定流行为

操作

命令

说明

进入系统视图

system-view

-

定义策略并进入策略视图

qos policy policy-name

-

在策略中为类指定采用的流行为

classifier classifier-name behavior behavior-name

必选

classifier-name:类名,必须是已经定义的类

behavior-name:必须是已定义的流行为名

 

5.5.5  应用策略

qos apply policy命令将一个策略应用到具体的物理接口、子接口。一个策略可以在多个端口上得到应用。

表5-11 基于接口应用QoS策略

操作

命令

说明

进入系统视图

system-view

-

进入接口视图或端口组视图

进入接口视图

interface interface-type interface-number

二者必选其一

进入接口视图后,下面进行的配置只在当前接口生效;进入端口组视图后,下面进行的配置将在端口组中的所有端口生效

进入端口组视图

port-group { manual port-group-name | aggregation agg-id }

在接口上应用关联的策略

qos apply policy policy-name  { inbound | outbound }

必选

 

说明

·     如果流分类规则中匹配的字段不是缺省流模板中包含的字段,则在应用QoS策略前需要先配置包含该字段的用户自定义流模板,关于流模板的介绍请参见“ACL和QoS命令参考”中的“ACL”;

·     当前,基于CBQ动作的QoS策略只能应用在接口的出方向,入方向不支持;

·     出方向QoS策略对本地协议报文不起作用;(本地协议报文的含义及其作用如下:某些内部发起的报文是维持设备正常运行的重要的协议报文,为了确保这些报文能够被不受影响的发送出去,遂将其定义为本地协议报文,使得QoS不对其进行处理,降低了因配置QoS而误将这些报文丢弃或进行其他处理的风险。一些常见的本地协议报文如下:链路维护报文、ISIS、OSPF、RIP、BGP、LDP、RSVP、SSH等。)

·     所有的RPR接口都不支持CBQ的动作;

·     CBQ策略不支持基于VLAN或基于全局应用,只支持基于接口应用;

·     应用ATM接口时,建议使用P2P的ATM接口;

·     接口上如果配置了流量整形(GTS)和队列(queue efqueue afqueue wfq)特性的策略,会影响到CBQ的调度效果,不建议客户这样组合配置;

·     MFR接口使能帧中继流量整形功能也会影响到CBQ的调度效果,不建议客户组合配置;

·     如果接口上配置了HQoS,CBQ的动作是无法下发成功的;同样,如果端口上应用了CBQ的动作,该端口也不再支持HQoS配置;

·     在一个QoS策略中,由用户配置保证EF、AF和BE流量的带宽总和;如果配置的总带宽超过端口的实际带宽时会导致CBQ无法达到预期效果。

·     在MPE单板的接口上应用QoS策略时,该QoS策略包含的CB对中只允许配置一个queue ef流行为。

 

5.5.6  基于类的队列的显示和维护

在完成上述配置后,在任意视图下执行display命令可以显示基于类的队列的运行情况,通过查看显示信息验证配置的效果。

表5-12 基于类的队列的显示和维护

操作

命令

显示设备配置的类信息

display traffic classifier user-defined [ classifier-name ] [ | { begin | exclude | include } regular-expression ]

显示设备配置的流行为信息

display traffic behavior user-defined [ behavior-name ] [ | { begin | exclude | include } regular-expression ]

显示用户定义策略的配置信息

display qos policy user-defined [ policy-name [ classifier classifier-name ] ] [ | { begin | exclude | include } regular-expression ]

显示指定接口或所有接口上策略的配置信息和运行情况

display qos policy interface [ interface-type interface-number ] [ inbound | outbound ] [ | { begin | exclude | include } regular-expression ]

 

5.5.7  基于类的队列典型配置举例

1. 组网需求

在下面的组网图中,从Router C发出的数据流经过Router A和Router B到达Router D,需求如下:

·     Router C发出的数据流根据IP报文的DSCP域分为3类,要求配置QoS策略,对于DSCP域为AF11和AF21的流进行确保转发(AF),保证带宽为5M;

·     对于DSCP域为EF的流进行加速转发(EF),保证带宽为30M。

在进行配置之前,应保证:

·     Router C发出的流能够通过Router A和Router B可达Router D。

·     报文的DSCP域在进入Router A之前已经设置完毕。

2. 组网图

图5-6 基于类的队列配置组网图

 

