11-Segment Routing Command Reference

HomeSupportRoutersCR16000-F SeriesReference GuidesCommand ReferencesH3C CR16000-F Routers Command Reference-R838x-6W10111-Segment Routing Command Reference
03-SRv6 commands
Title Size Download
03-SRv6 commands 607.03 KB

Contents

SRv6 commands· 1

advertise srv6 locator 1

anycast enable· 2

diffserv-mode· 3

display bgp egress-engineering ipv6· 5

display bgp egress-engineering srv6 peer-set 10

display isis segment-routing ipv6 capability· 12

display isis segment-routing ipv6 locator 13

display isis srv6 tunnel 17

display ospfv3 segment-routing ipv6 capability· 18

display ospfv3 segment-routing ipv6 locator 19

display ospfv3 srv6 tunnel 21

display segment-routing ipv6 available-static-sid· 23

display segment-routing ipv6 forwarding· 25

display segment-routing ipv6 local-sid· 28

display segment-routing ipv6 local-sid statistics· 35

display segment-routing ipv6 locator 38

display segment-routing ipv6 locator-statistics· 42

display segment-routing ipv6 remote-locator 43

display segment-routing ipv6 remote-sid· 44

egress-engineering link-delay· 46

egress-engineering metric-bandwidth advertisement enable· 48

egress-engineering metric-bandwidth suppression· 48

egress-engineering metric-delay advertisement enable· 49

egress-engineering metric-delay suppression· 50

egress-engineering srv6 peer-set 52

end-x update-delay· 55

fast-reroute microloop-avoidance enable (IS-IS IPv6 address family) 56

fast-reroute microloop-avoidance enable (OSPFv3 view) 57

fast-reroute microloop-avoidance rib-update-delay (IS-IS IPv6 address family) 58

fast-reroute microloop-avoidance rib-update-delay (OSPFv3 view) 59

fast-reroute ti-lfa· 60

fast-reroute ti-lfa encaps· 62

isis ipv6 fast-reroute ti-lfa disable· 63

locator 64

opcode· 66

ospfv3 fast-reroute ti-lfa disable· 71

path-mtu· 72

path-mtu reserved· 73

peer egress-engineering srv6· 74

peer peer-set 78

remote-locator 79

reserved-sid-start 81

router-id· 82

segment-routing ipv6 (system view) 83

segment-routing ipv6 egress-engineering locator 84

segment-routing ipv6 end-x delete-delay· 86

segment-routing ipv6 locator (IS-IS IPv6 address family view) 87

segment-routing ipv6 locator (OSPFv3 process view) 91

segment-routing ipv6 sid delete-delay· 92

segment-routing ipv6 sid-sub-tlv-type· 92

segment-routing microloop-avoidance enable· 93

segment-routing microloop-avoidance encaps· 95

segment-routing microloop-avoidance rib-update-delay· 96

segment-routing microloop-avoidance strict-sid-only· 97

snmp-agent trap enable srv6· 98

srv6 compress enable (IS-IS IPv6 address family view) 99

srv6 compress enable (SRv6 view) 100

summary algorithm·· 101

 


SRv6 commands

advertise srv6 locator

Use advertise srv6 locator to enable the device to generate routes for a locator in the BGP IPv6 unicast routing table and advertise the routes to BGP peers.

Use undo advertise srv6 locator to delete routes for a locator from the BGP IPv6 unicast routing table.

Syntax

advertise srv6 locator locator-name [ route-policy route-policy-name ]

undo advertise srv6 locator locator-name

Default

The device does not generate routes for a locator in the BGP IPv6 unicast routing table.

Views

BGP IPv6 unicast address family view

Predefined user roles

network-admin

Parameters

locator-name: Specifies a locator by its name, a case-sensitive string of 1 to 31 characters.

route-policy route-policy-name: Specifies a routing policy by its name, a case-sensitive string of 1 to 63 characters. Only routes that match the routing policy can be generated in the BGP IPv6 unicast routing table for the locator. All routes for the locator can be generated in the BGP IPv6 unicast routing table in the following situations:

·     You do not specify a routing policy when using this command.

·     The specified routing policy does not exist.

·     The specified routing policy does not contain if-match clauses.

Usage guidelines

Use this command in an inter-AS BGP network. This command enables the device to use BGP to advertise routes for a locator.

Repeat this command to enable the device to use BGP to advertise routes for multiple locators.

Examples

# Enable the device to generate routes for locator abc in the BGP IPv6 unicast routing table and advertise the routes to BGP peers.

<Sysname> system-view

[Sysname] bgp 100

[Sysname-bgp-default] address-family ipv6

[Sysname-bgp-default-ipv6] advertise srv6 locator abc

Related commands

display segment-routing ipv6 locator

locator

anycast enable

Use anycast enable to enable anycast for an SRv6 locator.

Use undo anycast enable to disable anycast for an SRv6 locator.

Syntax

anycast enable

undo anycast enable

Default

Anycast is disabled for an SRv6 locator.

Views

SRv6 locator view

Predefined user roles

network-admin

Usage guidelines

After you apply a locator to a routing protocol, the routing protocol will advertise the SRv6 SIDs in the locator. By default, the N-bit is set in the Flags field of the Locator TLV in routing protocol packets. The locator belongs to one SRv6 node. If you enable anycast for a locator, the A-bit is set in the Flags field of the Locator TLV in routing protocol packets. The locator is shared by a group of SRv6 nodes.

Examples

# Enable anycast for locator test1.

<Sysname> system-view

[Sysname] segment-routing ipv6

[Sysname-segment-routing-ipv6] locator test1 ipv6-prefix 100:: 64 static 32

[Sysname-segment-routing-ipv6-locator-test1] anycast enable

Related commands

locator

diffserv-mode

Use diffserv-mode to configure the SRv6 DiffServ mode.

Use undo diffserv-mode to restore the default.

Syntax

diffserv-mode { ingress { pipe service-class | short-pipe service-class | uniform } egress { pipe | short-pipe | uniform } | { pipe service-class | short-pipe service-class | uniform } }

undo diffserv-mode

Default

The SRv6 DiffServ mode is pipe and the traffic class is 0.

Views

SRv6 view

Predefined user roles

network-admin

Parameters

ingress: Specifies the inbound direction.

egress: Specifies the outbound direction.

pipe: Specifies the pipe mode.

short-pipe: Specifies the short-pipe mode.

uniform: Specifies the uniform mode.

service-class: Specifies a traffic class for packets that enters the SRv6 network from the IP network. The value range for the traffic class is 0 to 7.

Usage guidelines

The following SRv6 DiffServ modes are available:

·     Pipe mode—When a packet enters the SRv6 network, the ingress node adds a new IPv6 header to the original packet. The ingress node ignores the IP precedence or DSCP value in the original packet and uses the value specified by using the service-class argument as the traffic class in the new IPv6 header. In the SRv6 network, SRv6 nodes perform QoS scheduling for the packet based on the specified traffic class. When the packet leaves the SRv6 network, the egress node removes the outer IPv6 header from the packet without modifying the IP precedence or DSCP value in the original packet.

·     Short-pipe mode—When a packet enters and leaves the SRv6 network, all SRv6 nodes process the packet in the same way as in pipe mode except for the egress node. After the egress node removes the outer IPv6 header from the packet, it performs QoS scheduling as follows:

¡     If no priority trust mode is configured, the egress node performs QoS scheduling for the packet based on the IP precedence or DSCP value in the original packet.

¡     If a priority trust mode is configured, the egress node performs QoS scheduling for the packet based on the trusted priority.

·     Uniform mode—When a packet enters the IPv6 network, the ingress node maps the IP precedence or DSCP value in the original IP header to the outer IPv6 header as the traffic class. When the packet leaves the SRv6 network, the egress node maps the traffic class value in the outer IPv6 header to the original packet as the IP precedence or DSCP value.

The accuracy changes when the DSCP value and traffic class value are mapped to each other.

To specify different DiffServ modes for the inbound and outbound directions, use the diffserv-mode command with the ingress and egress keywords. To specify the same DiffServ mode for the inbound and outbound directions, use the diffserv-mode command without the ingress or egress keyword.

If you execute the diffserv-mode command multiple times, the most recent configuration takes effect.

When you configure the SRv6 DiffServ mode on the source and destination nodes of an SRv6 tunnel, follow these restrictions and guidelines:

·     The outbound DiffServ mode on the local end must be the same as the inbound DiffServ mode on the peer end.

·     The inbound DiffServ mode on the local end must be the same as the outbound DiffServ mode on the peer end.

For more information about IP precedence and DSCP, see priority mapping configuration in QoS Configuration Guide.

The SRv6 DiffServ mode configuration cannot take effect on an egress node in SRv6-BE mode in the following networks:

·     IP L3VPN over SRv6.

·     EVPN L3VPN over SRv6.

·     EVPN VPWS over SRv6.

·     EVPN VPLS over SRv6.

Examples

# Configure the SRv6 DiffServ mode as uniform.

<Sysname> system-view

[Sysname] segment-routing ipv6

[Sysname-segment-routing-ipv6] diffserv-mode uniform

display bgp egress-engineering ipv6

Use display bgp egress-engineering ipv6 to display BGP-EPE information for IPv6 peers.

Syntax

display bgp [ instance instance-name ] egress-engineering ipv6 [ ipv6-address ] [ verbose ]

Views

Any view

Predefined user roles

network-admin

network-operator

Parameters

instance instance-name: Specifies a BGP instance by its name, a case-sensitive string of 1 to 31 characters. If you do not specify a BGP instance, this command displays information about the default BGP instance.

ipv6-address: Specifies an IPv6 peer by its IPv6 address. The specified IPv6 peer must already exist. If you do not specify an IPv6 peer, this command displays BGP-EPE information for all IPv6 peers.

verbose: Displays detailed BGP-EPE information. If you do not specify this keyword, the command displays only brief BGP-EPE information.

Examples

# Display BGP-EPE information for all IPv6 peers.

<Sysname> display bgp egress-engineering ipv6

BGP peering segment type: Node-Adjacency

  Peer NodeAdj                     : 2::9

  Local ASNumber                   : 100

  Remote ASNumber                  : 200

  Local RouterID                   : 1.1.1.9

  Remote RouterID                  : 2.2.2.9

  Interface                        : XGE3/1/1

  OriginalNextHop                  : 2::9

  RelyNextHop                      : FE80::28B6:9EFF:FE23:206

  StaticSID(PSP)                   : 3:4::100

  StaticSID(NO-FLAVOR)             : 3:4::200

  StaticSID(PSP,USP,USD)           : 3:4::300

  StaticSID(PSP COC32)             : 3:4::100:0

  StaticSID(NO-FLAVOR COC32)       : 3:4::102:0

  StaticSID(PSP COCNONE)           : 3:4::101:0

  StaticSID(NO-FLAVOR COCNONE)     : 3:4::103:0

  StaticSID(PSP,USP,USD,COCNONE)   : 3:4::104:0

  SID(PSP)                         : 3:4::100

  SID(NO-FLAVOR)                   : 3:4::200

  SID(PSP,USP,USD)                 : 3:4::300

  SID(PSP COC32)                   : 3:4::100:0

  SID(NO-FLAVOR COC32)             : 3:4::102:0

  SID(PSP COCNONE)                 : 3:4::101:0

  SID(NO-FLAVOR COCNONE)           : 3:4::103:0

  SID(PSP,USP,USD,COCNONE)         : 3:4::104:0

  Interface                        : XGE3/1/2

  OriginalNextHop                  : 2::9

  RelayNextHop                     : FE80::28B6:9EFF:FE23:208

  StaticSID(PSP)                   : 3:4::100

  StaticSID(NO-FLAVOR)             : 3:4::200

  StaticSID(PSP,USP,USD)           : 3:4::300

  StaticSID(PSP COC32)             : 3:4::100:0

  StaticSID(NO-FLAVOR COC32)       : 3:4::102:0

  StaticSID(PSP COCNONE)           : 3:4::101:0

  StaticSID(NO-FLAVOR COCNONE)     : 3:4::103:0

  StaticSID(PSP,USP,USD,COCNONE)   : 3:4::104:0

  SID(PSP)                         : 3:4::100

  SID(NO-FLAVOR)                   : 3:4::200

  SID(PSP,USP,USD)                 : 3:4::300

  SID(PSP COC32)                   : 3:4::100:0

  SID(NO-FLAVOR COC32)             : 3:4::102:0

  SID(PSP COCNONE)                 : 3:4::101:0

  SID(NO-FLAVOR COCNONE)           : 3:4::103:0

  SID(PSP,USP,USD,COCNONE)         : 3:4::104:0

# Display detailed BGP-EPE information for all IPv6 peers.

<Sysname> display bgp egress-engineering ipv6 verbose

BGP peering segment type: Node-Adjacency

  PeerAdj Num                : 2

  Nexthop                    : 2::9

  Local ASNumber             : 100

  Remote ASNumber            : 200

  Local RouterID             : 1.1.1.9

  Remote RouterID            : 2.2.2.9

  Local Interface Address    : 10::1

  Remote Interface Address   : 10::2

  Interface                  : XGE3/1/1

  OriginalNextHop            : 2::9

  RelyNextHop                : FE80::28B6:9EFF:FE23:206

  StaticSID(PSP)                   : 3:4::100

  StaticSID(NO-FLAVOR)             : 3:4::200

  StaticSID(PSP,USP,USD)           : 3:4::300

  StaticSID(PSP COC32)             : 3:4::100:0

  StaticSID(NO-FLAVOR COC32)       : 3:4::102:0

  StaticSID(PSP COCNONE)           : 3:4::101:0

  StaticSID(NO-FLAVOR COCNONE)     : 3:4::103:0

  StaticSID(PSP,USP,USD,COCNONE)   : 3:4::104:0

  SID(PSP)                         : 3:4::100

  SID(NO-FLAVOR)                   : 3:4::200

  SID(PSP,USP,USD)                 : 3:4::300

  SID(PSP COC32)                   : 3:4::100:0

  SID(NO-FLAVOR COC32)             : 3:4::102:0

  SID(PSP COCNONE)                 : 3:4::101:0

  SID(NO-FLAVOR COCNONE)           : 3:4::103:0

  SID(PSP,USP,USD,COCNONE)         : 3:4::104:0

  Local Interface Address          : 20::1

  Remote Interface Address         : 20::2

  Interface                        : XGE3/1/2

  OriginalNextHop                  : 2::9

  RelyNextHop                      : FE80::28B6:9EFF:FE23:208

  StaticSID(PSP)                   : 3:4::100

  StaticSID(NO-FLAVOR)             : 3:4::200

  StaticSID(PSP,USP,USD)           : 3:4::300

  StaticSID(PSP COC32)             : 3:4::100:0

  StaticSID(NO-FLAVOR COC32)       : 3:4::102:0

  StaticSID(PSP COCNONE)           : 3:4::101:0

  StaticSID(NO-FLAVOR COCNONE)     : 3:4::103:0

  StaticSID(PSP,USP,USD,COCNONE)   : 3:4::104:0

  SID(PSP)                         : 3:4::100

  SID(NO-FLAVOR)                   : 3:4::200

  SID(PSP,USP,USD)                 : 3:4::300

  SID(PSP COC32)                   : 3:4::100:0

  SID(NO-FLAVOR COC32)             : 3:4::102:0

  SID(PSP COCNONE)                 : 3:4::101:0

  SID(NO-FLAVOR COCNONE)           : 3:4::103:0

  SID(PSP,USP,USD,COCNONE)         : 3:4::104:0

  Administrative group: 0x0

  Maximum link bandwidth(kbits/sec): 100000

  Maximum reservable link bandwidth(kbits/sec): 9999

  Maximum Unreserved bandwidth(kbits/sec): 999 999 999 999 999 999 999 999

  TE Metric: 1

  Flag: 0, Average delay(us): 100

  Flag: 0, Min delay(us): 100, Max delay(us): 200

  Delay variation(us): 200

  Remaining bandwidth: 200

  Available bandwidth: 100

  Utilized bandwidth: 50

BGP peering segment type : Adjacency

  PeerAdj                          : FE80::28B6:9EFF:FE23:206

  Local ASNumber                   : 100

  Remote ASNumber                  : 200

  Local RouterID                   : 1.1.1.9

  Remote RouterID                  : 2.2.2.9

  Local Interface Address          : FE80::28B6:9EFF:FE23:D16

  Remote Interface Address         : FE80::28B6:9EFF:FE23:206

  Interface                        : XGE3/1/1

  OriginalNextHop                  : 2::9

  RelyNextHop                      : FE80::28B6:9EFF:FE23:206

  SID(PSP)                         : 3:4::400

  SID(NO-FLAVOR)                   : 3:4::500

  SID(PSP,USP,USD)                 : 3:4::600

  SID(PSP COC32)                   : 3:4::105:0

  SID(NO-FLAVOR COC32)             : 3:4::106:0

  SID(PSP COCNONE)                 : 3:4::107:0

  SID(NO-FLAVOR COCNONE)           : 3:4::108:0

  SID(PSP,USP,USD,COCNONE)         : 3:4::109:0

  Administrative group: 0x0

  Maximum link bandwidth(kbits/sec): 100000

  Maximum reservable link bandwidth(kbits/sec): 9999

  Maximum Unreserved bandwidth(kbits/sec): 999 999 999 999 999 999 999 999

  TE Metric: 1

  Flag: 0, Average delay(us): 100

  Flag: 0, Min delay(us): 100, Max delay(us): 200

  Delay variation(us): 200

  Remaining bandwidth: 200

  Available bandwidth: 100

  Utilized bandwidth: 50

BGP peering segment type : Adjacency

  PeerAdj                          : FE80::28B6:9EFF:FE23:208

  Local ASNumber                   : 100

  Remote ASNumber                  : 200

  Local RouterID                   : 1.1.1.9

  Remote RouterID                  : 2.2.2.9

  Local Interface Address          : FE80::28B6:9EFF:FE23:D18

  Remote Interface Address         : FE80::28B6:9EFF:FE23:208

  Interface                        : XGE3/1/2

  OriginalNextHop                  : 2::9

  RelyNextHop                      : FE80::28B6:9EFF:FE23:208

  SID(PSP)                         : 3:4::700

  SID(NO-FLAVOR)                   : 3:4::800

  SID(PSP,USP,USD)                 : 3:4::900

  SID(PSP COC32)                   : 3:4::10A:0

  SID(NO-FLAVOR COC32)             : 3:4::10B:0

  SID(PSP COCNONE)                 : 3:4::10C:0

  SID(NO-FLAVOR COCNONE)           : 3:4::10D:0

  SID(PSP,USP,USD,COCNONE)         : 3:4::10E:0

  Administrative group: 0x0

  Maximum link bandwidth(kbits/sec): 100000

  Maximum reservable link bandwidth(kbits/sec): 9999

  Maximum Unreserved bandwidth(kbits/sec): 999 999 999 999 999 999 999 999

  TE Metric: 1

  Flag: 0, Average delay(us): 100

  Flag: 0, Min delay(us): 100, Max delay(us): 200

  Delay variation(us): 200

  Remaining bandwidth: 200

  Available bandwidth: 100

  Utilized bandwidth: 50

Table 1 Command output

Field

Description

BGP peering segment type

BGP peering segment type of the peer:

·     Node—Node type.

·     Adjacency—Adjacency type.

·     Node-Adjacency—Node and adjacency type.

Peer Node

Address of the node-type peer.

Peer Adj

Address of the adjacency-type peer.

Peer NodeAdj

Address of the node- and adjacency-type peer.

PeerAdj Num

Number of adjacency-type peers.

Interface

Information about the interface used to establish peer relationship.

OriginalNextHop

IP address of the original next hop.

RelyNextHop

IP address of the recursed next hop.

StaticSID(NO-FLAVOR)

Manually configured End.X SID (no-flavor type).

StaticSID(PSP)

Manually configured End.X SID (PSP flavor type).

StaticSID(PSP,USP,USD)

Manually configured End.X SID (PSP, USP, and USD flavor type).

StaticSID(NO-FLAVOR COC32)

Manually configured End.X (COC32) SID (no-flavor type).

StaticSID(PSP COC32)

Manually configured End.X (COC32) SID (PSP flavor type).

StaticSID(NO-FLAVOR COCNONE)

Manually configured End.X (COCNONE) SID (no-flavor type).

StaticSID(PSP COCNONE)

Manually configured End.X (COCNONE) SID (PSP flavor type).

StaticSID(PSP,USP,USD COCNONE)

Manually configured End.X (COCNONE) SID (PSP, USP, and USD flavor type).

SID(NO-FLAVOR)

Effective End.X SID (no-flavor type).

SID(PSP)

Effective End.X SID (PSP flavor type).

SID(PSP,USP,USD)

Effective End.X SID (PSP, USP, and USP flavor type).

SID(NO-FLAVOR COC32)

Effective End.X (COC32) SID (no-flavor type).

SID(PSP COC32)

Effective End.X (COC32) SID (PSP flavor type).

SID(NO-FLAVOR COCNONE)

Effective End.X (COCNONE) SID (no-flavor type).

SID(PSP COCNONE)

Effective End.X (COCNONE) SID (PSP flavor type).

SID(PSP,USP,USD COCNONE)

Effective End.X (COCNONE) SID (PSP, USP, and USD flavor type).

Administrative Group

Administrative group of the link, or link attribute.

TE Metric

TE metric value.

Flag

Flag for average delay measurement:

·     0—The measured average delay value is less than or equal to 16777215 microseconds. The link is stable.

·     1—The measured average delay value is greater than or equal to 16777215 microseconds.

Average delay(us)

Average delay in microseconds.

Flag

Flag for minimum/maximum delay measurement:

·     0—The measured delay value is less than or equal to 16777215 microseconds. The link is stable.

·     1—The measured delay value is greater than or equal to 16777215 microseconds.

 

display bgp egress-engineering srv6 peer-set

Use display bgp egress-engineering srv6 peer-set to display information about BGP-EPE SRv6 peer sets.

Syntax

display bgp egress-engineering srv6 peer-set [ srv6-peer-set-name ]

Views

Any view

Predefined user roles

network-admin

network-operator

Parameters

peer-set-name: Specifies a BGP-EPE SRv6 peer set by its name, a case-sensitive string of 1 to 63 characters. If you do not specify a BGP-EPE SRv6 peer set, this command displays information about all BGP-EPE SRv6 peer sets.

Examples

# Display information about all BGP-EPE SRv6 peer sets.

<Sysname> display bgp egress-engineering srv6 peer-set

 

BGP egress peering segment srv6 peer-set: abc

  StaticSID(PSP)                   : 3:4::100

  StaticSID(NO-FLAVOR)             : 3:4::200

  StaticSID(PSP,USP,USD)           : 3:4::300

  StaticSID(PSP COC32)             : 3:4::100:0

  StaticSID(NO-FLAVOR COC32)       : 3:4::102:0

  StaticSID(PSP COCNONE)           : 3:4::101:0

  StaticSID(NO-FLAVOR COCNONE)     : 3:4::103:0

  StaticSID(PSP,USP,USD,COCNONE)   : 3:4::104:0

  SID(PSP)                         : 3:4::700

  SID(NO-FLAVOR)                   : 3:4::800

  SID(PSP,USP,USD)                 : 3:4::900

  SID(PSP COC32)                   : 3:4::10A:0

  SID(NO-FLAVOR COC32)             : 3:4::10B:0

  SID(PSP COCNONE)                 : 3:4::10C:0

  SID(NO-FLAVOR COCNONE)           : 3:4::10D:0

  SID(PSP,USP,USD,COCNONE)         : 3:4::10E:0

  Members: 1

    Peer: 4:4:4::4

Table 2 Command output

Field

Description

BGP egress peering segment srv6 peer-set

Name of a BGP-EPE SRv6 peer set.

StaticSID(PSP)

Manually configured End.X SID (PSP flavor type).

StaticSID(NO-FLAVOR)

Manually configured End.X SID (no-flavor type).

StaticSID(PSP,USP,USD)

Manually configured End.X SID (PSP, USP, and USD flavor type).

StaticSID(NO-FLAVOR COC32)

Manually configured End.X (COC32) SID (no-flavor type).

StaticSID(PSP COC32)

Manually configured End.X (COC32) SID (PSP flavor type).

StaticSID(NO-FLAVOR COCNONE)

Manually configured End.X (COCNONE) SID (no-flavor type).

StaticSID(PSP COCNONE)

Manually configured End.X (COCNONE) SID (PSP flavor type).

StaticSID(PSP,USP,USD COCNONE)

Manually configured End.X (COCNONE) SID (PSP, USP, and USD flavor type).

SID(PSP)

Automatically allocated End.X SID (PSP flavor type).

SID(NO-FLAVOR)

Automatically allocated End.X SID (no-flavor type).

SID(PSP,USP,USD)

Automatically allocated End.X SID (PSP, USP, and USP flavor type).

SID(NO-FLAVOR COC32)

Effective End.X (COC32) SID (no-flavor type).

SID(PSP COC32)

Effective End.X (COC32) SID (PSP flavor type).

SID(NO-FLAVOR COCNONE)

Effective End.X (COCNONE) SID (no-flavor type).

SID(PSP COCNONE)

Effective End.X (COCNONE) SID (PSP flavor type).

SID(PSP,USP,USD COCNONE)

Effective End.X (COCNONE) SID (PSP, USP, and USD flavor type).

Members

Number of peers in the BGP-EPE SRv6 peer set.

Peer

Peer in the BGP-EPE SRv6 peer set.

display isis segment-routing ipv6 capability

Use display isis segment-routing ipv6 capability to display IS-IS SRv6 capability information.

Syntax

display isis segment-routing ipv6 capability [ level-1 | level-2 ] [ process-id ]

Views

Any view

Predefined user roles

network-admin

network-operator

Parameters

level-1: Specifies IS-IS Level-1.

level-2: Specifies IS-IS Level-2.

process-id: Specifies an IS-IS process by its ID, in the range of 1 to 65535. If you do not specify a process, this command displays SRv6 capability information for all IS-IS processes.

Usage guidelines

If you do not specify a level, this command displays IS-IS SRv6 capability information for both Level-1 and Level-2.

Examples

# Display SRv6 capability information for IS-IS process 1.

<Sysname> display isis segment-routing ipv6 capability level-1 1

      IPv6 segment routing capability information for IS-IS(1)

 

                Level-1 IPv6 segment routing capability

 

System ID               SRv6 capability

0000.1000.0001          Enabled

0000.2000.0001          Enabled

0000.2000.0002          Enabled

0000.2000.0003          Enabled

Table 3 Command output

Field

Description

System ID

Neighbor system ID.

SRv6 capability

Whether SRv6 is enabled.

display isis segment-routing ipv6 locator

Use display isis segment-routing ipv6 locator to display IS-IS SRv6 locator information.

Syntax

display isis segment-routing ipv6 locator [ ipv6-address prefix-length ] [ flex-algo flex-algo-id | [ level-1 | level-2 ] | verbose ] * [ process-id ]

Views

Any view

Predefined user roles

network-admin

network-operator

Parameters

ipv6-address prefix-length: Specifies a destination IPv6 address prefix and the prefix length. The value range for the prefix-length argument is 1 to 128.

flex-algo flex-algo-id: Specifies a Flex-Algo by its ID, in the range of 128 to 255. If you do not specify a Flex-Algo, this command displays locator route information calculated by all Flex-Algos.

level-1: Specifies the level-1 area.

level-2: Specifies the level-2 area.

verbose: Displays detailed IS-IS SRv6 locator information. If you do not specify this keyword, the command displays only brief IS-IS SRv6 locator information.

process-id: Specifies an IS-IS process by its ID, in the range of 1 to 65535. If you do not specify a process, this command displays IS-IS SRv6 locator information for all IS-IS processes.

Examples

# Display IS-IS SRv6 locator information.

<Sysname> display isis segment-routing ipv6 locator

 

                         Route information for IS-IS(1)

                         ------------------------------

 

                          Level-1 Locator Route Table

                          ---------------------------

 

 Destination : 201::                                   PrefixLen: 64

 Flags       : R/-/-                                   Cost     : 2

 Next hop    : FE80::38A5:3DFF:FEE9:218                Interface: XGE3/1/1

 

 Destination : 202::                                   PrefixLen: 64

 Flags       : R/-/-                                   Cost     : 1

 Next hop    : FE80::38A5:3DFF:FEE9:218                Interface: XGE3/1/3

 

      Flags: D-Direct, R-Added to Rib, L-Advertised in LSPs, U-Up/Down Bit Set

Table 4 Command output

Field

Description

Destination

Destination IPv6 prefix.

PrefixLen

Prefix length.

Flag/Flags

Route flags:

·     D—The route is a direct route.

·     R—The route has been flushed to the RIB.

·     L—The route has been advertised in LSPs.

·     U—Penetration flag. Setting it to UP can prevent an LSP sent from L2 to L1 from being sent back to L2.

Cost

Route cost value.

Next hop

Route next hop.

Interface

Output interface.

# Display detailed IS-IS SRv6 locator route information.

<Sysname> display isis segment-routing ipv6 locator verbose

 

                         Route information for IS-IS(1)

                         ------------------------------

 

                          Level-1 Locator Route Table

                          ---------------------------

 

 IPv6 dest   : 5000::/64

 Flag        : D/L/-                       Cost        : 0

 Admin tag   : -                           Src count   : 1

 Algorithm   : 0

 Priority    : Low

 Nexthop     : Direct

 NxthopFlag  : -

 Interface   : NULL0                       Delay Flag : N/A

 Nib ID      : 0x0

 

      Flags: D-Direct, R-Added to Rib, L-Advertised in LSPs, U-Up/Down Bit Set

 

                          Level-2 Locator Route Table

                          ---------------------------

 

 IPv6 dest   : 5000::/64

 Flag        : D/L/-                       Cost        : 0

 Admin tag   : -                           Src count   : 4

 Algorithm   : 0

 Priority    : Low

 Nexthop     : Direct

 NxthopFlag  : -

 Interface   : NULL0                       Delay Flag : N/A

 Nib ID      : 0x0

 

      Flags: D-Direct, R-Added to Rib, L-Advertised in LSPs, U-Up/Down Bit Set

Table 5 Command output

Field

Description

Route information for IS-IS(1)

Locator route information about the IS-IS process.

Flex Algo Route Information for IS-IS(1)

Locator route information for the specified Flex-Algo.

Level-1 Locator Route Table

IS-IS Level-1 locator route information.

Level-2 Locator Route Table

IS-IS Level-2 locator route information.

Level-1 Flex Algo(xxx) Locator Route Table

IS-IS Level-1 locator route information calculated by the Flex-Algo. The value xxx represents the Flex-Algo ID.

Level-2 Flex Algo(xxx) Locator Route Table

IS-IS Level-2 locator route information calculated by the Flex-Algo. The value xxx represents the Flex-Algo ID.

IPv6 dest

Destination IPv6 prefix

Flag

Route state flag:

·     D—Direct route.

·     R—The route has been added into the routing table.

·     L—The route has been advertised in an LSP.

·     U—Route leaking flag, indicating that the Level-1 route is from Level-2. U means that the route will not be returned to Level-2.

Cost

Route cost.

Admin tag

Administrative tag.