3. 配置步骤

Router A上的配置如下。

# 定义三个类,分别匹配DSCP域为EF、AF11、AF21和IP报文。

<RouterA> system-view

[RouterA] traffic classifier ef_class

[RouterA-classifier-ef_class] if-match dscp ef

[RouterA-classifier-ef_class] quit

[RouterA] traffic classifier af11_class

[RouterA-classifier-af11_class] if-match dscp af11

[RouterA-classifier-af11_class] quit

[RouterA]traffic classifier af21_class

[RouterA-classifier-af21_class] if-match dscp af21

[RouterA-classifier-af21_class] quit

# 定义缺省类,匹配所有的IP报文。

[RouterA] acl number 3000

[RouterA] rule 0 permit ip

[RouterA] traffic classifier be_class

[RouterA-classifier-be_class] if-match acl 3000

[RouterA-classifier-be_class] quit

# 定义流行为,配置EF,设置加速转发的流量带宽。

[RouterA] traffic behavior ef_behav

[RouterA-behavior-ef_behav] queue ef bandwidth 30000

[RouterA-behavior-ef_behav] quit

# 定义流行为,配置AF,设置确保转发的流量带宽。

[RouterA] traffic behavior af11_behav

[RouterA-behavior-af11_behav] queue af bandwidth 5000

[RouterA-behavior-af11_behav] quit

[RouterA] traffic behavior af21_behav

[RouterA-behavior-af21_behav] queue af bandwidth 5000

[RouterA-behavior-af21_behav] quit

# 定义缺省类流行为,配置WFQ,配置丢弃方式为WRED。

[RouterA] traffic behavior be_behav

[RouterA-behavior-be_behav] queue wfq

[RouterA-behavior-be_behav] wred

[RouterA-behavior-be_behav] quit

# 定义QoS策略,将已配置的流行为指定给不同的类。

[RouterA] qos policy dscp

[RouterA-qospolicy-dscp] classifier ef_class behavior ef_behav

[RouterA-qospolicy-dscp] classifier af11_class behavior af11_behav

[RouterA-qospolicy-dscp] classifier af21_class behavior af21_behav

[RouterA-qospolicy-dscp] classifier be_class behavior be_behav

[RouterA-qospolicy-dscp] quit

# 将已定义的QoS策略应用在GigabitEthernet3/1/1出方向。

[RouterA-GigabitEthernet3/1/1] qos apply policy dscp outbound

[RouterA-GigabitEthernet3/1/1] quit

#配置完成后,显示QoS策略效果

[RouterA] display qos policy interface GigabitEthernet 3/1/1 outbound

  Interface: GigabitEthernet3/1/1

  Direction: Outbound

  Policy: dscp

   Classifier: ef_class

     Operator: AND

     Rule(s) : If-match dscp ef

     Behavior: ef_behav

      Expedited Forwarding:

        Bandwidth 30000 (Kbps), CBS 750000 (Bytes)

        Matched  : 100/6400 (Packets/Bytes)

        Enqueued : 100/6400 (Packets/Bytes)

        Discarded: 0/0 (Packets/Bytes)

   Classifier: af11_class

     Operator: AND

     Rule(s) : If-match dscp af11

     Behavior: af11_behav

      Assured Forwarding:

        Bandwidth 5000 (Kbps)

        Matched  : 50/3200 (Packets/Bytes)

        Enqueued : 50/3200 (Packets/Bytes)

        Discarded: 0/0 (Packets/Bytes)

   Classifier: af21_class

     Operator: AND

     Rule(s) : If-match dscp af21

     Behavior: af21_behav

      Assured Forwarding:

        Bandwidth 5000 (Kbps)

        Matched  : 50/3200 (Packets/Bytes)

        Enqueued : 50/3200 (Packets/Bytes)

        Discarded: 0/0 (Packets/Bytes)

   Classifier: be_class

     Operator: AND

     Rule(s) : If-match acl 3000

     Behavior: be_behav

      Flow Based Weighted Fair Queuing

        Matched  : 1000/128000 (Packets/Bytes)

        Discard Method: IP Precedence based WRED


6 拥塞避免

6.1  拥塞避免简介

过度的拥塞会对网络资源造成极大危害,必须采取某种措施加以解除。拥塞避免是一种流量控制机制,它通过监视网络资源(如队列或内存缓冲区)的使用情况,在拥塞产生或有加剧的趋势时主动丢弃报文,通过调整网络的流量来解除网络过载。

与端到端的流量控制相比,这里的流量控制具有更广泛的意义,它影响到设备中更多的业务流的负载。设备在丢弃报文时,需要与源端的流量控制动作(比如TCP流量控制)相配合,调整网络的流量到一个合理的负载状态。丢包策略和源端流控机制有效的组合,可以使网络的吞吐量和利用效率最大化,并且使报文丢弃和延迟最小化。

1. 传统的丢包策略

传统的丢包策略采用尾部丢弃(Tail-Drop)的方法。当队列的长度达到最大值后,所有新到来的报文都将被丢弃。

这种丢弃策略会引发TCP全局同步现象:当队列同时丢弃多个TCP连接的报文时,将造成多个TCP连接同时进入拥塞避免和慢启动状态以降低并调整流量,而后又会在某个时间同时出现流量高峰。如此反复,使网络流量忽大忽小,网络不停震荡。

2. RED与WRED

为避免TCP全局同步现象,可使用RED或WRED。

RED和WRED通过随机丢弃报文避免了TCP的全局同步现象,使得当某个TCP连接的报文被丢弃、开始减速发送的时候,其他的TCP连接仍然有较高的发送速度。这样,无论什么时候,总有TCP连接在进行较快的发送,提高了线路带宽的利用率。

在RED类算法中,为每个队列都设定上限和下限,对队列中的报文进行如下处理:

·     当队列的长度小于下限时,不丢弃报文;

·     当队列的长度超过上限时,丢弃所有到来的报文;

·     当队列的长度在上限和下限之间时,开始随机丢弃到来的报文。队列越长,丢弃概率越高,但有一个最大丢弃概率。

与RED不同,WRED生成的随机数是基于优先权的,它引入IP优先权区别丢弃策略,考虑了高优先权报文的利益,使其被丢弃的概率相对较小。

直接采用队列的长度和上限、下限比较并进行丢弃,将会对突发性的数据流造成不公正的待遇,不利于数据流的传输。WRED采用平均队列和设置的队列上限、下限比较来确定丢弃的概率。

队列平均长度既反映了队列的变化趋势,又对队列长度的突发变化不敏感,避免了对突发性数据流的不公正待遇。计算队列平均长度的公式为:平均队列长度=(以前的平均队列长度×(1-1/(2的n次方)))+(当前队列长度×(1/(2的n次方)))。其中n可以通过命令qos wred weighting-constant进行配置。

6.2  WRED配置的说明

说明

WRED的相关内容,仅MPE单板(除MIC-GP8L接口子卡外)和SPE单板支持,SPC单板不支持。

 

6.2.1  WRED的配置方式

当前设备采用的WRED配置方式为WRED表配置方式,先在系统视图下配置WRED表,然后在接口上应用WRED表。

6.2.2  WRED的参数说明

在进行WRED配置时,需要事先确定如下参数:

·     队列上限和下限:当队列平均长度小于下限时,不丢弃报文。当队列平均长度在上限和下限之间时,设备随机丢弃报文,队列越长,丢弃概率越高。当队列平均长度超过上限时,丢弃所有到来的报文。

·     丢弃优先级:在进行报文丢弃时参考的参数,0对应绿色报文、1对应黄色报文、2对应红色报文,红色报文将被优先丢弃。

·     计算平均队列长度的指数:指数越大,计算平均队列长度时对队列的实时变化越不敏感。

·     计算丢弃概率的分母:在计算丢弃概率的公式中作为分母。取值越大,计算出的丢弃概率越小。

6.3  以WRED表配置方式配置WRED

表6-1 WRED表的配置和应用过程

操作

命令

说明

进入系统视图

system-view

-

配置WRED表

qos wred queue table table-name

-

配置计算平均队列长度的指数

queue queue-value weighting-constant exponent

可选

缺省情况下,该指数取值为8

配置WRED表的其它参数

queue queue-value [ drop-level drop-level ] low-limit low-limit high-limit high-limit [ discard-probability discard-prob ]

可选

缺省情况下,low-limit为10224,high-limit为10240,discard-prob为100

进入接口视图、端口组视图或子接口视图

进入接口视图

interface interface-type interface-number

三者必选其一

进入接口视图后,下面进行的配置只在当前端口生效;进入端口组视图后,下面进行的配置将在端口组中的所有端口生效;进入子接口视图后,下面进行的配置只在当前子接口生效

进入端口组视图

port-group manual port-group-name

进入子接口视图

interface interface-type interface-number.subnumber

在接口应用WRED表

qos wred apply table-name

必选

 

说明

支持qos wred apply命令的子接口,目前仅包括SPE单板上的三层以太网子接口、MPE单板的接口子卡MIC-GP4L上的三层以太网子接口。

 

6.4  WRED显示和维护

在完成上述配置后,在任意视图下执行display命令可以显示配置后WRED的运行情况,通过查看显示信息验证配置的效果。

表6-2 WRED显示和维护

操作

命令

显示接口的WRED配置情况和统计信息

display qos wred interface [ interface-type interface-number ] [ | { begin | exclude | include } regular-expression ]

显示WRED表配置情况

display qos wred table [ table-name ] [ | { begin | exclude | include } regular-expression ]

 

6.5  WRED典型配置举例

1. 组网需求

在端口GigabitEthernet 2/1/1上应用基于队列的WRED表。

2. 配置步骤

# 进入系统视图

<Sysname> system-view

# 配置一张基于队列的WRED表,并修改各队列优先级的上下限及丢弃概率。

说明

根据各队列缓存配置WRED表的上下限,各接口类型的队列缓存不同,所要配置的WRED表的上下限也不一样。

 

[sysname] qos wred queue table queue-table1

[Sysname-wred-table-queue-table1]queue 0 low-limit 128 high-limit 4096 discard-probab

ility 100

[Sysname-wred-table-queue-table1]queue 1 low-limit 128 high-limit 2048 discard-probab

ility 100

[Sysname-wred-table-queue-table1]queue 2 low-limit 128 high-limit 2048 discard-probab

ility 100

[Sysname-wred-table-queue-table1]queue 3 low-limit 128 high-limit 2048 discard-probab

ility 100

[Sysname-wred-table-queue-table1]queue 4 low-limit 128 high-limit 2048 discard-probab

ility 100

[Sysname-wred-table-queue-table1]queue 5 low-limit 128 high-limit 512 discard-probabi

lity 100

[Sysname-wred-table-queue-table1]queue 6 low-limit 128 high-limit 512 discard-probabi

lity 100

[Sysname-wred-table-queue-table1]queue 7 low-limit 128 high-limit 8192 discard-probab

ility 100                           

[Sysname-wred-table-queue-table1] quit

# 进入接口视图。

[Sysname] interface GigabitEthernet 2/1/1

# 在接口上应用WRED表。

[Sysname-GigabitEthernet2/1/1] qos wred apply queue-table1

 


7 流量过滤

7.1  流量过滤简介

流量过滤就是将符合流分类的流配置流量过滤动作。

例如,可以根据网络的实际情况禁止从某个源IP地址发送的报文通过。

7.2  配置流量过滤

表7-1 配置流量过滤

操作

命令

说明

进入系统视图

system-view

-

定义类并进入类视图

traffic classifier classifier-name [ operator { and | or } ]

-

定义匹配数据包的规则

if-match match-criteria

-

退出类视图

quit

-

定义一个流行为并进入流行为视图

traffic behavior behavior-name

-

配置流量过滤动作

filter { deny | permit }

必选

deny表示丢弃数据包;permit表示允许数据包通过

退出流行为视图

quit

-

定义策略并进入策略视图

qos policy policy-name

-

在策略中为类指定采用的流行为

classifier classifier-name behavior behavior-name

-

退出策略视图

quit

-

应用QoS策略

基于接口

2.2.5  1. 基于接口应用QoS策略

-

基于VLAN

2.2.5  2. 基于VLAN应用QoS策略

-

基于全局

2.2.5  3. 基于全局应用QoS策略

-

显示流量过滤的相关配置信息

display traffic behavior user-defined [ behavior-name ] [ | { begin | exclude | include } regular-expression ]

可选

display命令可以在任意视图下执行

 

说明

如果配置了filter deny命令,那么其他流行为(除流量统计)都不会生效;与流量统计(accounting)配合使用时,仅SPE单板的流量、SPC单板和MPE单板入方向的流量可以统计。

 

7.3  流量过滤配置举例

7.3.1  流量过滤配置举例

1. 组网需求

Host通过接口GigabitEthernet3/1/1接入设备Device。

配置流量过滤功能,对接口GigabitEthernet3/1/1接收的源端口号不等于21的TCP报文进行丢弃。

2. 组网图

图7-1 配置流量过滤组网图

 

3. 配置步骤

# 定义高级ACL 3000,匹配源端口号不等于21的数据流。

<DeviceA> system-view

[DeviceA] acl number 3000

[DeviceA-acl-adv-3000] rule 0 permit tcp source-port neq 21

[DeviceA-acl-adv-3000] quit

# 定义类classifier_1,匹配高级ACL 3000。

[DeviceA] traffic classifier classifier_1

[DeviceA-classifier-classifier_1] if-match acl 3000

[DeviceA-classifier-classifier_1] quit

# 定义流行为behavior_1,动作为流量过滤(deny),对数据包进行丢弃。

[DeviceA] traffic behavior behavior_1

[DeviceA-behavior-behavior_1] filter deny

[DeviceA-behavior-behavior_1] quit

# 定义策略policy,为类classifier_1指定流行为behavior_1。

[DeviceA] qos policy policy

[DeviceA-qospolicy-policy] classifier classifier_1 behavior behavior_1

[DeviceA-qospolicy-policy] quit

# 将策略policy应用到端口GigabitEthernet3/1/1的入方向上。

[DeviceA] interface GigabitEthernet 3/1/1

[DeviceA-GigabitEthernet 3/1/1] qos apply policy policy inbound

 