Src count

Number of advertisement sources.

Algorithm

Flexible algorithm ID.

Priority

Route convergence priority:

·     Critical.

·     High.

·     Medium.

·     Low.

Next hop

Next hop. If the route is a direct route, this field displays Direct.

NxthopFlag

Next hop flag. Value D indicates that the next hop is the direct next hop of the advertisement source.

Interface

Output interface.

Delay Flag

Microloop avoidance delay flag:

·     D—Microloop avoidance is configured. Route convergence is delayed.

·     N/A—Microloop avoidance is not configured or the microloop avoidance delay timer has expired. Route convergence is in progress.

Nib ID

Next hop index assigned by the routing management module.

display isis srv6 tunnel

Use display isis srv6 tunnel to display IS-IS SRv6 tunnel interface information.

Syntax

display isis srv6 tunnel [ level-1 | level-2 ] [ process-id ]

Views

Any view

Predefined user roles

network-admin

network-operator

Parameters

level-1: Specifies the level-1 area.

level-2: Specifies the level-2 area.

process-id: Specifies an IS-IS process by its ID, in the range of 1 to 65535. If you do not specify a process, this command displays SRv6 tunnel interface information for all IS-IS processes.

Usage guidelines

If you do not specify a level, this command displays IS-IS SRv6 tunnel interface information for both level-1 and level-2 areas.

Examples

# Display SRv6 tunnel interface information for IS-IS process 1.

<Sysname> display isis srv6 tunnel

 

                    SRv6 tunnel information for IS-IS(1)

                    ---------------------------------------

 

                           Level-1 tunnel statistics

                           -------------------------

 

   Tunnel name  Auto route  Destination                        Metric

   -----------------------------------------------------------------------

   Tun0         Shortcut    1000::1                            Relative 0

 

                           Level-2 tunnel statistics

                           -------------------------

 

   Tunnel name  Auto route  Destination                        Metric

   -----------------------------------------------------------------------

   Tun0         Shortcut    1000::                             Relative 0

Table 6 Command output

Field

Description

Auto route

Implementation method of automatic route advertisement on the tunnel interface:

·     Advertise—Forwarding adjacency. This method is not supported in the current software version.

·     Shortcut—IGP shortcut.

Metric

Metric of the tunnel interface.

Supported metric types:

·     Relative.

·     Absolute.

display ospfv3 segment-routing ipv6 capability

Use display ospfv3 segment-routing ipv6 capability to display OSPFv3 SRv6 capability information.

Syntax

display ospfv3 [ process-id ] segment-routing ipv6 capability

Views

Any view

Predefined user roles

network-admin

network-operator

Parameters

process-id: Specifies an OSPFv3 process by its ID, in the range of 1 to 65535. If you do not specify a process, this command displays SRv6 capability information for all OSPFv3 processes.

Examples

# Display SRv6 capability information for all OSPFv3 processes.

<Sysname> display ospfv3 segment-routing ipv6 capability

 

            OSPFv3 Process 1 with Router ID 1.1.1.1

 

Area 0.0.0.0

------------------------------------------------------------------------

 Router ID        SRv6 capability

 2.2.2.2          Enabled

Table 7 Command output

Field

Description

Router ID

Device router ID.

SRv6 capability

Whether SRv6 is enabled. The value can only be Enabled.

display ospfv3 segment-routing ipv6 locator

Use display ospfv3 segment-routing ipv6 locator to display OSPFv3 SRv6 locator information.

Syntax

display ospfv3 [ process-id ] [ flex-algo flex-algo-id ] segment-routing ipv6 locator [ ipv6-address prefix-length ]

Views

Any view

Predefined user roles

network-admin

network-operator

Parameters

process-id: Specifies an OSPFv3 process by its ID, in the range of 1 to 65535. If you do not specify an OSPFv3 process, this command displays locator information for all OSPFv3 processes.

flex-algo flex-algo-id: Specifies a flexible algorithm by its ID. The value range for this argument is 128 to 255. If you do not specify this option, the command displays locator information for non-flexible algorithms.

ipv6-address prefix-length: Specifies an IPv6 address prefix and the prefix length. The ipv6-address argument represents the IPv6 address prefix. The prefix-length argument represents the prefix length, in the range of 32 to 120. If you do not specify this option, the command displays locator information for all IPv6 prefixes.

Examples

# Display locator information for all OSPFv3 processes.

<Sysname> display ospfv3 segment-routing ipv6 locator

 

               OSPFv3 Process 1 with Router ID 1.1.1.1

-------------------------------------------------------------------------

 I  - Intra area route,  E1 - Type 1 external route,  N1 - Type 1 NSSA route

 IA - Inter area route,  E2 - Type 2 external route,  N2 - Type 2 NSSA route

 *  - Selected route

 

 *Destination: 192:168::12:0/120

  Type       : I                         Area       : 0.0.0.0

  AdvRouter  : 2.2.2.2                   Preference : 10

  NibID      : 0x23000002                Cost       : 10

  Interface  : XGE3/1/1                  BkInterface: N/A

  Nexthop    : ::

  BkNexthop  : N/A

  Algorithm  : 0

  Status     : Direct

Table 8 Command output

Field

Description

Destination

Destination network.

Type

Route type.

Area

Area ID.

AdvRouter

ID of the router that advertises LSAs.

Preference

Route preference.

NibID

ID of the next hop information in the route.

Cost

Route cost.

Interface

Output interface.

BkInterface

Backup output interface.

Nexthop

Next hop address.

BkNexthop

Backup next hop address.

Algorithm

Algorithm ID:

·     0—SPF algorithm.

·     128-255—Flexible algorithm.

Status

Route state:

·     Local—The route is a local route and has not been sent to the route management module.

·     Invalid—The next hop of the route is invalid.

·     Stale—The next hop of the route is stale.

·     Normal—The route is usable.

·     Delete—The route is deleted.

·     Direct—The route is a direct route.

·     Rely—The route is recursed by another route.

 

display ospfv3 srv6 tunnel

Use display ospfv3 srv6 tunnel to display OSPFv3 SRv6 tunnel interface information.

Syntax

display ospfv3 [ process-id ] srv6 tunnel [ interface-number ]

Views

Any view

Predefined user roles

network-admin

network-operator

Parameters

process-id: Specifies an OSPFv3 process by its ID, in the range of 1 to 65535. If you do not specify a process, this command displays SRv6 tunnel interface information for all OSPFv3 processes.

interface-number: Specifies an existing SRv6 tunnel interface by its interface number. If you do not specify an SRv6 tunnel interface, this command displays information about all SRv6 tunnel interfaces.

Examples

# Display SRv6 tunnel interface information for all OSPFv3 processes.

<Sysname> display ospfv3 srv6 tunnel

               OSPFv3 Process 1 with Router ID 1.1.1.1

                      SRv6 Tunnel Information

 

 Area: 0.0.0.0

 Interface: Tunnel1

        State      : Active

        Neighbor ID: 4.4.4.4

        Cost       : 1

        Auto route : Shortcut

        Metric     : Absolute  1

        Destination: 4::44

Table 9 Command output

Field

Description

Interface

Tunnel interface name.

State

Tunnel interface state:

·     Inactive—The next hop of the tunnel interface is not the optimal next hop. The tunnel interface is not used to forward traffic.

·     Active—The next hop of the tunnel interface is the optimal next hop. The tunnel interface is used to forward traffic.

Neighbor ID

Neighbor ID of the tunnel interface:

·     When the tunnel interface state is Inactive, the neighbor ID is 0.0.0.0, which indicates that the tunnel is not on the optimal path.

·     When the tunnel interface state is Active, the neighbor ID is the router ID of the tunnel destination end.

Cost

Route cost of the tunnel interface:

·     When the tunnel interface state is Inactive, this field displays 4294967295, which indicates that the tunnel is not on the optimal path.

·     When the tunnel interface state is Active, this field displays the cost of the route destined for the router ID of the tunnel destination end.

Destination

Tunnel destination address.

Auto route

Implementation method of automatic route advertisement on the tunnel interface. The value for this field is Shortcut, which represents IGP Shortcut.

Metric

Metric of the SRv6 tunnel interface.

Supported metric types:

·     Absolute.

·     Relative.

display segment-routing ipv6 available-static-sid

Use display segment-routing ipv6 available-static-sid to display available static SRv6 SIDs in a locator.

Syntax

display segment-routing ipv6 available-static-sid locator locator-name [ from begin-value ]

Views

Any view

Predefined user roles

network-admin

network-operator

Parameters

locator locator-name: Specifies a locator by its name, a case-sensitive string of 1 to 31 characters.

from begin-value: Specifies available static SRv6 SIDs that start from the specified value. The begin-value argument represents the start value in IPv6 address format. If you do not specify a start value, this command displays available static SRv6 SIDs starting from the smallest available one.

Usage guidelines

If you specify a static length when configuring an SRv6 locator, the device can allocate static SRv6 SIDs from the locator. Use this command to display a maximum of 10 available static SRv6 SIDs in the locator.

To specify the from begin-value option, you must first identify the static SID range of the locator by using the display segment-routing ipv6 locator command.

Examples

# Display available static SRv6 SIDs in locator abc.

<Sysname> display segment-routing ipv6 available-static-sid locator abc

 

                    Available static SRv6 SID table

 

 200:1::1

 200:1::2

 200:1::3

 200:1::4

 200:1::5

 200:1::6

 200:1::7

 200:1::8

 200:1::9

 200:1::A

 

# Display available static SRv6 SIDs that start from 100:1:2:3::FB in locator test1.

<Sysname> display segment-routing ipv6 available-static-sid locator test1 from 100:1:2:3::FB

 

                      Available static SRv6 SID table

 

100:1:2:3::FB

100:1:2:3::FC

100:1:2:3::FD

100:1:2:3::FE

100:1:2:3::FF

N/A

N/A

N/A

N/A

N/A

Table 10 Command output

Field

Description

Available static SRv6 SID table

Available static SRv6 SIDs.

Available static SRv6 CSID table

Available static SRv6 compressed SIDs.

N/A

No static SRv6 SIDs are available.

 

Related commands

display segment-routing ipv6 locator

display segment-routing ipv6 forwarding

Use display segment-routing ipv6 forwarding to display SRv6 forwarding entry information.

Syntax

In standalone mode:

display segment-routing ipv6 forwarding [ entry-id [ relation ] | forwarding-type { srv6be | srv6frr | srv6pcpath | srv6pgroup | srv6policy | srv6sidlist | srv6sids } ] [ slot slot-number ]

In IRF mode:

display segment-routing ipv6 forwarding [ entry-id [ relation ] | forwarding-type { srv6be | srv6frr | srv6pcpath | srv6pgroup | srv6policy | srv6sidlist | srv6sids } ] [ chassis chassis-number slot slot-number ]

Views

Any view

Predefined user roles

network-admin

network-operator

Parameters

entry-id: Specifies an SRv6 forwarding entry by its ID. The value range for this argument is 0 to 4294967294. If you do not specify an SRv6 forwarding entry ID, this command displays information about all SRv6 forwarding entries.

relation: Displays information about entries associated with the specified entry.

forwarding-type: Specifies a forwarding type. If you do not specify a forwarding type, this command displays SRv6 forwarding information for all forwarding types.

srv6be: Specifies tunnels in SRv6 BE paths.

srv6frr: Specifies tunnels in SRv6 FRR.

srv6pcpath: Specifies tunnels in SRv6 TE policy candidate paths.

srv6pgroup: Specifies tunnels in SRv6 TE policy groups.

srv6policy: Specifies tunnels in SRv6 TE policies.

srv6psidlist: Specifies tunnels defined by SID lists in SRv6 TE policies.

srv6sids: Specifies tunnels matching SRv6 SIDs.

slot slot-number: Specifies a card by its slot number. If you do not specify a card, this command displays SRv6 forwarding entries on the active MPU. (In standalone mode.)

chassis chassis-number slot slot-number: Specifies a card on an IRF member device. The chassis-number argument represents the IRF member ID. The slot-number argument represents the slot number of the card. If you do not specify a card, this command displays SRv6 forwarding entries on the global active MPU. (In IRF mode.)

Examples

# Display all SRv6 forwarding entries.

<Sysname> display segment-routing ipv6 forwarding

Total SRv6 forwarding entries: 4

 

Flags: T – Forwarded through a tunnel

       N – Forwarded through the outgoing interface to the nexthop IP address

       A - Active forwarding information

       B – Backup forwarding information

 

ID            FWD-Type      Flags   Forwarding info

              Attri-Val             Attri-Val

--------------------------------------------------------------------------------

2148532225    SRv6PSIDList  NA      XGE3/1/1

                                    FE80::54CB:70FF:FE86:316

                                    {6000::1, 7000::1, 8000::1}

2148532226    SRv6PSIDList  NA      XGE3/1/3

                                    FE80::44A8:69FF:FE19:233

                                    {22::16,

                                    3:5:7000:1::,

                                    [7000:5, 7000:4, 7000:3, 7000:2],

                                    [7000:100],

                                    3:5:8000:1::,

                                    [8000:3, 8000:4]}

2149580801    SRv6PCPath    TA      2148532225

2150629377    SRv6Policy    TA      2149580801

              Policy10

Table 11 Command output

Field

Description

FWD-Type

Tunnel forwarding type:

·     SRv6SIDs—Tunnel established based on SRv6 SIDs.

·     SRv6PSIDList—Tunnel established based on the SID list in an SRv6 TE policy.

·     SRv6PCPath—Tunnel established on the candidate path selected by an SRv6 TE policy.

·     SRv6Policy—SRv6 TE policy tunnel.

·     SRv6PGroup—SRv6 TE policy group tunnel.

·     SRv6BE—Tunnel established on the path selected in the SRv6 BE mode.

·     SRv6FRR—Tunnels to the primary and backup nexthops of SRv6 FRR.

Flags

Forwarding flags:

·     T—Tunnel forwarding.

·     N—Output interface or next hop forwarding.

·     A—Active forwarding information.

·     B—Backup forwarding information.

Forwarding info

SRv6 forwarding information.

·     For the N forwarding flag, the forwarding information includes the output interface, next hop, and SID list. A SID in [xx:xx, xx:xx, xx:xx, xx:xx], [xx:xx, xx:xx, xx:xx], [xx:xx, xx:xx], or [xx:xx] format is composed of G-SIDs, where xx:xx represents a G-SID. Only the 32-bit G-SID compression mode (cos32) is supported, so such a SID can contain a maximum of four G-SIDs, listed in ascending order by SI.

·     For the T forwarding flag, the forwarding information is the SRv6 forwarding entry ID.

Attri-Val

Forwarding attribute.

In the current software version, the value is an SRv6 TE policy name.

This field is available only when the value for the FWD-Type field is SRv6Policy or SRv6PGroup.

display segment-routing ipv6 local-sid

Use display segment-routing ipv6 local-sid to display information about the SRv6 local SID forwarding table.