8 重标记

8.1  重标记简介

重标记是将报文的优先级或者标志位进行设置,重新定义流量的优先级等。例如,对于IP报文来说,所谓重标记就是对IP报文中的IP优先级或DSCP值进行重新设置,改变IP报文在网络传输中状态。

重标记动作的配置,可以通过与类关联,将原来报文的优先级或标志位重新进行标记。

8.2  配置重标记

表8-1 配置重标记

操作

命令

说明

进入系统视图

system-view

-

定义类并进入类视图

traffic classifier classifier-name [ operator { and | or } ]

-

定义匹配数据包的规则

if-match match-criteria

-

退出类视图

quit

-

定义一个流行为并进入流行为视图

traffic behavior behavior-name

-

配置标记报文的DSCP值

remark dscp dscp-value

可选

配置标记报文的802.1p优先级

remark dot1p 8021p

可选

配置标记报文的丢弃优先级

remark drop-precedence drop-precedence-value

可选

配置标记报文的IP优先级值

remark ip-precedence ip-precedence-value

可选

配置标记报文的本地优先级

remark local-precedence local-precedence

可选

配置标记MPLS报文的EXP域的值

remark mpls-exp exp-value

可选

退出流行为视图

quit

-

定义策略并进入策略视图

qos policy policy-name

-

在策略中为类指定采用的流行为

classifier classifier-name behavior behavior-name

-

退出策略视图

quit

-

应用QoS策略

基于接口

2.2.5  1. 基于接口应用QoS策略

-

基于VLAN

2.2.5  2. 基于VLAN应用QoS策略

-

基于全局

2.2.5  3. 基于全局应用QoS策略

-

显示重标记的相关配置信息

display traffic behavior user-defined  [ behavior-name ] [ | { begin | exclude | include } regular-expression ]

可选

display命令可以在任意视图下执行

 

8.3  重标记配置举例

8.3.1  重标记配置举例

1. 组网需求

公司企业网通过Device实现互连。网络环境描述如下:

·     Host A和Host B通过端口GigabitEthernet3/1/1接入Device;

·     数据库服务器、邮件服务器和文件服务器通过端口GigabitEthernet3/1/2接入Device。

通过配置重标记功能,Device上实现如下需求:

·     优先处理Host A和Host B访问数据库服务器的报文;

·     其次处理Host A和Host B访问邮件服务器的报文;

·     最后处理Host A和Host B访问文件服务器的报文。

2. 组网图

图8-1 配置重标记组网图

 

3. 配置步骤

# 定义高级ACL 3000,对目的IP地址为192.168.0.1的报文进行分类。

<Device> system-view

[Device] acl number 3000

[Device-acl-adv-3000] rule permit ip destination 192.168.0.1 0

[Device-acl-adv-3000] quit

# 定义高级ACL 3001,对目的IP地址为192.168.0.2的报文进行分类。

[Device] acl number 3001

[Device-acl-adv-3001] rule permit ip destination 192.168.0.2 0

[Device-acl-adv-3001] quit

# 定义高级ACL 3002,对目的IP地址为192.168.0.3的报文进行分类。

[Device] acl number 3002

[Device-acl-adv-3002] rule permit ip destination 192.168.0.3 0

[Device-acl-adv-3002] quit

# 定义类classifier_dbserver,匹配高级ACL 3000。

[Device] traffic classifier classifier_dbserver

[Device-classifier-classifier_dbserver] if-match acl 3000

[Device-classifier-classifier_dbserver] quit

# 定义类classifier_mserver,匹配高级ACL 3001

[Device] traffic classifier classifier_mserver

[Device-classifier-classifier_mserver] if-match acl 3001

[Device-classifier-classifier_mserver] quit

# 定义类classifier_fserver,匹配高级ACL 3002

[Device] traffic classifier classifier_fserver

[Device-classifier-classifier_fserver] if-match acl 3002

[Device-classifier-classifier_fserver] quit

# 定义流行为behavior_dbserver,动作为重标记报文的本地优先级为6

[Device] traffic behavior behavior_dbserver

[Device-behavior-behavior_dbserver] remark local-precedence 6

[Device-behavior-behavior_dbserver] quit

# 定义流行为behavior_mserver,动作为重标记报文的本地优先级为4

[Device] traffic behavior behavior_mserver

[Device-behavior-behavior_mserver] remark local-precedence 4

[Device-behavior-behavior_mserver] quit

# 定义流行为behavior_fserver,动作为重标记报文的本地优先级为0

[Device] traffic behavior behavior_fserver

[Device-behavior-behavior_fserver] remark local-precedence 0

[Device-behavior-behavior_fserver] quit

# 定义策略policy_server,为类指定流行为。

[Device] qos policy policy_server

[Device-qospolicy-policy_server] classifier classifier_dbserver behavior behavior_dbserver

[Device-qospolicy-policy_server] classifier classifier_mserver behavior behavior_mserver

[Device-qospolicy-policy_server] classifier classifier_fserver behavior behavior_fserver

[Device-qospolicy-policy_server] quit

# 将策略policy_server应用到端口GigabitEthernet3/1/1上。

[Device] interface GigabitEthernet 3/1/1

[Device-GigabitEthernet3/1/1] qos apply policy policy_server inbound

[Device-GigabitEthernet3/1/1] quit

 


9 流量重定向

9.1  流量重定向简介

流量重定向就是将符合流分类的流重定向到其他地方进行处理。

目前支持的流量重定向包括以下几种:

·     重定向到CPU:对于需要CPU处理的报文,可以通过配置上送给CPU。

·     重定向到接口:对于收到需要由某个接口处理的报文时,可以通过配置重定向到此接口。(目前仅支持重定向到NAT业务接口)

·     重定向到下一跳:对于收到需要由某个接口处理的报文时,可以通过配置重定向到此接口。只针对三层转发报文。(下一跳必须直连)。

·     重定向到指定的VPN实例:对于需要某个VPN处理的报文,可以通过配置重定向到此VPN实例。

9.2  配置流量重定向

表9-1 配置流量重定向

操作

命令

说明

进入系统视图

system-view

-

定义类并进入类视图

traffic classifier classifier-name [ operator { and | or } ]

-

定义匹配数据包的规则

if-match match-criteria

-

退出类视图

quit

-

定义一个流行为并进入流行为视图

traffic behavior behavior-name

必选

配置流量重定向动作

redirect { cpu | interface interface-type interface-number | next-hop { ipv4-add1 [ track track-entry-number ] [ ipv4-add2 [ track track-entry-number ] ] | ipv6-add1 [ interface-type interface-number ] [ track track-entry-number ] [ ipv6-add2 [ interface-type interface-number ] [ track track-entry-number ] ] } [ fail-action { discard | forward } ] | vpn-instance vpn-instance-name }

可选

通过指定Track项,可实现与监测特性(如NQA、BFD)的联动,具体请参见“可靠性配置指导”中的“Track”

配置流量缺省重定向动作

redirect-default next-hop ipv4-add1 [ track track-entry-number ] [ ipv4-add2 [ track track-entry-number ] ]

可选

退出流行为视图

quit

-

定义策略并进入策略视图

qos policy policy-name

-

在策略中为类指定采用的流行为

classifier classifier-name behavior behavior-name

-

退出策略视图

quit

-

应用QoS策略

基于接口

2.2.5  1. 基于接口应用QoS策略

-

基于VLAN

2.2.5  2. 基于VLAN应用QoS策略

-

基于全局

2.2.5  3. 基于全局应用QoS策略

-

 

说明

·     在配置重定向动作时,同一个流行为中重定向类型只能为重定向到CPU、重定向到下一跳、重定向到VPN实例中的一种。

·     请不要将QoS重定向的出接口绑定NAT业务接口。

·     如果配置重定向到下一跳时不配置fail-action关键字,则下一跳不存在时缺省的处理动作是转发报文。

·     可以通过命令display traffic behavior user-defined [ behavior-name ] [ | { begin | exclude | include } regular-expression ]查看流量重定向的相关配置信息。

 

9.3  流量重定向配置举例

1. 组网需求

网络环境描述如下:

·     Device A通过两条链路与Device B连接,同时Device A和Device B各自连接其他的设备;

·     Device A上的端口GigabitEthernet3/1/2和Device B上的端口GigabitEthernet3/1/2属于VLAN 200;

·     Device A上的端口GigabitEthernet3/1/3和Device B上的端口GigabitEthernet3/1/3属于VLAN 201;

·     Device A上VLAN 200虚接口的IP地址为200.1.1.1/24,VLAN 201虚接口的IP地址为201.1.1.1/24;

·     Device B上VLAN 200虚接口的IP地址为200.1.1.2/24,VLAN 201虚接口的IP地址为201.1.1.2/24。

配置重定向至下一跳,实现策略路由功能,满足如下需求:

·     将Device A的端口GigabitEthernet3/1/1接收到的源IP地址为2.1.1.1的报文转发至200.1.1.2;

·     将Device A的端口GigabitEthernet3/1/1接收到的源IP地址为2.1.1.2的报文转发至201.1.1.2;

·     对于Device A的端口GigabitEthernet3/1/1接收到的其它报文,按照查找路由表的方式进行转发。

2. 组网图

图9-1 配置重定向至下一跳组网图

 

3. 配置步骤

# 定义基本ACL 2000,对源IP地址为2.1.1.1的报文进行分类。

<DeviceA> system-view

[DeviceA] acl number 2000

[DeviceA-acl-basic-2000] rule permit source 2.1.1.1 0

[DeviceA-acl-basic-2000] quit

# 定义基本ACL 2001,对源IP地址为2.1.1.2的报文进行分类。

[DeviceA] acl number 2001

[DeviceA-acl-basic-2001] rule permit source 2.1.1.2 0

[DeviceA-acl-basic-2001] quit

# 定义类classifier_1,匹配基本ACL 2000。

[DeviceA] traffic classifier classifier_1

[DeviceA-classifier-classifier_1] if-match acl 2000

[DeviceA-classifier-classifier_1] quit

# 定义类classifier_2,匹配基本ACL 2001。

[DeviceA] traffic classifier classifier_2

[DeviceA-classifier-classifier_2] if-match acl 2001

[DeviceA-classifier-classifier_2] quit

# 定义流行为behavior_1,动作为重定向至200.1.1.2。

[DeviceA] traffic behavior behavior_1

[DeviceA-behavior-behavior_1] redirect next-hop 200.1.1.2

[DeviceA-behavior-behavior_1] quit

# 定义流行为behavior_2,动作为重定向至201.1.1.2。

[DeviceA] traffic behavior behavior_2

[DeviceA-behavior-behavior_2] redirect next-hop 201.1.1.2

[DeviceA-behavior-behavior_2] quit

# 定义策略policy,为类classifier_1指定流行为behavior_1,为类classifier_2指定流行为behavior_2。

[DeviceA] qos policy policy

[DeviceA-qospolicy-policy] classifier classifier_1 behavior behavior_1

[DeviceA-qospolicy-policy] classifier classifier_2 behavior behavior_2

[DeviceA-qospolicy-policy] quit

# 将策略policy应用到端口GigabitEthernet3/1/1的入方向上。

[DeviceA] interface GigabitEthernet3/1/1

[DeviceA-GigabitEthernet3/1/1] qos apply policy policy inbound

 


10 全局CAR

10.1  全局CAR简介

全局CAR是在全局创建的一种策略,所有应用该策略的数据流将共同接受全局CAR的监管。

目前全局CAR支持聚合CAR。

聚合CAR是指能够对多个业务流使用同一个CAR进行流量监管,即如果多个端口应用同一聚合CAR,则这多个端口的流量之和必须在此聚合CAR设定的流量监管范围之内。

10.2  配置聚合CAR

1. 配置过程

表10-1 配置聚合CAR

操作

命令

说明

进入系统视图

system-view

-

配置聚合CAR的各个参数

qos car car-name aggregative cir committed-information-rate [ cbs committed-burst-size [ ebs excess-burst-size ] ] [ pir peek-information-rate ] [ red { discard | pass } ]