Syntax

display segment-routing ipv6 local-sid [ locator locator-name ] [ end | end-b6encaps | end-b6encapsred | end-b6insert | end-b6insertred | end-coc-none | end-coc32 | end-dt2m | end-dt2u | end-dt2ul | end-dx2 | end-dx2l | end-m | end-op | end-t ] [ owner owner ] [ sid ]

display segment-routing ipv6 local-sid [ locator locator-name ] [ end-dt4 | end-dt46 | end-dt6 | end-dx4 | end-dx6 ] [ owner owner ] [ sid | vpn-instance vpn-instance-name ]

display segment-routing ipv6 local-sid [ locator locator-name ] [ end-x | end-x-coc32 | end-x-coc-none } [ sid | interface interface-type interface-number [ nexthop nexthop-ipv6-address ] ] [ owner owner ]

Views

Any view

Predefined user roles

network-admin

network-operator

Parameters

locator locator-name: Specifies a locator by its name, a case-sensitive string of 1 to 31 characters. If you do not specify a locator, this command displays information about the SRv6 local SID forwarding table for all locators.

end: Specifies End SIDs.

end-b6encaps: Specifies End.B6ENCAPS SIDs.

end-b6encapsred: Specifies End.B6ENCAPSRED SIDs.

end-b6insert: Specifies End.B6INSERT SIDs.

end-b6insertred: Specifies End.B6INSERTRED SIDs.

end-coc-none: Specifies End (COCNONE) SIDs.

end-coc32: Specifies End (COC32) SIDs.

end-dt2m: Specifies End.DT2M SIDs.

end-dt2u: Specifies End.DT2U SIDs.

end-dt2ul: Specifies End.DT2UL SIDs.

end-dt4: Specifies End.DT4 SIDs.

end-dt46: Specifies End.DT46 SIDs.

end-dt6: Specifies End.DT6 SIDs.

end-dx2: Specifies End.DX2 SIDs.

end-dx2l: Specifies End.DX2L SIDs.

end-dx4: Specifies End.DX4 SIDs.

end-dx6: Specifies End.DX6 SIDs.

end-m: Specifies End.M SIDs.

end-op: Specifies End.OP SIDs.

end-t: Specifies End.T SIDs.

end-x: Specifies End.X SIDs.

end-x-coc-none: Specifies End.X (COCNONE) SIDs.

end-x-coc32: Specifies End.X (COC32) SIDs.

sid: Specifies an SRv6 SID. If you do not specify an SRv6 SID, this command displays SRv6 local forwarding table information for all SRv6 SIDs of the specified type.

vpn-instance vpn-instance-name: Specifies the MPLS L3VPN instance to which the SRv6 SIDs belong. The vpn-instance-name argument is a case-sensitive string of 1 to 31 characters. If you do not specify this option, the command displays SRv6 local SID forwarding table information in the public network.

interface interface-type interface-number: Specifies an output interface by its type and number. If you do not specify an output interface, the command displays SRv6 local SID forwarding table information for all End.X SIDs.

nexthop nexthop-ipv6-address: Specifies the IPv6 address of a next hop. If you do not specify a next hop, the command displays SRv6 local SID forwarding table information for all IPv6 next hops.

owner owner: Specifies a protocol. The value for the owner argument is case insensitive. The supported values include SIDMGR, BGP, SRPolicy, IS-IS, OSPFv3, L2VPN, VSRP, and NAT. If you do not specify a protocol, this command displays information about the SRv6 local SID forwarding table for all protocols.

Examples

# Display SRv6 local forwarding table information for all End SIDs.

<Sysname> display segment-routing ipv6 local-sid end

 

                    Local SID forwarding table (End)

 

Total SIDs: 1

 

SID           : 100::64/96

Function type : End                             Flavor         : PSP

Locator name  : abc                             Allocation type: Static

Owner         : SIDMGR                          State          : Active

Create Time   : May 19 17:21:15.687 2020

# Display SRv6 local forwarding table information for all End.X SIDs.

<Sysname> display segment-routing ipv6 local-sid end-x

 

                    Local SID forwarding table (End.X)

 

Total SIDs: 1

 

SID           : 1000:0:0:15::/32

Function type : End.X                           Flavor         : PSP

Interface     : XGE3/1/1                        Interface index: 0x102

Next hop      : FE80::1                         Allocation type: Static

Locator name  : abc

Owner         : SIDMGR                          State          : Active

Create Time   : May 19 17:21:46.740 2020

# Display SRv6 local forwarding table information for all End.DT4 SIDs.

<Sysname> display segment-routing ipv6 local-sid end-dt4

 

                    Local SID forwarding table (End.DT4)

 

Total SIDs: 1

 

SID           : 6:5::1:1/120

Function type : End.DT4                         Flavor         : PSP

VPN instance  : vpn1                            Allocation type: Static

Network type  : MPLS L3VPN

Locator name  : abc

Owner         : SIDMGR                          State          : Active

Create Time   : May 19 17:22:27.356 2020

# Display SRv6 local forwarding table information for all End.DT6 SIDs.

<Sysname> display segment-routing ipv6 local-sid end-dt6

 

                    Local SID forwarding table (End.DT6)

 

Total SIDs: 1

 

SID           : 1:2::2:2/120

Function type : End.DT6                         Flavor         : PSP

VPN instance  : vpn1                            Allocation type: Static

Network type  : MPLS L3VPN

Locator name  : abc

Owner         : SIDMGR                          State          : Active

Create Time   : May 19 17:22:27.356 2020

# Display SRv6 local forwarding table information for all End.OP SIDs.

<Sysname> display segment-routing ipv6 local-sid end-op

 

                    Local SID forwarding table (End.OP)

 

Total SIDs: 1

 

SID           : 100::190/96

Function type : End.OP

Locator name  : abc

Owner         : SIDMGR                          State          : Active

Create Time   : May 19 17:23:40.248 2020

# Display SRv6 local forwarding table information for all End.DX2 SIDs.

<Sysname> display segment-routing ipv6 local-sid end-dx2

 

                    Local SID forwarding table (End.DX2)

 

Total SIDs: 1

 

SID           : 100:1:2:3::6400/96

Function type : End.DX2                         Flavor         : PSP

Xconnect-group: abc                             Connection     : test

VSI name      :                                 Service ID     : 0

Interface     :

Locator name  : abc                             Allocation type: Static

Owner         : SIDMGR                          State          : Active

Create Time   : May 20 09:17:58.995 2020

# Display SRv6 local forwarding table information for all End.DT2U SIDs.

<Sysname> display segment-routing ipv6 local-sid end-dt2u

 

                    Local SID forwarding table (End.DT2U)

 

Total SIDs: 1

 

SID           : 100:1:2:3::C800/96

Function type : End.DT2U                        Flavor         : PSP

VSI name      : abc                             Allocation type: Static

Locator name  : abc

Owner         : SIDMGR                          State          : Active

Create Time   : May 20 09:18:14.504 2020

# Display SRv6 local forwarding table information for all End.DX4 SIDs.

<Sysname> display segment-routing ipv6 local-sid end-dx4

 

                    Local SID forwarding table (End.DX4)

 

Total SIDs: 1

 

SID           : 100::1:0:4/64

Function type : End.DX4                         Flavor         : PSP

Interface     : GE1/0/1                         Interface index: 0x11d

Nexthop       : 10.1.1.1

VPN instance  : vpn1                            Allocation type: Dynamic

Locator name  : bbb

Owner         : BGP                             State          : Active

Create Time   : Jun 09 19:30:25.467 2020

# Display SRv6 local forwarding table information for all End.DX6 SIDs.

<Sysname> display segment-routing ipv6 local-sid end-dx6

 

                    Local SID forwarding table (End.DX6)

 

Total SIDs: 1

 

SID           : 100::2/64

Function type : End.DX6                         Flavor         : PSP

Interface     : GE1/0/1                         Interface index: 0x11d

Nexthop       : 100::10

VPN instance  : vpn1                            Allocation type: Dynamic

Locator name  : aaa

Owner         : BGP                             State          : Active

Create Time   : Jun 09 19:41:36.749 2020

# Display SRv6 local forwarding table information for all End.M SIDs.

<Sysname> display segment-routing ipv6 local-sid end-m

 

                    Local SID forwarding table (End.M)

 

Total SIDs: 1

 

SID           : 9:7::1:1/120

Function type : End.M                           Flavor         : --

Locator name  : ccc                             Allocation type: Static

Mirror locator number: 1

Mirror locator: 6:5::1:0/120

Owner         : SIDMGR                          State          : Active

Create Time   : Nov 02 09:48:23.435 2020

# Display SRv6 local forwarding table information for SRPolicy.

<Sysname> display segment-routing ipv6 local-sid owner SRPolicy

 

                    Local SID forwarding table

 

Total SIDs: 1

 

SID           : 5000::1:0:0/64

Function type : End.B6ENCAPS                    Flavor         : PSP

Locator name  : a                               Allocation type: Dynamic

Owner         : SRPolicy                        State          : Active

Create Time   : Aug 24 03:20:37.684 2022

Table 12 Command output

Field

Description

SID

SRv6 SID.

Function type

SRv6 SID type:

·     End.

·     End.B6.Encaps.

·     End.B6.Encaps.Red.

·     End.B6.Insert.

·     End.B6.Insert.Red.

·     End.DT2M.

·     End.DT2U.

·     End.DT2UL.

·     End.DT4.

·     End.DT46.

·     End.DT6.

·     End.DX2.

·     End.DX2L.

·     End.M.

·     End.OP.

·     End.X.

·     End.DX4.

·     End.DX6.

·     End.T.

Flavor

SRv6 SID flavor type:

·     NO-FLAVOR—The SRv6 SID does not carry any flavors.

·     PSP—The penultimate SRv6 node removes the SRH.

·     PSP,USP,USD—The SRv6 SID carries the PSP, USP, and USD flavors.

·     NOPSP—The penultimate SRv6 node does not remove the SRH.

·     COC—The next SID is a G-SID.

Peer-set name

Name of the BGP-EPE SRv6 peer set.

Interface

Output interface.

Interface index

Output interface index.

Member port

Member port of a Layer 3 aggregate interface.

Port index

Index of the member port.

Next hop

Next hop address.

VPN instance

VPN instance name.

For the public network, this field displays Public instance.

Xconnect group

Cross-connect group name.

Connection

Cross-connect name.

VSI name

VSI name.

Service ID

Ethernet service instance ID.

If no Ethernet service instance ID exists, this field displays 0.

Allocation type

SID allocation type:

·     Static—Manually configured.

·     Dynamic—Dynamically allocated.

Network type

Type of the network to which the SRv6 SID is applied:

·     MPLS L3VPN—The SRv6 SID is applied to an MPLS L3VPN network.

·     EVPN L3VPN—The SRv6 SID is applied to an EVPN L3VPN network.

·     MPLS L3VPN, EVPN L3VPN—The SRv6 SID is applied to MPLS L3VPN and EVPN L3VPN networks.

Mirror locator number

Number of protected locators.

Mirror locator

IPv6 address prefix and prefix length of each protected locator.

Owner

Protocol that applies for the SID:

·     SIDMGR.

·     BGP.

·     SRPolicy.

·     IS-IS.

·     OSPFv3.

·     L2VPN.

·     VSRP.

·     NAT.

State

SID state:

·     Active.

·     Inactive.

Create Time

SID creation time.

display segment-routing ipv6 local-sid statistics

Use display segment-routing ipv6 local-sid statistics to display statistics about SRv6 SIDs allocated for each protocol.

Syntax

display segment-routing ipv6 local-sid statistics [ locator [ locator-name ] ]

Views

Any view

Predefined user roles

network-admin

network-operator

Parameters

locator: Displays statistics about SRv6 SIDs allocated for each protocol by locator. If you do not specify this keyword, the command does not display statistics about SRv6 SIDs allocated for each protocol by locator.

locator-name: Specifies a locator by its name, a case-sensitive string of 1 to 31 characters. If you do not specify a locator, the command displays statistics about SRv6 SIDs for all locators.

Examples

# Display statistics about SRv6 SIDs allocated for each protocol (not by locator).

<Sysname> display segment-routing ipv6 local-sid statistics

Total SIDs: 0

Funtion         SIDMGR  IS-IS   OSPFv3  BGP     L2VPN   VSRP    NAT     Total

End             0       0       0       0       0       0       0       0

End.X           0       0       0       0       0       0       0       0

End.COC32       0       0       0       0       0       0       0       0

End.XCOC32      0       0       0       0       0       0       0       0

End.COCNONE     0       0       0       0       0       0       0       0

End.XCOCNONE    0       0       0       0       0       0       0       0

End.DT4         0       0       0       0       0       0       0       0

End.DT46        0       0       0       0       0       0       0       0

End.DT6         0       0       0       0       0       0       0       0

End.DX4         0       0       0       0       0       0       0       0

End.DX6         0       0       0       0       0       0       0       0

End.DX2         0       0       0       0       0       0       0       0

End.DX2L        0       0       0       0       0       0       0       0

End.DT2M        0       0       0       0       0       0       0       0

End.DT2U        0       0       0       0       0       0       0       0

End.DT2UL       0       0       0       0       0       0       0       0

End.M           0       0       0       0       0       0       0       0

End.OP          0       0       0       0       0       0       0       0

End.T           0       0       0       0       0       0       0       0

Funtion         SRP     BIER    MVPN    Total

End.B6Encaps    0       0       0       0

End.B6EncapsRed 0       0       0       0

End.B6Insert    0       0       0       0

End.B6InsertRed 0       0       0       0

# Display statistics about SRv6 SIDs allocated for each protocol from locator abc.

<Sysname> display segment-routing ipv6 local-sid statistics locator abc

Locator: abc

Total SIDs: 0

Funtion         SIDMGR  IS-IS   OSPFv3  BGP     L2VPN   VSRP    NAT     Total

End             0       0       0       0       0       0       0       0

End.X           0       0       0       0       0       0       0       0

End.COC32       0       0       0       0       0       0       0       0

End.XCOC32      0       0       0       0       0       0       0       0

End.COCNONE     0       0       0       0       0       0       0       0

End.XCOCNONE    0       0       0       0       0       0       0       0

End.DT4         0       0       0       0       0       0       0       0

End.DT46        0       0       0       0       0       0       0       0

End.DT6         0       0       0       0       0       0       0       0

End.DX4         0       0       0       0       0       0       0       0

End.DX6         0       0       0       0       0       0       0       0

End.DX2         0       0       0       0       0       0       0       0

End.DX2L        0       0       0       0       0       0       0       0

End.DT2M        0       0       0       0       0       0       0       0

End.DT2U        0       0       0       0       0       0       0       0

End.DT2UL       0       0       0       0       0       0       0       0

End.M           0       0       0       0       0       0       0       0

End.OP          0       0       0       0       0       0       0       0

End.T           0       0       0       0       0       0       0       0

Funtion         SRP     BIER    MVPN    Total

End.B6Encaps    0       0       0       0

End.B6EncapsRed 0       0       0       0

End.B6Insert    0       0       0       0

End.B6InsertRed 0       0       0       0

Table 13 Command output

Field

Description

Total SIDs

Total number of SRv6 SIDs. If you specify a locator, this field displays the total number of SRv6 SIDs that belong to the specified locator.

Locator

Locator name.

Function

SRv6 SID type:

·     End.

·     End.X.

·     End.COC32

·     End.XCOC32

·     End.COCNONE

·     End.XCOCNONE

·     End.DT4.

·     End.DT46.

·     End.DT6.

·     End.DX4.

·     End.DX6.

·     End.DX2.

·     End.DX2L.

·     End.DT2M.

·     End.DT2U.

·     End.DT2UL.

·     End.M.

·     End.OP.

·     End.T.

·     End.B6Encaps.

·     End.B6EncapsRed.

·     End.B6Insert.

·     End.B6InsertRed.

SIDMGR

Static SIDs.

IS-IS

SRv6 SIDs allocated for IS-IS.

OSPFv3

SRv6 SIDs allocated for OSPFv3.

BGP

SRv6 SIDs allocated for BGP.

L2VPN

SRv6 SIDs allocated for L2VPN.

VSRP

SRv6 SIDs allocated for VSRP.

NAT

SRv6 SIDs allocated for NAT.

SRP

BSIDs dynamically allocated for SRv6 TE policies.

BIER

SRv6 SIDs allocated for BIER.

MVPN

SRv6 SIDs allocated for MVPN.

Total

Total number for a type of SRv6 SIDs.