必选

缺省情况下,各个参数的取值如下:

·     cbs为大约500ms时间内承诺信息速率的流量

·     ebs为0byte

进入流行为视图

traffic behavior behavior-name

必选

在流行为中引用聚合CAR

car name car-name

必选

显示配置的流行为信息

display traffic behavior user-defined [ behavior-name ] [ | { begin | exclude | include } regular-expression ]

可选

display命令可以在任意视图下执行

显示指定聚合CAR的CAR配置和统计信息

display qos car name [ car-name ] [ | { begin | exclude | include } regular-expression ]

 

2. 配置举例

# 配置聚合CAR aggcar-1采取的CAR参数取值,cir取值为200,cbs取值为2000,对于红色报文采取丢弃的动作,并在流行为be1中引用aggcar-1。

<Sysname> system-view

[Sysname] qos car aggcar-1 aggregative cir 200 cbs 2000 red discard

[Sysname] traffic behavior be1

[Sysname-behavior-be1] car name aggcar-1

10.3  聚合CAR显示和维护

在完成上述配置后,在任意视图下执行display命令可以显示配置后全局CAR的运行情况,通过查看显示信息验证配置的效果。

在用户视图下执行reset命令可以清除全局CAR统计信息。

表10-2 全局CAR显示和维护

操作

命令

显示聚合CAR的配置和统计信息

display qos car name [ car-name ] [ | { begin | exclude | include } regular-expression ]

清除聚合CAR的统计信息

reset qos car name [ car-name ]

 


11 流量统计

11.1  流量统计简介

流量统计就是通过与类关联,对符合匹配规则的流进行统计,统计报文数或字节数。例如,可以统计从某个源IP地址发送的报文,然后管理员对统计信息进行分析,根据分析情况采取相应的措施。

11.2  配置流量统计

表11-1 配置流量统计

操作

命令

说明

进入系统视图

system-view

-

定义类并进入类视图

traffic classifier classifier-name [ operator { and | or } ]

-

定义匹配数据包的规则

if-match match-criteria

-

退出类视图

quit

-

定义一个流行为并进入流行为视图

traffic behavior behavior-name

必选

配置统计动作

accounting [ byte | packet ]

可选

byte表示报文基于字节为最小单位进行统计;packet表示报文基于包为最小单位进行统计

退出流行为视图

quit

-

定义策略并进入策略视图

qos policy policy-name

-

在策略中为类指定采用的流行为

classifier classifier-name behavior behavior-name

-

退出策略视图

quit

-

应用QoS策略

基于接口

2.2.5  1. 基于接口应用QoS策略

-

基于VLAN

2.2.5  2. 基于VLAN应用QoS策略

-

基于全局

2.2.5  3. 基于全局应用QoS策略

-

 

说明

bytepacket为可选参数。若用户不指明统计单位,则采用默认的统计单位进行统计,默认的统计单位为byte

 

11.3  流量统计显示和维护

在完成上述配置后,根据QoS策略的应用情况,在任意视图下执行display qos policy interfacedisplay qos policy globaldisplay qos vlan-policy vlan命令可以显示配置后流量统计的情况,通过查看显示信息验证配置的效果。

11.4  流量统计配置举例

1. 组网需求

用户网络描述如下:Host通过接口GigabitEthernet3/1/1接入设备Device。

配置流量统计功能,对接口GigabitEthernet3/1/1接收的源IP地址为1.1.1.1/24的报文进行统计。

2. 组网图

图11-1 配置流量统计组网图

 

3. 配置步骤

# 定义基本ACL 2000,对源IP地址为1.1.1.1的报文进行分类。

<DeviceA> system-view

[DeviceA] acl number 2000

[DeviceA-acl-basic-2000] rule permit source 1.1.1.1 0

[DeviceA-acl-basic-2000] quit

# 定义类classifier_1,匹配基本ACL 2000。

[DeviceA] traffic classifier classifier_1

[DeviceA-classifier-classifier_1] if-match acl 2000

[DeviceA-classifier-classifier_1] quit

# 定义流行为behavior_1,动作为流量统计。

[DeviceA] traffic behavior behavior_1

[DeviceA-behavior-behavior_1] accounting packet

[DeviceA-behavior-behavior_1] quit

# 定义策略policy,为类classifier_1指定流行为behavior_1。

[DeviceA] qos policy policy

[DeviceA-qospolicy-policy] classifier classifier_1 behavior behavior_1

[DeviceA-qospolicy-policy] quit

# 将策略policy应用到端口GigabitEthernet3/1/1的入方向上。

[DeviceA] interface GigabitEthernet 3/1/1

[DeviceA-GigabitEthernet3/1/1] qos apply policy policy inbound

[DeviceA-GigabitEthernet3/1/1] quit

# 查看配置后流量统计的情况。

[DeviceA] display qos policy interface GigabitEthernet 3/1/1

 

  Interface: GigabitEthernet3/1/1

 

  Direction: Inbound

 

  Policy: policy

   Classifier: classifier_1

     Operator: AND

     Rule(s) : If-match acl 2000

     Behavior: behavior_1

      Accounting Enable:

        28529 (Packets)

 


12 报文统计

说明

报文统计和流量统计的不同之处在于:报文统计是根据设备内部的统计规则对报文进行相关统计;而流量统计可以根据自己的需求设置相应的匹配规则,然后根据统计符合匹配规则的流。

 

12.1  报文统计简介

设备支持两个统计计数器,可以对入方向和出方向的报文进行统计。

用户可指定每个计数器所统计的报文类型,报文类型包括:单板所有指定方向报文,或单板以下元素的组合所指定的报文——指定接口、指定VLAN、指定本地优先级、指定丢弃优先级。