 

display segment-routing ipv6 locator

Use display segment-routing ipv6 locator to display SRv6 locator information.

Syntax

display segment-routing ipv6 locator [ locator-name ]

Views

Any view

Predefined user roles

network-admin

network-operator

Parameters

locator-name: Specifies a locator by its name, a case-sensitive string of 1 to 31 characters. If you do not specify a locator, this command displays information about all locators.

Examples

# Display information about all locators. (The coc-both keyword is not specified when you configure locators.)

<Sysname> display segment-routing ipv6 locator

 

                      Locator configuration table

 

Locator name        : abc                                   Flag(A)       : 0

Algorithm     : 0

IPv6 prefix         : 100:1:2:3::                           Prefix length : 96

Static length       : 24                                    Args length   : 8

Common prefix length: 0

Algorithm           : 0

Auto SID start      : N/A

Auto SID end        : N/A

Static SID start    : 100:1:2:3::100

Static SID end      : 100:1:2:3::FFFF:FF00

Compressed Auto SID count      : 0

Compressed Static SID count    : 0

Non-compressed Auto SID count  : 1

Non-compressed Static SID count: 0

# Display information about all locators. (The coc-both keyword is specified when you configure locators.)

<Sysname> display segment-routing ipv6 locator

 

                      Locator configuration table

 

Locator name        : test1                                 Flag(A)       : 0

IPv6 prefix         : 100:200:DB8:ABCD::                    Prefix length : 64

Static length       : 8                                     Args length   : 16

Common prefix length: 48                     Non-compressed static length : 16

Algorithm           : 0

Compressed auto SID start      : 100:200:DB8:ABCD:100::

Compressed auto SID end        : 100:200:DB8:ABCD:FFFF::

Compressed static SID start    : 100:200:DB8:ABCD:1::

Compressed static SID end      : 100:200:DB8:ABCD:FF::

 

Non-compressed auto SID start  : 100:200:DB8:ABCD:0:1::

Non-compressed auto SID end    : 100:200:DB8:ABCD:0:FFFF:FFFF:FFFF

Non-compressed static SID start: 100:200:DB8:ABCD::1:0

Non-compressed static SID end  : 100:200:DB8:ABCD::FFFF:FFFF

 

Reserved SID start             : N/A

Reserved SID count             : 0

Reserved SID end               : N/A

Compressed auto SID count      : 5

Compressed static SID count    : 10

Non-compressed auto SID count  : 5

Non-compressed static SID count: 20

Table 14 Command output

Field

Description

Algorithm

Algorithm ID:

·     0—SPF algorithm.

·     128 to 255—Flex-Algo algorithm.

Flag(A)

Anycast locator flag (A-bit). If A-bit is set, the locator is an anycast locator.

IPv6 prefix

IPv6 address prefix of the locator.

Prefix length

Prefix length of the locator.

Static length

Static length of the locator.

Args length

Argument length.

Common prefix length

Common prefix length of the locator.

Non-compressed static length

Static length of the locator for non-compressible SRv6 SIDs.

Auto SID start

Start dynamic SRv6 SID.

If no dynamic SRv6 SIDs exist, this field displays N/A.

Auto SID end

End dynamic SRv6 SID.

If no dynamic SRv6 SIDs exist, this field displays N/A.

Static SID start

Start static SRv6 SID.

If no static SRv6 SIDs exist, this field displays N/A.

Static SID end

End static SRv6 SID.

If no static SRv6 SIDs exist, this field displays N/A.

Compressed auto SID start

Start value for compressible dynamic SRv6 SIDs.

If no compressible dynamic SRv6 SIDs exist, this field displays N/A.

Compressed auto SID end

End value for compressible dynamic SRv6 SIDs.

If no compressible dynamic SRv6 SIDs exist, this field displays N/A.

Compressed static SID start

Start value for compressible static SRv6 SIDs.

If no compressible static SRv6 SIDs exist, this field displays N/A.

Compressed static SID end

End value for compressible static SRv6 SIDs.

If no compressible static SRv6 SIDs exist, this field displays N/A.

Non-compressed auto SID start

Start value for non-compressible dynamic SRv6 SIDs.

If no non-compressible dynamic SRv6 SIDs exist, this field displays N/A.

Non-compressed auto SID end

End value for non-compressible dynamic SRv6 SIDs.

If no non-compressible dynamic SRv6 SIDs exist, this field displays N/A.

Non-compressed static SID start

Start value for non-compressible static SRv6 SIDs.

If no non-compressible static SRv6 SIDs exist, this field displays N/A.

Non-compressed static SID end

End value for non-compressible static SRv6 SIDs.

If no non-compressible static SRv6 SIDs exist, this field displays N/A.

Reserved SID start

Start value for reserved SRv6 SIDs.

If no start value is specified for SRv6 SID reservation, this field displays N/A.

Reserved SID count

Number of reserved SRv6 SIDs.

Reserved SID end

End value for reserved SRv6 SIDs.

If no end value is specified for SRv6 SID reservation, this field displays N/A.

Compressed Auto SID count

Number of dynamic compressible SRv6 SIDs.

Compressed Static SID count

Number of static compressible SRv6 SIDs.

Non-compressed Auto SID count

Number of dynamic non-compressible SRv6 SIDs.

Non-compressed Static SID count

Number of static non-compressible SRv6 SIDs.

display segment-routing ipv6 locator-statistics

Use display segment-routing ipv6 locator-statistics to display SRv6 locator configuration and statistics about allocated SRv6 SIDs in locators.

Syntax

display segment-routing ipv6 locator-statistics [ locator-name ]

Views

Any view

Predefined user roles

network-admin

network-operator

Parameters

locator-name: Specifies a locator by its name, a case-sensitive string of 1 to 31 characters. If you do not specify a locator, this command displays SRv6 locator configuration and statistics about allocated SRv6 SIDs in all locators.

Examples

# Display SRv6 locator configuration and statistics about allocated SRv6 SIDs in all locators.

<Sysname> display segment-routing ipv6 locator-statistics

 

                      Locator configuration table

 

Total Locators: 1    Total SIDs: 1

 

Name       IPv6 prefix/Prefix length       CDyn/CStatic/Dyn/Static   Flag   Algo

abc        100:1::/64                      0   /0      /0  /1        0      0

Table 15 Command output

Field

Description

Total Locators

Total number of locators.

Total SIDs

Total number of SIDs that have been allocated in the locators.

Name

Locator name.

IPv6 prefix/Prefix length

Locator prefix and prefix length.

CDyn/CStatic/Dyn/Static

Number of dynamic compressible SRv6 SIDs, number of static compressible SRv6 SIDs, number of dynamic non-compressible SRv6 SIDs, and number of static non-compressible SRv6 SIDs.

Flag

Anycast locator flag (A flag). The value is 1 if this flag is set, which indicates that the locator is an anycast locator.

Algo

Algorithm ID:

·     0—SPF algorithm.

·     128 to 255—Flex-Algo algorithm.

display segment-routing ipv6 remote-locator

Use display segment-routing ipv6 remote-locator to display remote SRv6 locator information.

Syntax

display segment-routing ipv6 remote-locator [ remote-locator-name ]

Views

Any view

Predefined user roles

network-admin

network-operator

Parameters

remote-locator-name: Specifies a remote locator by its name, a case-sensitive string of 1 to 31 characters. If you do not specify a remote locator, this command displays information about all remote locators.

Examples

# Display information about all remote locators.

<Sysname> display segment-routing ipv6 remote-locator

 

                      Remote locator configuration table

 

Remote locator name     : abc

IPv6 prefix             : 100:1::                           Prefix length : 64

Static length           : 8                                 Args length   : 8

Auto remote SID start   : 100:1::1:0

Auto remote SID end     : 100:1::FFFF:FFFF:FFFF:FF00

Static remote SID start : 100:1::100

Static remote SID end   : 100:1::FF00

Table 16 Command output

Field

Description

IPv6 prefix

IPv6 address prefix of the remote locator.

Prefix length

Prefix length of the remote locator.

Static length

Static length of the remote locator.

Args length

Argument length.

Auto remote SID start

Start dynamic SRv6 SID.

If no dynamic SRv6 SIDs exist, this field displays N/A.

Auto remote SID end

End dynamic SRv6 SID.

If no dynamic SRv6 SIDs exist, this field displays N/A.

Static remote SID start

Start static SRv6 SID.

If no static SRv6 SIDs exist, this field displays N/A.

Static remote SID end

End static SRv6 SID.

If no static SRv6 SIDs exist, this field displays N/A.

display segment-routing ipv6 remote-sid

Use display segment-routing ipv6 remote-sid to display remote SRv6 SID information .

Syntax

display segment-routing ipv6 remote-sid { end-dx2 | end-dx2l } [ sid ]

Views

Any view

Predefined user roles

network-admin

network-operator

Parameters

end-dx2: Specifies End.DX2 SIDs.

end-dx2l: Specifies End.DX2L SIDs.

sid: Specifies an SRv6 SID. If you do not specify an SRv6 SID, this command displays information about all remote SRv6 SIDs of the specified type.

Examples

# Display information about all remote SRv6 SIDs of the End.DX2 type.

<Sysname> display segment-routing ipv6 remote-sid end-dx2

 

                    Remote SID forwarding table (End.DX2)

 

Total remote SIDs: 1

 

SID           : 100:1::100/64

Function type : End.DX2                                Flavor         : PSP

Xconnect-group: abc                                    Connection     : abc

VSI name      :                                        Service ID     : 0

Interface     :

Remote locator name: abc                               Allocation type: Static

Owner              : L2VPN                             State          : Active

Create Time        : Jan 27 09:59:34.541 2022

# Display information about all remote SRv6 SIDs of the End.DX2L type.

<Sysname> display segment-routing ipv6 remote-sid end-dx2l

 

                    Remote SID forwarding table (End.DX2L)

 

Total remote SIDs: 1

 

SID           : 200:1::100/64

Function type : End.DX2L                               Flavor         : PSP

Xconnect-group: vpna                                   Connection     : a

VSI name      :                                        Service ID     : 0

Interface     :

Remote locator name: bbb                               Allocation type: Static

Owner              : L2VPN                             State          : Active

Create Time        : Nov 15 20:36:04.528 2021

Table 17 Command output

Field

Description

SID

SRv6 SID.

Function type

SRv6 SID type:

·     End.DX2.

·     End.DX2L.

Flavor

SRv6 SID flavor type:

·     PSP—The penultimate SRv6 node removes the SRH.

·     NOPSP—The penultimate SRv6 node does not remove the SRH.

Xconnect group

Cross-connect group name.

Connection

Cross-connect name.

VSI name

VSI name.

Service ID

Ethernet service instance ID.

If no Ethernet service instance ID exists, this field displays 0.

Interface

Output interface.

If no output interface exists, this field displays 0.

Allocation type

SID allocation type:

·     Static—Manually configured.

·     Dynamic—Dynamically allocated.

Owner

Protocol that applies for the SID:

L2VPN.

State

SID state:

·     Active.

·     Inactive.

Create Time

SID creation time.

egress-engineering link-delay

Use egress-engineering link-delay to configure the link delay information to be reported by BGP to the controller.

Use undo egress-engineering link-delay to restore the default.

Syntax

egress-engineering link-delay { average average-delay-value | min min-delay-value max max-delay-value | variation variation-value } * interface interface-type interface-number

undo egress-engineering link-delay { average | min | variation } * interface interface-type interface-number

Default

No link delay information is configured.

Views

BGP instance view

Predefined user roles

network-admin

Parameters

average average-delay-value: Specifies the average delay time of the interface, in the range of 1 to 16777215, in microseconds. The average delay is the average value of all delays for the IP data packets sent from the local interface to the BGP neighbor. If you do not specify this option, BGP uses the average delay advertised by the interface.

min min-delay-value max max-delay-value: Specifies the minimum and maximum delay time of the interface, in the range of 1 to 16777215, in microseconds. The minimum and maximum delays are the minimum and maximum delays among all delays for the IP data packets sent from the local interface to the BGP neighbor. If you do not specify this option, BGP uses the minimum and maximum delays advertised by the interface.

variation variation-value: Specifies the delay variation of the interface, in the range of 1 to 16777215, in microseconds. The delay variation refers to the difference between average delays. If you do not specify this option, BGP uses the delay variation advertised by the interface.

interface interface-type interface-number: Specifies the interface to be configured with the delay information. Only physical interfaces are supported.

Usage guidelines

BGP can obtain delay information of interfaces in the following methods:

·     Static configuration: Use this command to configure the interface delay information for BGP.

·     Dynamic obtaining: Use the test-session bind interface command to bind a TWAMP-light test session to an interface. TWAMP-light sends the collected delay information to the bound interface, which then reports the delay information to BGP.

If BGP obtains delay information in both methods, it uses the statically configured delay information.

If you execute this command multiple times for the same interface, the most recent configuration for each delay parameter takes effect.

The minimum delay value must be smaller than the maximum delay value.

Examples

# Configure the average delay, minimum delay, maximum delay, and delay variation of interface Ten-GigabitEthernet 3/1/1 as 100, 10, 1000, and 20 microseconds, respectively.

<Sysname> system-view

[Sysname] bgp 100

[Sysname-bgp-default] egress-engineering link-delay average 100 min 10 max 1000 variation 20 interface ten-gigabitethernet 3/1/1

Related commands

test-session bind interface (Network Management and Monitoring Command Reference)

egress-engineering metric-bandwidth advertisement enable

Use egress-engineering metric-bandwidth advertisement enable to enable bandwidth advertisement.

Use undo egress-engineering metric-bandwidth advertisement enable to disable bandwidth advertisement.

Syntax

egress-engineering metric-bandwidth advertisement enable

undo egress-engineering metric-bandwidth advertisement enable

Default

Bandwidth advertisement is disabled.

Views

BGP instance view

Predefined user roles

network-admin

Usage guidelines

In scenarios where BGP-LS reports link states to a controller for path computation, configure this feature on BGP EPE devices to enable BGP to collect and propagate intra-AS link bandwidth information and report the information to the controller through BGP-LS. The controller then uses the bandwidth information to compute paths to ensure that the optimal path has the most bandwidth.

Examples

# Enable bandwidth advertisement for a BGP instance.

<Sysname> system-view

[Sysname] bgp 100

[Sysname-bgp-default] egress-engineering metric-bandwidth advertisement enable

egress-engineering metric-bandwidth suppression

Use egress-engineering metric-bandwidth suppression to enable bandwidth advertisement suppression for BGP and set the suppression parameters.

Use undo egress-engineering metric-bandwidth suppression to disable bandwidth advertisement suppression for BGP.

Syntax

egress-engineering metric-bandwidth suppression timer time-value

undo egress-engineering metric-bandwidth suppression

Default

Bandwidth advertisement suppression of BGP is enabled, and the bandwidth advertisement suppression timer is 120 seconds.

Views

BGP instance view

Predefined user roles

network-admin

Parameters

timer time-value: Sets the bandwidth advertisement suppression timer, in the range of 0 to 600 seconds. A value of 0 means to disable bandwidth advertisement suppression.

Usage guidelines

When bandwidth changes frequently, BGP will frequently process, advertise, and report the bandwidth information, occupying too many device resources. To resolve this issue, you can enable the bandwidth advertisement suppression feature.

After this feature is enabled, interfaces report bandwidth information to BGP at intervals of the bandwidth advertisement suppression time. BGP advertises and reports bandwidth information at intervals of the bandwidth advertisement suppression time. It cannot advertise or report bandwidth information before the suppression timer expires.

This command takes effect only after the egress-engineering metric-bandwidth advertisement enable command is enabled.

Examples

# Enable bandwidth advertisement suppression and set the suppression timer to 100 seconds.

<Sysname> system-view

[Sysname] bgp 100

[Sysname-bgp-default] egress-engineering metric-bandwidth suppression timer 100

Related commands

egress-engineering metric-bandwidth advertisement enable

egress-engineering metric-delay advertisement enable

Use egress-engineering metric-delay advertisement enable to enable delay advertisement for BGP.

Use undo egress-engineering metric-delay advertisement enable to disable delay advertisement for BGP.

Syntax

egress-engineering metric-delay advertisement enable

undo egress-engineering metric-delay advertisement enable

Default

Delay advertisement is disabled.

Views

BGP instance view

Predefined user roles

network-admin

Usage guidelines

In scenarios where BGP-LS reports link states to a controller for path computation, configure this feature on BGP EPE devices to enable BGP to collect and propagate intra-AS link delay information and report the information to the controller through BGP-LS. The controller then uses the delay information to compute paths to ensure that the optimal path has the least delay.

Examples

# Enable delay advertisement in a BGP instance.

<Sysname> system-view

[Sysname] bgp 100

[Sysname-bgp-default] egress-engineering metric-delay advertisement enable

egress-engineering metric-delay suppression

Use egress-engineering metric-delay suppression to enable delay advertisement suppression for BGP and set the suppression parameters.

Use undo egress-engineering metric-delay suppression to disable delay advertisement suppression for BGP.

Syntax

egress-engineering metric-delay suppression timer time-value percent-threshold percent-value absolute-threshold absolute-value

undo egress-engineering metric-delay suppression

Default

Delay advertisement suppression is enabled, and the suppression timer is 120 seconds, the delay change percentage threshold is 10%, and the delay change absolute value threshold is 1000 microseconds.

Views

BGP instance view

Predefined user roles

network-admin

Parameters

timer time-value: Specifies the delay advertisement suppression timer, in the range of 0 to 600 seconds. A value of 0 means to disable delay advertisement suppression.

percent-threshold percent-value: Specifies the delay change percentage threshold, in the range of 0 to 100. A value of 0 means not to concern the delay change percentage during suppression.

absolute-threshold absolute-value: Specifies the delay change absolute value threshold, in the range of 0 to 10000. A value of 0 means not to concern the delay change absolute value during suppression.

Usage guidelines

When delay changes frequently, BGP will frequently process, advertise, and report the delay information, occupying too many device resources. To resolve this issue, you can enable the delay advertisement suppression feature.

Delay advertisement suppression operates as follows:

1.     After this feature is enabled, interfaces report delay information to BGP at intervals of the delay advertisement suppression time.

2.     BGP advertises and reports delay information at intervals of the delay advertisement suppression time. It cannot advertise or report delay information before the suppression timer expires except in the following cases:

¡     If the percentage of the change between two consecutive delays reported by an interface reaches or exceeds the threshold set by percent-value, BGP advertises and reports the delay information regardless of whether the suppression timer has expired or not.

¡     If the absolute value of change between two consecutive delays reported by an interface reaches or exceeds the threshold set by absolute-value, BGP advertises and reports the delay information regardless of whether the suppression timer has expired or not.

This command takes effect only after the egress-engineering metric-delay advertisement enable command is enabled.

If a suppression parameter is set to 0, the corresponding suppression function is disabled. If all the suppression parameters are set to 0, the entire delay advertisement suppression feature is disabled.

Examples

# Enable delay advertisement suppression for BGP, set the suppression timer to 100 seconds, the delay change percentage threshold to 50%, and delay change absolute value threshold to 200 microseconds.

<Sysname> system-view

[Sysname] bgp 100

[Sysname-bgp-default] egress-engineering metric-delay suppression timer 100 percent-threshold 50 absolute-threshold 200

Related commands

egress-engineering metric-delay advertisement enable

egress-engineering srv6 peer-set

Use egress-engineering srv6 peer-set to create a BGP-EPE SRv6 peer set.

Use undo egress-engineering srv6 peer-set to delete a BGP-EPE SRv6 peer set.

Syntax

egress-engineering srv6 peer-set peer-set-name [ auto-sid-coc-both { all | coc32 | coc32-all | coc32-none } | auto-sid-coc32 [ additive ] | static-sid [ coc32 | coc-both coc32 ] { no-flavor no-flavor-sid | psp psp-sid } * ]

egress-engineering srv6 peer-set peer-set-name [ auto-sid-coc-both { all | coc32 | coc32-all | coc32-none } | auto-sid-coc32 [ additive ] | static-sid [ coc-both coc32-none ] { no-flavor no-flavor-sid | psp psp-sid | psp-usp–usd psp-usp-usd-sid } * ]

undo egress-engineering srv6 peer-set peer-set-name

Default

No BGP-EPE SRv6 peer sets exist.

Views

BGP instance view

Predefined user roles

network-admin

Parameters

peer-set-name: Specifies a name for the BGP-EPE SRv6 peer set, which is a case-sensitive string of 1 to 63 characters.

auto-sid-coc-both: Dynamically allocates an SRv6 SID to the BGP-EPE SRv6 peer set from the COC-both locator applied to BGP-EPE.

·     all: Dynamically allocates common, compressible, and non-compressible SRv6 SIDs to the BGP-EPE SRv6 peer set from the COC-both locator applied to BGP-EPE. During dynamic End.X SID allocation, BGP will allocate the following SIDs:

¡     Two End.X(COC32) SIDs of no-flavor and PSP types.

¡     Three End.X(COCNONE) SIDs of no-flavor, PSP, and PSP-USP-USD types.

¡     Three End.X SIDs of no-flavor, PSP, and PSP-USP-USD types.

·     coc32: Dynamically allocates a compressible SRv6 SID to the BGP-EPE SRv6 peer set from the COC-both locator applied to BGP-EPE. During dynamic End.X SID allocation, BGP will allocate two End.X(COC32) SIDs of no-flavor and PSP types.

·     coc32-none: Dynamically allocates a non-compressible SRv6 SID to the BGP-EPE SRv6 peer set from the COC-both locator applied to BGP-EPE. During dynamic End.X SID allocation, BGP will allocate three End.X(COCNONE) SIDs of no-flavor, PSP, and PSP-USP-USD types.

·     coc32-all: Dynamically allocates compressible and non-compressible SRv6 SIDs to the BGP-EPE SRv6 peer set from the COC-both locator applied to BGP-EPE. During dynamic End.X SID allocation, BGP will allocate two End.X(COC32) SIDs of no-flavor and PSP types and three End.X(COCNONE) SIDs of no-flavor, PSP, and PSP-USP-USD types.

auto-sid-coc32: Dynamically allocates a compressible SRv6 SID to the BGP-EPE SRv6 peer set from the COC32 locator applied to BGP-EPE. During dynamic End.X SID allocation, BGP will allocate two End.X(COC32) SIDs of no-flavor and PSP types.

auto-sid-coc32 additive: Dynamically allocates a compressible SRv6 SID and an additive common SRv6 SID to the BGP-EPE SRv6 peer set from the COC32 locator applied to BGP-EPE. During dynamic End.X SID allocation, BGP will allocate two End.X(COC32) SIDs of no-flavor and PSP types and three End.X SIDs of no-flavor, PSP, and PSP-USP-USD types.

static-sid: Specifies a static SRv6 SID for the BGP-EPE SRv6 peer set. If you do not specify a static SRv6 SID, dynamic SRv6 SID allocation applies. If you specify this keyword without specifying the coc32 or coc-both keyword, the static SRv6 SID is a common SRv6 SID.

·     coc32: Allocates a static compressible SRv6 SID to the BGP-EPE SRv6 peer set from the COC32 locator applied to BGP-EPE.

·     coc-both coc32: Allocates a static compressible SRv6 SID to the BGP-EPE SRv6 peer set from the COC-both locator applied to BGP-EPE.

·     coc-both coc32-none: Allocates a static non-compressible SRv6 SID to the BGP-EPE SRv6 peer set from the COC-both locator applied to BGP-EPE.

no-flavor no-flavor-sid: Specifies an End.X SID (without any flavors) by its ID.

psp psp-sid: Specifies an End.X SID (carrying the PSP flavor) by its ID.

psp-usp–usd psp-usp-usd-sid: Specifies an End.X SID (carrying the PSP, USP, and USD flavors) by its ID.

Usage guidelines

BGP-EPE allocates BGP peer SIDs to inter-AS segments. The device advertises the peer SIDs to a network controller through BGP LS messages. The controller orchestrates the IGP SIDs and BGP peer SIDs to realize optimal inter-AS traffic forwarding.

If the device establishes BGP peer relationship with multiple devices, use this command to add the peer devices to a peer set and allocate a PeerSet SID to the peer set. When the device forwards traffic based on the PeerSet SID, it distributes the traffic among the peers for load sharing.

Before you use this command, apply a locator to BGP-EPE by using the segment-routing ipv6 egress-engineering locator command in BGP instance view.

·     If automatic SID allocation is used, the device dynamically allocates an SRv6 SID to the BGP-EPE SRv6 peer set from the specified locator.

·     If you specify a static SRv6 SID for the BGP-EPE SRv6 peer set, the specified static SRv6 SID must belong to the specified locator.

If you execute the egress-engineering srv6 peer-set command to specify multiple SRv6 SIDs for one peer set, the effective configuration is as follows:

·     If the static-sid keyword is not specified, the most recent configuration takes effect.

·     If the static-sid keyword is specified:

¡     If all the SRv6 SIDs belong to the same type, only the most recent configuration takes effect.

¡     If the SRv6 SIDs belong to different types, one of the following SRv6 SID combinations takes effect:

-     Common SID, COC32 compressible SID, and COC-both non-compressible SID.

-     Common SID, COC-both compressible SID, and COC-both non-compressible SID.

¡     If the coc32 keyword and the coc-both coc32 keyword are specified multiple times, only the most recent configuration takes effect.

The static SRv6 SIDs configured by using the following commands cannot be the same:

·     egress-engineering srv6 peer-set.

·     peer egress-engineering srv6.

The auto-sid-coc32 and coc32 keywords take effect only when the locator applied to BGP-EPE is a COC32 locator.

The auto-sid-coc-both and coc-both keywords take effect only when the locator applied to BGP-EPE is a COC-both locator.

If dynamic allocation is used and you do not specify the auto-sid-coc32 or auto-sid-coc-both keyword, the egress-engineering srv6 peer-set command dynamically allocates a common SRv6 SID to the BGP-EPE SRv6 peer set.

You can use both the segment-routing ipv6 egress-engineering locator and egress-engineering srv6 peer-set commands to dynamically allocate SRv6 SIDs by specifying the auto-sid-coc32, auto-sid-coc-both coc32, auto-sid-coc-both coc32-none keywords. If the two commands have inconsistent keyword settings, the keywords specified in the segment-routing ipv6 egress-engineering locator command take effect.

Examples

# Create a BGP-EPE SRv6 peer set named epe and configure the peer set to use a dynamically allocated SRv6 SID.

<Sysname> system-view

[Sysname] bgp 100

[Sysname-bgp-default] egress-engineering srv6 peer-set epe

Related commands

peer egress-engineering srv6

peer peer-set

segment-routing ipv6 egress-engineering locator

end-x update-delay

Use end-x update-delay to configure the delay time to flush static End.X SIDs to the FIB.

Use undo end-x update-delay to restore the default.

Syntax

end-x update-delay delay-time

undo end-x update-delay

Default

Static End.X SIDs are not delayed to flush to the FIB.

Views

SRv6 view

Predefined user roles

network-admin

Parameters

delay-time: Sets the delay time to flush static End.X SIDs to the FIB, in milliseconds. The value range is 0 to 600000.

Usage guidelines

When a neighbor fails, the interface connected to that neighbor goes down. The End.X SID associated with the interface cannot take effect. When the neighbor recovers, the interface also comes up and the static End.X SID associated with the interface takes effect. Because route convergence has not finished, the local device cannot forward packets according to the route entry of the static End.X SID. As a result, packet forwarding failure or packet loss occurs. (Dynamic End.X SIDs do not have this issue, because they are flushed to the FIB after route convergence is completed.) To avoid this issue, use this command to delay flushing the static End.X SID associated with the interface to the FIB. During the delay time, the local device does not forward traffic through the link attached to the interface. The delay configuration avoids packet loss within the delay time.

Examples

# Set the delay time to flush static End.X SIDs to the FIB to 60 milliseconds.

<Sysname> system-view

[Sysname] segment-routing ipv6

[Sysname-segment-routing-ipv6] end-x update-delay 60

fast-reroute microloop-avoidance enable (IS-IS IPv6 address family)

Use fast-reroute microloop-avoidance enable to enable FRR microloop avoidance.

Use undo fast-reroute microloop-avoidance enable to disable FRR microloop avoidance.

Syntax

fast-reroute microloop-avoidance enable [ level-1 | level-2 ]

undo fast-reroute microloop-avoidance enable [ level-1 | level-2 ]

Default

FRR microloop avoidance is disabled.

Views

IS-IS IPv6 unicast address family view

Predefined user roles

network-admin

Parameters

level-1: Specifies FRR microloop avoidance for IS-IS Level-1.

level-2: Specifies FRR microloop avoidance for IS-IS Level-2.

Usage guidelines

Use this command only on the source node.

On an network configured with TI-LFA FRR, if a node or link fails, traffic will be switched to the backup path calculated by TI-LFA. However, if a device along the backup path has not finished route convergence, traffic will be looped between the device and the source node (the node prior to the node or link that failed) until the device finishes route convergence.

To resolve this problem, configure microloop avoidance on the source node. Then, when a node or link fails, traffic will be switched to the backup path calculated by TI-LFA. The source node waits for a period of time for other devices to finish route convergence. After the delay time elapses, the source node starts route convergence.

If you do not specify the level-1 or level-2 keyword, the command enables or disables FRR microloop avoidance on all IS-IS levels.

Examples

# Enable FRR microloop avoidance for IS-IS process 1.

<Sysname> system-view

[Sysname] isis 1

[Sysname-isis-1] address-family ipv6

[Sysname-isis-1-ipv6] fast-reroute microloop-avoidance enable

Related commands

fast-reroute microloop-avoidance rib-update-delay (IS-IS IPv6 address family)

fast-reroute microloop-avoidance enable (OSPFv3 view)

Use fast-reroute microloop-avoidance enable to enable FRR microloop avoidance for OSPFv3.

Use undo fast-reroute microloop-avoidance enable to disable FRR microloop avoidance for OSPFv3.

Syntax

fast-reroute microloop-avoidance enable

undo fast-reroute microloop-avoidance enable

Default

FRR microloop avoidance is disabled for OSPFv3.

Views

OSPFv3 view

Predefined user roles

network-admin

Usage guidelines

Use this command only on the source node.

On an network configured with TI-LFA FRR, if a node or link fails, traffic will be switched to the backup path calculated by TI-LFA. However, if a device along the backup path has not finished route convergence, traffic will be looped between the device and the source node (the node prior to the node or link that failed) until the device finishes route convergence.

To resolve this problem, configure microloop avoidance on the source node. Then, when a node or link fails, traffic will be switched to the backup path calculated by TI-LFA. The source node waits for a period of time for other devices to finish route convergence. After the delay time elapses, the source node starts route convergence.

Examples

# Enable FRR microloop avoidance for OSPFv3 process 1.

<Sysname> system-view

[Sysname] ospfv3 1

[Sysname-ospfv3-1] fast-reroute microloop-avoidance enable

Related commands

fast-reroute microloop-avoidance rib-update-delay (OSPFv3 view)

fast-reroute microloop-avoidance rib-update-delay (IS-IS IPv6 address family)

Use fast-reroute microloop-avoidance rib-update-delay to set the FRR microloop avoidance RIB-update-delay time.

Use undo fast-reroute microloop-avoidance rib-update-delay to restore the default.