用户可以同时使能两个统计计数器,分别统计不同的报文类型。

12.2  配置报文统计

表12-1 配置报文统计

操作

命令

说明

进入系统视图

system-view

-

使能报文统计功能,并指定统计的流量类型

qos traffic-counter { inbound | outbound } { counter0 | counter1 } slot slot-number [ interface interface-type interface-number ] [ vlan vlan-id ] [ local-precedence lp-value ] [ drop-priority dp-value ]

必选

缺省情况下,报文统计功能处于关闭状态

 

说明

报文统计功能仅SPC单板和MPE单板且单板上的端口工作在二层模式时才支持,SPE单板不支持。

 

12.3  报文统计显示和维护

在完成上述配置后,在任意视图下执行display命令可以显示配置后报文统计的情况,通过查看显示信息验证配置的效果。

在用户视图下执行reset命令可以清除报文统计计数器的统计信息。

表12-2 报文统计显示和维护

操作

命令

显示报文统计信息

display qos traffic-counter { inbound | outbound } { counter0 | counter1 } slot slot-number [ | { begin | exclude | include } regular-expression ]

清除报文统计计数器的统计值

reset qos traffic-counter { inbound | outbound } { counter0 | counter1 } slot slot-number

 

 

12.4  报文统计配置举例

1. 组网需求

配置设备4号槽位单板(假设该单板为SPC单板)的报文统计计数器,用于统计GigabitEthernet4/0/1端口入方向上VLAN 10的流量。

2. 配置步骤

# 将接口GigabitEthernet4/0/1切换到二层模式,并将其配置为Trunk端口且允许VLAN 10通过。

<Sysname> system-view

[Sysname] interface GigabitEthernet 4/0/1

[Sysname-GigabitEthernet4/0/1] port link-mode bridge

[Sysname-GigabitEthernet4/0/1] port link-type trunk

[Sysname-GigabitEthernet4/0/1] port trunk permit vlan 10

[Sysname-GigabitEthernet4/0/1] quit

# 配置报文统计计数器0用于统计GigabitEthernet4/0/1端口入方向上VLAN 10的流量。

[Sysname] qos traffic-counter inbound counter0 slot 4 interface GigabitEthernet 4/0/1 vlan 10

# 查询4号槽位单板的入方向报文统计信息。

<Sysname> display qos traffic-counter inbound counter0 slot 4

Slot 4 inbound counter0 mode:

 Interface: GigabitEthernet4/0/1

 VLAN: 10

 

Traffic-counter summary:

 Bridge in frames: 5490000 packets

 Bridge local discarded: 0 packets

 Bridge vlan ingress filter discarded: 0 packets

 Bridge security filter discarded: 0 packets

 


13 端口队列统计

13.1  端口队列统计简介

端口队列统计功能可以对队列中报文的转发、丢弃数等信息进行统计。

13.2  配置端口队列统计

说明

端口队列统计功能系统默认使能,不需要配置,用户可直接通过display qos queue-statistics interface命令查看。

 

13.3  端口队列统计显示与维护

在完成上述配置后,在任意视图下执行display命令可以显示端口队列的统计情况,通过查看显示信息验证配置的效果。

表13-1 端口队列统计显示和维护

操作

命令

显示端口队列统计信息

display qos queue-statistics interface [ interface-type interface-number ] [ pvc { pvc-name [ vpi/vci ] | vpi/vci } ] [ dlci dlci-number ] [ outbound ] [ | { begin | exclude | include } regular-expression ]

 

说明

·     端口队列统计信息可以通过reset counters interface命令清除。

·     当指定接口封装的链路层协议为帧中继时,才支持参数dlci dlci-number

 

 


14 QoS管道模式

说明

本功能仅在SPC单板和MPE单板上支持。

 

未配置QoS管道模式时,当设备处于以下任一位置:

·     在MPLS L2VPN网络中本设备作为Egress PE(Provider Edge,服务提供商边缘设备)设备;

·     在MPLS L3VPN网络中本设备作为Egress PE设备;

·     在VPLS网络中作为Egress PE设备。

如果本设备收到的报文携带了DSCP优先级字段,那么设备会将此字段改为0,再向下游转发。此时,如果下游设备又配置了优先级映射功能,那么下游设备会通过IP报文中所携带的DSCP优先级字段来映射设备调度优先级字段值(包括本地优先级、丢弃优先级和用户优先级字段值),用来全面有效地控制报文的转发调度能力。因此,如果报文中的DSCP优先级发生改变,会影响下游设备对该IP报文的转发调度,甚至可能导致报文被丢弃。

配置QoS管道模式后,可以确保报文在经过上述网络后,所携带的DSCP优先级字段不会被改变,因此不影响下游设备对该IP报文的转发调度。

表14-1 配置QoS管道模式

操作

命令

说明

进入系统视图

system-view

-

配置QoS管道模式

qos pipe-mode

必选

缺省情况下,设备未配置QoS管道模式

 

说明

关于MPLS L2VPN的详细介绍请参见“MPLS 配置指导”中的“MPLS L2VPN”,关于MPLS L3VPN的详细介绍请参见“MPLS 配置指导”中的“MPLS L3VPN”,关于VPLS的详细介绍请参见“MPLS 配置指导”中的“VPLS”。