Syntax

fast-reroute microloop-avoidance rib-update-delay delay-time [ level-1 | level-2 ]

undo fast-reroute microloop-avoidance rib-update-delay [ level-1 | level-2 ]

Default

The FRR microloop avoidance RIB-update-delay time is 5000 ms.

Views

IS-IS IPv6 unicast address family view

Predefined user roles

network-admin

Parameters

delay-time: Specifies the FRR microloop avoidance RIB-update-delay time in milliseconds. The value range is 1 to 60000.

level-1: Specifies the FRR microloop avoidance RIB-update-delay time for IS-IS Level-1.

level-2: Specifies the FRR microloop avoidance RIB-update-delay time for IS-IS Level-2.

Usage guidelines

Use this command only on the source node.

If you do not specify the level-1 or level-2 keyword, the command sets the FRR microloop avoidance RIB-update-delay time for all IS-IS levels.

Examples

# Set the FRR microloop avoidance RIB-update-delay time to 6000 ms for Level-1 of IS-IS process 1.

<Sysname> system-view

[Sysname] isis 1

[Sysname-isis-1] address-family ipv6

[Sysname-isis-1-ipv6] fast-reroute microloop-avoidance rib-update-delay 6000 level-1

Related commands

fast-reroute microloop-avoidance (IS-IS IPv6 address family)

fast-reroute microloop-avoidance rib-update-delay (OSPFv3 view)

Use fast-reroute microloop-avoidance rib-update-delay to set the FRR microloop avoidance RIB-update-delay time.

Use undo fast-reroute microloop-avoidance rib-update-delay to restore the default.

Syntax

fast-reroute microloop-avoidance rib-update-delay delay-time

undo fast-reroute microloop-avoidance rib-update-delay

Default

The FRR microloop avoidance RIB-update-delay time is 5000 ms.

Views

OSPFv3 view

Predefined user roles

network-admin

Parameters

delay-time: Specifies the FRR microloop avoidance RIB-update-delay time in milliseconds. The value range is 1 to 60000.

Usage guidelines

Use this command only on the source node.

Examples

# Set the FRR microloop avoidance RIB-update-delay time to 6000 ms for OSPFv3 process 1.

<Sysname> system-view

[Sysname] ospfv3 1

[Sysname-ospfv3-1] fast-reroute microloop-avoidance rib-update-delay 6000

Related commands

fast-reroute microloop-avoidance (OSPFv3 view)

fast-reroute ti-lfa

Use fast-reroute ti-lfa to enable Topology-Independent Loop-free Alternate Fast Re-Route (TI-LFA FRR).

Use undo fast-refroute ti-lfa to disable TI-LFA FRR.

Syntax

In IS-IS IPv6 unicast address family view:

fast-reroute ti-lfa [ per-prefix ] [ route-policy route-policy-name | host ] [ level-1 | level-2 ]

undo fast-reroute ti-lfa [ level-1 | level-2 ]

In OSPFv3 process view:

fast-reroute ti-lfa [ per-prefix ] [ route-policy route-policy-name | host ]

undo fast-reroute ti-lfa

Default

TI-LFA FRR is disabled.

Views

IS-IS IPv6 unicast address family view

OSPFv3 process view

Predefined user roles

network-admin

Parameters

per-prefix: Calculates backup information for each advertising source of a route. Specify this keyword only if routes are advertised by multiple sources. If you do not specify this keyword, the device calculates backup information for each route.

route-policy route-policy-name: Enables TI-LFA FRR for prefixes identified by the routing policy. The route-policy-name argument specifies a routing policy by its name, a case-sensitive string of 1 to 63 characters.

host: Enables TI-LFA for host routes.

level-1: Specifies TI-LFA FRR for IS-IS Level-1.

level-2: Specifies TI-LFA FRR for IS-IS Level-2.

Usage guidelines

TI-LFA FRR provides link and node protection for SR tunnels. When a link or node fails, TI-LFA FRR switches the traffic to the backup path to ensure continuous data forwarding.

Before configuring TI-LFA FRR on a level, you must execute the fast-reroute lfa command in IS-IS IPv6 unicast address family view or OSPFv3 process view to enable LFA FRR on that level. TI-LFA FRR takes effect only after you enable LFA FRR.

If you do not specify the route-policy route-policy-name option or the host keyword, the device calculates backup information for all routes.

If you do not specify the level-1 or level-2 keyword, the command applies to both IS-IS levels.

Examples

# Enable TI-LFA FRR for IS-IS process 1 and calculate backup information for all routes.

<Sysname> system-view

[Sysname] isis 1

[Sysname-isis-1] address-family ipv6

[Sysname-isis-1-ipv6] fast-reroute ti-lfa

# Enable TI-LFA FRR for OSPFv3 process 1 and calculate backup information for all routes.

<Sysname> system-view

[Sysname] ospfv3 1

[Sysname-ospfv3-1] fast-reroute ti-lfa

Related commands

fast-reroute (IS-IS in Layer 3—IP Routing Command Reference)

fast-reroute (OSPFv3 in Layer 3—IP Routing Command Reference)

route-policy (Layer 3—IP Routing Command Reference)

fast-reroute ti-lfa encaps

Use fast-reroute ti-lfa encaps to specify the encap encapsulation mode for TI-LFA FRR.

Use undo fast-reroute ti-lfa encaps to restore the default.

Syntax

fast-reroute ti-lfa encaps

undo fast-reroute ti-lfa encaps

Default

TI-LFA FRR uses the insert encapsulation mode.

Views

IS-IS IPv6 unicast address family view

Predefined user roles

network-admin

Usage guidelines

TI-LFA FRR supports the following repair list encapsulation modes:

·     Insert mode—In this mode, the device handles packets as follows when TI-LFA FRR is enabled:

¡     For an SRv6 packet, the device inserts a new SRH between the outer IPv6 header and the original SRH. The new SRH includes all SIDs in the repair list.

¡     For a non-SRv6 IPv6 packet, the device replaces the destination address in the original IPv6 header with the first SID in the repair list and adds an SRH to the packet. The SRH includes all SIDs in the repair list.

·     Encap mode—In this mode, the device adds a new outer IPv6 header and SRH to each packet.

¡     The destination address in the new outer IPv6 header is the first SID in the repair list, and the source IPv6 address is manually configured.

¡     The SRH includes all SIDs in the repair list.

Examples

# Specify the encap encapsulation mode for TI-LFA FRR in IS-IS process 1.

<Sysname> system-view

[Sysname] isis 1

[Sysname-isis-1] address-family ipv6

[Sysname-isis-1-ipv6] fast-reroute ti-lfa encaps

Related commands

fast-reroute ti-lfa

isis ipv6 fast-reroute ti-lfa disable

Use isis ipv6 fast-reroute ti-lfa disable to prevent an IS-IS interface from participating in TI-LFA calculation.

Use undo isis ipv6 fast-reroute ti-lfa disable to allow an IS-IS interface to participate in TI-LFA calculation.

Syntax

isis ipv6 fast-reroute ti-lfa disable [ level-1 | level-2 ]

undo isis ipv6 fast-reroute ti-lfa disable [ level-1 | level-2 ]

Default

An IS-IS interface participates in TI-LFA calculation.

Views

Interface view

Predefined user roles

network-admin

Parameters

level-1: Specifies TI-LFA calculation on IS-IS Level-1.

level-2: Specifies TI-LFA calculation on IS-IS Level-2.

Usage guidelines

Disable the output interface to the primary next hop from participating in TI-LFA calculation.

If you do not specify the level-1 or level-2 keyword, this command applies to both IS-IS levels.

Examples

# Prevent Ten-GigabitEthernet3/1/1 from participating in TI-LFA calculation.

<Sysname> system-view

[Sysname] interface ten-gigabitethernet 3/1/1

[Sysname-Ten-GigabitEthernet3/1/1] isis ipv6 fast-reroute ti-lfa disable

Related commands

fast-reroute ti-lfa

locator

Use locator to create an SRv6 locator and enter its view, or enter the view of an existing SRv6 locator.

Use undo locator to delete an SRv6 locator.

Syntax

locator locator-name [ ipv6-prefix ipv6-address prefix-length [ args args-length | static static-length ] * ]

locator locator-name [ ipv6-prefix ipv6-address prefix-length common-prefix common-prefix-length coc32 [ args args-length | static static-length ] * ]

locator locator-name [ ipv6-prefix ipv6-address prefix-length common-prefix common-prefix-length coc-both [ non-compress-static non-compress-static-length ] [ args args-length | static static-length ] * ]

undo locator locator-name

Default

No SRv6 locators exist.

Views

SRv6 view

Predefined user roles

network-admin

Parameters

locator-name: Specifies a locator name, a case-sensitive string of 1 to 31 characters.

ipv6-prefix ipv6-address prefix-length: Specifies an IPv6 address prefix and the prefix length. The ipv6-address argument represents the IPv6 address prefix. The prefix-length argument represents the prefix length, in the range of 32 to 120. The IPv6 address prefix cannot be an IPv4-compatible IPv6 address.

args args-length: Specifies an argument length. The value range for the args-length argument depends on the value of the prefix-length argument and varies by device model. If you do not specify an argument length, the argument length is 0.

static static-length: Specifies the static length. The value range for the static-length argument varies by the value of the prefix-length argument and varies by device model. If you do not specify a static length, the static length is 0.

common-prefix common-prefix-length: Specifies the G-SID common prefix length. The value range for the common-prefix-length argument varies by the value of the prefix-length argument and varies by device model. If you do not specify a G-SID common prefix length, the common prefix length is 0.

coc32: Enables 32-bit G-SID compression.

coc-both: Enables the locator to allocate both compressible and non-compressible SRv6 SIDs.

non-compress-static non-compress-static-length: Specifies a static length for non-compressible SRv6 SIDs. If you do not specify a static length, the static length for non-compressible SRv6 SIDs is 0.

Usage guidelines

Locators are divided into the following types according to the configuration method:

·     COC32 locator—To create a COC32 locator, specify the coc32 keyword in this command.

·     COC-both locator—To create a COC-both locator, specify the coc-both keyword in this command.

·     Common locator—To create a common locator, do not specify the coc32 or coc-both keyword in this command.

According to whether compression is supported, configure the parameters differently for SRv6 SIDs. For more information, see SRv6 in Segment Routing Configuration Guide.

If SRv6 compression is enabled, use the locator command to configure the G-SID common prefix length and specify the G-SID compression mode. Only the 32-bit G-SID compression mode is supported in the current software version. In this mode, a standard 128-bit SRv6 SID is compressed to a 32-bit G-SID.

If a static opcode has been configured, a routing protocol preferentially uses the static opcode to construct SRv6 SIDs. If no static opcode exists, the routing protocol dynamically allocates SRv6 SIDs.

By applying a locator to IGP and BGP, you can use IGP and BGP to advertise the SRv6 SIDs on the locator.

When you create a locator, you must specify an IPv6 address prefix, prefix length, and static length for the locator. When you enter the view of an existing SRv6 locator, you do not need to specify the IPv6 address prefix, prefix length, or static length of the locator.

Each locator must have a unique name.

Do not specify the same IPv6 address prefix and prefix length for different locators. In addition, the IPv6 address prefixes of different locators cannot overlap.

You cannot delete a locator if that locator has dynamic SRv6 SIDs that are being used.

You can change a COC-both locator to a common locator or vice versa without deleting the configured locator but directly editing the command parameters, as follows:

·     Change a common locator to a COC-both locator by adding the common-prefix and non-compress-static parameters. Other parameters cannot be edited.

For example, assume you configure a common locator as locator test ipv6-prefix 100:1:: 80 static 8 args 8. You can change the locator to a COC-both locator by executing locator test ipv6-prefix 100:1:: 80 common-prefix 64 coc-both non-compress-static 8 static 8 args 8.

·     Change a COC-both locator to a common locator by deleting the common-prefix and non-compress-static parameters. Other parameters cannot be edited.

For example, assume you configure a COC-both locator as locator test ipv6-prefix 100:1:: 80 common-prefix 64 coc-both non-compress-static 8 static 8 args 8. You can change the locator to a common locator by executing locator test ipv6-prefix 100:1:: 80 static 8 args 8.

Examples

# Configure locator test1, setting the IPv6 address prefix to 100::, prefix length to 64, and static length to 32, and enter the SRv6 locator view of this locator.

<Sysname> system-view

[Sysname] segment-routing ipv6

[Sysname-segment-routing-ipv6] locator test1 ipv6-prefix 100:: 64 static 32

[Sysname-segment-routing-ipv6-locator-test1]

Related commands

opcode

srv6 compress enable

opcode

Use opcode to configure the opcode of SRv6 SIDs for a locator.

Use undo opcode to delete the opcode of SRv6 SIDs for a locator.

Syntax

opcode { opcode | hex hex-opcode } end { no-flavor | psp | psp-usp-usd }

opcode { opcode | hex hex-opcode } end-x interface interface-type interface-number [ member-port interface-type interface-number ] nexthop nexthop-ipv6-address { no-flavor | psp | psp-usp-usd }

opcode { opcode | hex hex-opcode } end-coc32 { no-flavor | psp }

opcode { opcode | hex hex-opcode } end-x-coc32 interface interface-type interface-number [ member-port interface-type interface-number ] nexthop nexthop-ipv6-address { no-flavor | psp }

opcode { opcode | hex hex-opcode } end-coc-none { no-flavor | psp | psp-usp-usd }

opcode { opcode | hex hex-opcode } end-x-coc-none interface interface-type interface-number [ member-port interface-type interface-number ] nexthop nexthop-ipv6-address { no-flavor | psp | psp-usp-usd }

opcode { opcode | hex hex-opcode } end-dt4 [ vpn-instance vpn-instance-name [ evpn | l3vpn-evpn ] ]

opcode { opcode | hex hex-opcode } end-dt46 [ vpn-instance vpn-instance-name [ evpn | l3vpn-evpn ] ]

opcode { opcode | hex hex-opcode } end-dt6 [ vpn-instance vpn-instance-name [ evpn | l3vpn-evpn ] ]

opcode { opcode | hex hex-opcode } end-dx4 interface interface-type interface-number nexthop nexthop-ipv4-address [ vpn-instance vpn-instance-name [ evpn ] ]

opcode { opcode | hex hex-opcode } end-dx6 interface interface-type interface-number nexthop np-ipv6-address [ vpn-instance vpn-instance-name [ evpn ] ]

opcode { opcode | hex hex-opcode } end-dx2 xconnect-group group-name connection connection-name

opcode { opcode | hex hex-opcode } end-dx2 vsi vsi-name interface interface-type interface-number service-instance instance-id

opcode { opcode | hex hex-opcode } end-dx2l xconnect-group group-name connection connection-name

opcode { opcode | hex hex-opcode } end-dx2l vsi vsi-name interface interface-type interface-number service-instance instance-id

opcode { opcode | hex hex-opcode } end-dt2m vsi vsi-name

opcode { opcode | hex hex-opcode } end-dt2u vsi vsi-name

opcode { opcode | hex hex-opcode } end-dt2ul vsi vsi-name

opcode { opcode | hex hex-opcode } end-op

opcode { opcode | hex hex-opcode } end-m mirror-locator ipv6-address prefix-length

undo opcode { opcode | hex hex-opcode } { end | end-coc32 | end-coc-none | end-dt2m | end-dt2u | end-dt2ul | end-dt4 | end-dt46 | end-dt6 | end-dx2 | end-dx2l | end-dx4 | end-dx6 | end-m mirror-locator ipv6-address prefix-length | end-op | end-x | end-x-coc32 | end-x-coc-none }

Default

No opcode exists.