15 附录

15.1  附录 A 缩略语表

表15-1 附录 A 缩略语表

缩略语

英文全名

中文解释

AF

Assured Forwarding

确保转发

BE

Best Effort

尽力转发

BQ

Bandwidth Queuing

带宽队列

CAR

Committed Access Rate

承诺访问速率

CBQ

Class Based Queuing

基于类的队列

CBS

Committed Burst Size

承诺突发尺寸

CBWFQ

Class Based Weighted Fair Queuing

基于类的加权公平队列

CE

Customer Edge

用户边缘设备

CIR

Committed Information Rate

承诺信息速率

CQ

Custom Queuing

定制队列

DAR

Deeper Application Recognition

深度应用识别

DCBX

Data Center Bridging Exchange Protocol

数据中心桥能力交换协议

DiffServ

Differentiated Service

区分服务

DoS

Denial of Service

拒绝服务

DSCP

Differentiated Services Code Point

区分服务编码点

EACL

Enhanced ACL

增强型ACL

EBS

Excess Burst Size

超出突发尺寸

EF

Expedited Forwarding

加速转发

FEC

Forwarding Equivalance Class

转发等价类

FIFO

First in First out

先入先出

FQ

Fair Queuing

公平队列

GTS

Generic Traffic Shaping

通用流量整形

IntServ

Integrated Service

综合服务

ISP

Internet Service Provider

互联网服务提供商

LFI

Link Fragmentation and Interleaving

链路分片与交叉

LLQ

Low Latency Queuing

低时延队列

LR

Line Rate

物理接口限速

LSP

Label Switched Path

标签交换路径

MPLS

Multiprotocol Label Switching

多协议标签交换

NC

Network Control

网络控制

P2P

Peer-to-Peer

对等

PE

Provider Edge

服务提供商网络边缘

PHB

Per-hop Behavior

单中继段行为,指IP转发中每一跳的转发行为

PIR

Peak Information Rate

峰值信息速率

PQ

Priority Queuing

优先队列

QoS

Quality of Service

服务质量,指报文传送的吞吐量、时延、时延抖动、丢失率等性能

QPPB

QoS Policy Propagation Through the Border Gateway Protocol

通过BGP传播QoS策略

RED

Random Early Detection

随机早期检测

RSVP

Resource Reservation Protocol

资源预留协议

RTP

Real-time Transport Protocol

实时传输协议

SLA

Service Level Agreement

服务水平协议。是服务使用者和服务提供者之间签订的服务水平协议。服务提供者按此协议向服务使用者提供服务

SP

Strict Priority

严格优先级队列

TE

Traffic Engineering

流量工程

ToS

Type of Service

服务类型

TP

Traffic Policing

流量监管

TS

Traffic Shaping

流量整形

VoIP

Voice over IP

在IP网络上传送语音

VPN

Virtual Private Network

虚拟专用网络

WFQ

Weighted Fair Queuing

加权公平队列

WRED

Weighted Random Early Detection

加权随机早期检测

WRR

Weighted Round Robin

加权轮询队列

 

15.2  附录 B 缺省优先级映射表

15.2.1  不带颜色优先级映射表

表1-1 dscp-dscp缺省映射关系

dscp

dscp优先级

0

0

1

1

2

2

63

63

 

表1-2 up-dp、up-lp、up-rpr、up-fc、up-up缺省映射关系

映射输入索引

up-dp映射

up-lp映射

up-rpr映射

up-fc映射

up-up映射

up

丢弃优先级(dp)

本地优先级(lp)

rpr

fc

up

0

0

0

0

0

0

1

0

1

0

0

1

2

0

2

1

1

2

3

0

3

1

1

3

4

0

4

2

2

4

5

0

5

2

2

5

6

0

6

2

3

6

7

0

7

2

3

7

 

15.2.2  带颜色优先级映射表

表1-3 绿色报文/黄色报文/红色报文的up-dot1p、up-dscp、up-exp、up-lp缺省映射关系

映射输入索引

up-dot1p映射

up-dscp映射

up-exp映射

up-lp映射

up

dot1p

dscp

exp

lp

0

0

0

0

0

1

1

8

1

1

2

2

16

2

2

3

3

24

3

3

4

4

32

4

4

5

5

40

5

5

6

6

48

6

6

7

7

56

7

7

 

15.3  附录 C 各种优先级介绍

15.3.1  IP优先级和DSCP优先级

图15-1 ToS和DS域

 

图15-1所示,IPv4报文头的ToS字段有8个bit,其中前3个bit表示的就是IP优先级,取值范围为0~7;IPv6报文头的Traffic Classes字段有8个bit,其中前3个bit表示的就是IP优先级,取值范围为0~7。RFC 2474中,重新定义了IPv4报文头部的ToS域和IPv6报文头部的Traffic Classes域,称之为DS(Differentiated Services,差分服务)域,其中DSCP优先级用该域的前6位(0~5位)表示,取值范围为0~63,后2位(6、7位)是保留位。

表15-2 IP优先级说明

IP优先级(十进制)

IP优先级(二进制)

关键字

0

000

routine

1

001

priority

2

010

immediate

3

011

flash

4

100

flash-override

5

101

critical

6

110

internet

7

111

network

 

表15-3 DSCP优先级说明

DSCP优先级(十进制)

DSCP优先级(二进制)

关键字

46

101110

ef

10

001010

af11

12

001100

af12

14

001110

af13

18

010010

af21

20

010100

af22

22

010110

af23

26

011010

af31

28

011100

af32

30

011110

af33

34

100010

af41

36

100100

af42

38

100110

af43

8

001000

cs1

16

010000

cs2

24

011000

cs3

32

100000

cs4

40

101000

cs5

48

110000

cs6

56

111000

cs7

0

000000

be(default)

 

15.3.2  802.1p优先级

802.1p优先级位于二层报文头部,适用于不需要分析三层报头,而需要在二层环境下保证QoS的场合。

图15-2 带有802.1Q标签头的以太网帧

 

图15-2所示,4个字节的802.1Q标签头包含了2个字节的TPID(Tag Protocol Identifier,标签协议标识符)和2个字节的TCI(Tag Control Information,标签控制信息),TPID取值为0x8100。图15-3显示了802.1Q标签头的详细内容,Priority字段就是802.1p优先级。之所以称此优先级为802.1p优先级,是因为有关这些优先级的应用是在802.1p规范中被详细定义的。

图15-3 802.1Q标签头

 

表15-4 802.1p优先级说明

802.1p优先级(十进制)

802.1p优先级(二进制)

关键字

0

000

best-effort

1

001

background

2

010

spare

3

011

excellent-effort

4

100

controlled-load

5

101

video

6

110

voice

7

111

network-management

 

15.3.3  EXP优先级

EXP优先级位于MPLS标签内,用于标记MPLS QoS。

图15-4 MPLS标签的封装结构

 

图15-4中,Exp字段就是EXP优先级。它由3个bit组成,取值范围为0~7。

 

不同款型规格的资料略有差异, 详细信息请向具体销售和400咨询。H3C保留在没有任何通知或提示的情况下对资料内容进行修改的权利!

新华三官网
联系我们