Views

SRv6 locator view

Predefined user roles

network-admin

Parameters

opcode: Specifies an opcode. The value range varies by the settings of the locator command.

hex hex-opcode: Specifies an SRv6 SID in hexadecimal notation. The hex-opcode argument represents the SRv6 SID in hexadecimal notation.

end: Specifies the End type.

end-x: Specifies the End.X type.

end-coc32: Specifies the End (COC32) type.

end-x-coc32: Specifies the End.X (COC32) type.

end-coc-none: Specifies the End (COCNONE) type.

end-x-coc-none: Specifies the End.X (COCNONE) type.

end-dt4: Specifies the End.DT4 type.

end-dt46: Specifies the End.DT46 type.

end-dt6: Specifies the End.DT6 type.

end-dx4: Specifies the End.DX4 type.

end-dx6: Specifies the End.DX6 type.

end-dx2: Specifies the End.DX2 type.

end-dx2l: Specifies the End.DX2L type.

end-dt2m: Specifies the End.DT2M type.

end-dt2u: Specifies the End.DT2U type.

end-dt2ul: Specifies the End.DT2UL type.

end-op: Specifies the End.OP type.

end-m: Specifies the End.M type.

no-flavor: Specifies an SRv6 SID that does not carry any flavors.

psp: Enables the penultimate SRv6 node to remove the SRH.

psp-usp-usd: Specifies an SRv6 SID that carries the PSP, USP, and USD flavors.

interface interface-type interface-number: Specifies an output interface.

member-port interface-type interface-number: Specifies a member port of the specified Layer 3 aggregate interface. The interface-type interface-number argument represents the interface type and interface number of the member port. If the specified interface is not a member port of the Layer 3 aggregate interface, the configure SRv6 SID does not take effect.

nexthop nexthop-ipv4-address: Specifies a next hop IPv4 address.

nexthop nexthop-ipv6-address: Specifies a next hop IPv6 address.

vpn-instance vpn-instance-name: Specifies the MPLS L3VPN instance to which the SRv6 SIDs belong. The vpn-instance-name argument is a case-sensitive string of 1 to 31 characters. The specified VPN instance must exist. If the SRv6 SIDs belong to the public network, do not specify this option.

evpn: Specifies EVPN routes. If you do not specify this keyword, the command specifies the SRv6 SIDs of VPNv4 or VPNv6 routes.

l3vpn-evpn: Specifies EVPN routes, VPNv4 routes, and VPNv6 routes.

xconnect-group group-name: Specifies the cross-connect group to which the SRv6 SIDs belong. The group-name argument represents the cross-connect group name, a case-sensitive string of 1 to 31 characters. The name cannot contain a hyphen (-). The specified cross-connect group must exist.

connection connection-name: Specifies the cross-connect to which the SRv6 SIDs belong. The connection-name argument represents the cross-connect name, a case-sensitive string of 1 to 20 characters. The name cannot contain a hyphen (-). The specified cross-connect must exist.

vsi vsi-name: Specifies the VSI to which the SRv6 SIDs belong. The vsi-name argument represents the VSI name, a case-sensitive string of 1 to 31 characters. The specified VSI must exist.

service-instance instance-id: Specifies an Ethernet service instance by its ID, in the range of 1 to 4096.

mirror-locator ipv6-address prefix-length: Specifies a protected locator by its IPv6 address prefix and prefix length. The ipv6-address argument represents the IPv6 address prefix. The prefix-length argument represents the prefix length, in the range of 32 to 120. Make sure the specified locator is the same as the locator on a protected node.

Usage guidelines

An SRv6 locator and its opcode and argument generate unique SRv6 SIDs. SRv6 SIDs form local SID forwarding table entries.

Use this command to configure the opcode of static SRv6 SIDs on a locator. The number of static SRv6 SIDs is determined by the static static-length option in the locator command.

You can execute the opcode command multiple times with the end-m keyword to specify multiple protected locators for the same opcode. Each protected locator represents one or multiple remote SRv6 SIDs that require protection. A protected locator can be specified only for one opcode. Different opcodes cannot have protected locators belonging to the same subnet.

To modify the opcode of static SRv6 SIDs on a locator, you must first delete the original opcode by using the undo opcode command.

End (COC32) SRv6 SIDs and End.X (COC32) SRv6 SIDs are allocated from the compressible G-SID space on a locator. They are compressed to 32-bit when forwarded. To configure End (COC32) SRv6 SIDs or End.X (COC32) SRv6 SIDs, you must also perform the following tasks:

·     Enable SRv6 compression by using the srv6 compress enable command.

·     Configure the G-SID common prefix length by using the locator command.

To configure End (COCNONE) SRv6 SIDs or End.X (COCNONE) SRv6 SIDs, you must also perform the following tasks:

·     Enable SRv6 compression by using the srv6 compress enable command.

·     Configure the locator to allocate both compressible and non-compressible SRv6 SIDs.

End (COCNONE) and End.X (COCNONE) SIDs are allocated from the compressible G-SID space on a locator. End (COCNONE) SIDs and End.X (COCNONE) SIDs have the same function as End SIDs and End.X SIDs, respectively. They are not compressed when forwarded.

For a COC-both locator, you can set the same opcode for the following SIDs:

·     End SID and End (COC32) SID.

·     End SID and End (COCNONE) SID.

·     End.X SID and End.X (COC32) SID.

·     End.X SID and End.X (COCNONE) SID.

You can specify a GRE tunnel interface for the interface keyword to implement SRv6 over GRE. A GRE header is encapsulated to the SRv6 packets. In the SRv6 TE policy over GRE scenario, if the interface keyword specified for first SID in the SRv6 TE policy is a GRE tunnel interface, you must configure one of the following commands:

·     encapsulation-mode encaps include local-end.x

·     srv6-policy encapsulation-mode encaps include local-end.x

Examples

# Configure End SRv6 SIDs, and set the opcode to 64. Configure End.X SRv6 SIDs, set the opcode to 128, and configure Ten-GigabitEthernet 3/1/1 as the output interface and 2001::1 as the next hop IPv6 address.

<Sysname> system-view

[Sysname] segment-routing ipv6

[Sysname-segment-routing-ipv6] locator test ipv6-prefix 100:: 64 static 32

[Sysname-segment-routing-ipv6-locator-test] opcode 64 end psp

[Sysname-segment-routing-ipv6-locator-test] opcode 128 end-x interface ten-gigabitethernet 3/1/1 nexthop 2001::1 psp

Related commands

locator

segment-routing ipv6

srv6 compress enable

ospfv3 fast-reroute ti-lfa disable

Use ospfv3 fast-reroute ti-lfa disable to prevent an OSPFv3 interface from participating in TI-LFA calculation.

Use undo ospfv3 fast-reroute ti-lfa disable to allow an OSPFv3 interface to participate in TI-LFA calculation.

Syntax

ospfv3 fast-reroute ti-lfa disable [ instance instance-id ]

undo ospfv3 fast-reroute ti-lfa disable [ instance instance-id ]

Default

An OSPFv3 interface participates in TI-LFA calculation.

Views

Interface view

Predefined user roles

network-admin

Parameters

instance instance-id: Specifies an instance by its ID, in the range of 0 to 255. The default value is 0.

Examples

# Prevent Ten-GigabitEthernet3/1/1 from participating in TI-LFA calculation.

<Sysname> system-view

[Sysname] interface ten-gigabitethernet 3/1/1

[Sysname-Ten-GigabitEthernet3/1/1] ospfv3 fast-reroute ti-lfa disable

path-mtu

Use path-mtu to set the SRv6 path MTU.

Use undo path-mtu to restore the default.

Syntax

path-mtu mtu-value

undo path-mtu

Default

No SRv6 path MTU is configured.

Views

SRv6 view

Predefined user roles

network-admin

Parameters

mtu-value: Sets the path MTU, in bytes. The value range for this argument is 1280 to 9600.

Usage guidelines

This command specifies the maximum bytes that can be contained in an SRv6 tunneled packets.

The transit nodes do not fragment SRv6 tunneled packets. If a packet is larger than the MTU of the output interface, the packet will be discarded. If the MTU is too small, the bandwidth is not sufficiently used. To address these issues, use this command to set an appropriate SRv6 path MTU.

Examples

# Set the SRv6 path MTU to 2000 bytes.

<Sysname> system-view

[Sysname] segment-routing ipv6

[Sysname-segment-routing-ipv6] path-mtu 2000

path-mtu reserved

Use path-mtu reserved to specify a reserved MTU for SRv6 path MTU.

Use undo path-mtu reserved to restore the default.

Syntax

path-mtu reserved [ reserved-value ]

undo path-mtu reserved

Default

No reserved MTU is specified for SRv6 path MTU.

Views

SRv6 view

Predefined user roles

network-admin

Parameters

reserved-value: Specifies an MTU value, in bytes. The value range for this argument is 0 to 8320. The default value is 72 bytes.

Usage guidelines

Use this command in the TI-LFA scenario. When packets are switched to the backup path after the primary path fails, the device reconstructs an IPv6 header and SRH for the packets. As a result, packet drop might occur because the packet size has exceeded the MTU. To resolve this issue, configure a reserved MTU on the source node to reserve bytes for adding a new SRH to SRv6 packets in case of primary path failure.

The size of SRv6 packets sent from the source node is controlled by the SRv6 path MTU, reserved MTU, and the IPv6 MTU of the physical output interface. The source node first finds the smaller value between the SRv6 path MTU and the IPv6 MTU of the physical output interface. Then, it uses the smaller value minus the reserved MTU as the effective MTU of the SRv6 packets.

For example, the SRv6 path MTU is 1600 and the reserved MTU is 100.

·     If the IPv6 MTU of the physical output interface is equal to or greater then 1600, the effective MTU is the SRv6 path MTU minus the reserved MTU. In this example, the effective MTU is 1500.

·     If the IPv6 MTU of the physical output interface is smaller than 1600, the effective MTU is the IPv6 MTU of the physical output interface minus the reserved MTU. For example, if the IPv6 MTU of the physical output interface is 1500, the effective MTU is 1400.

Examples

# Reserve 200 bytes for SRv6 path MTU.

<Sysname> system-view

[Sysname] segment-routing ipv6

[Sysname-segment-routing-ipv6] path-mtu reserved 200

peer egress-engineering srv6

Use peer egress-engineering srv6 to enable SRv6 BGP-EPE.

Use undo peer egress-engineering srv6 to disable SRv6 BGP-EPE.

Syntax

peer group-name egress-engineering srv6

undo peer group-name egress-engineering srv6

peer ipv6-address egress-engineering srv6 [ locator locator-name [ auto-sid-coc32 [ additive ] | auto-sid-coc-both { all | coc32 | coc32-all | coc32-none } ] | static-sid { coc32 | coc-both coc32 } { no-flavor no-flavor-sid | psp psp-sid } * ]

peer ipv6-address egress-engineering srv6 [ locator locator-name [ auto-sid-coc32 [ additive ] | auto-sid-coc-both { all | coc32 | coc32-all | coc32-none } ] | static-sid coc-both coc32-none { no-flavor no-flavor-sid | psp psp-sid | psp-usp–usd psp-usp-usd-sid } * ]

undo peer ipv6-address egress-engineering srv6 [ locator | static-sid { no-flavor | psp | psp-usp–usd } * ]

peer ipv6-address prefix-length egress-engineering srv6 [ locator locator-name ]

undo peer ipv6-address prefix-length egress-engineering srv6 [ locator ]

Default

SRv6 BGP-EPE is disabled.

Views

BGP instance view

Predefined user roles

network-admin

Parameters

group-name: Specifies a peer group by its name, a case-sensitive string of 1 to 47 characters. The specified peer group must already exist.

ipv6-address: Specifies a peer by its IPv6 address. The specified peer must already exist.

prefix-length: Specifies the prefix length, in the range of 0 to 128. To specify dynamic peers within a subnet, you must specify both the ipv6-address and prefix-length arguments.

locator locator-name: Specifies a locator by its name. If you specify a locator, the device can dynamically allocate an End.X SID in the locator to the peer. If you specify this option without specifying the auto-sid-coc32 or auto-sid-coc-both keyword, the device dynamically allocates a common SRv6 SID in the locator to the peer.

·     auto-sid-coc32: Dynamically allocates a compressible SRv6 SID to the peer from the specified COC32 locator. During dynamic SID allocation, BGP will allocate two End.X (COC32) SIDs of the no-flavor and psp flavor types.

·     auto-sid-coc32 additive: Dynamically allocates a common SRv6 SID to the peer from the specified COC32 locator in addition to the compressible SRv6 SID. During dynamic End.X SID allocation, BGP will allocate two End.X (COC32) SIDs of no-flavor and psp flavor types and three End.X SIDs of no-flavor, PSP, and psp-usp-usd flavor types. If you do not specify the additive keyword, the device only dynamically allocates a compressible End.X (COC32) SRv6 SID.

·     auto-sid-coc-both coc32: Dynamically allocates a compressible SRv6 SID to the peer from the specified COC-both locator. During dynamic SID allocation, BGP will allocate two End.X (COC32) SIDs of the no-flavor and psp flavor types.

·     auto-sid-coc-both coc32-none: Dynamically allocates a non-compressible SRv6 SID to the peer from the specified COC-both locator. During dynamic SID allocation, BGP will allocate three End.X (COCNONE) SIDs of the no-flavor, psp, and psp-usp-usd flavor types.

·     auto-sid-coc-both coc32-all: Dynamically allocates compressible and non-compressible SRv6 SIDs to the peer from the specified COC-both locator. During dynamic End.X SID allocation, BGP will allocate two End.X (COC32) SIDs of no-flavor and psp flavor types and three End.X (COCNONE) SIDs of no-flavor, psp, and psp-usp-usd flavor types.

·     auto-sid-coc-both all: Dynamically allocates common, compressible, and non-compressible SRv6 SIDs to the peer from the specified COC-both locator. During dynamic End.X SID allocation, BGP will allocate two End.X (COC32) SIDs of no-flavor and psp flavor types, three End.X (COCNONE) SIDs of no-flavor, psp, and psp-usp-usd flavor types, and three End.X SIDs of no-flavor, psp, and psp-usp-usd flavor types.

static-sid: Specifies a static SRv6 SID for the peer. If you specify this keyword without specifying the coc32 or coc-both keyword, the device allocates a static common SRv6 SID to the peer.

·     coc32: Specifies a static compressible SRv6 SID for the peer from the COC32 locator applied to BGP-EPE.

·     coc-both coc32: Specifies a static compressible SRv6 SID for the peer from the COC-both locator applied to BGP-EPE.

·     coc-both coc32-none: Specifies a static non-compressible SRv6 SID for the peer from the COC-both locator applied to BGP-EPE.

no-flavor no-flavor-sid: Specifies an End.X SID (without any flavors) by its ID.

psp psp-sid: Specifies an End.X SID (carrying the PSP flavor) by its ID.

psp-usp–usd psp-usp-usd-sid: Specifies an End.X SID (carrying the PSP, USP, and USD flavors) by its ID.

Usage guidelines

This command enables the device to allocate PeerNode SIDs and PeerAdj SIDs to peers.

When you use the peer egress-engineering srv6 command for a peer, follow these restrictions and guidelines:

·     If you use this command to specify multiple locators for that peer, only the most recent configuration takes effect.

·     If you use this command to specify multiple static SRv6 SIDs:

¡     If all the SRv6 SIDs belong to the same type, the most recent configuration takes effect.

¡     If the SRv6 SIDs belong to different types, one of the following SRv6 SID combinations takes effect:

-     Common SID, COC32 compressible SID, and COC-both non-compressible SID.

-     Common SID, COC-both compressible SID, and COC-both non-compressible SID.

¡     If the coc32 keyword and the coc-both coc32 keyword are specified multiple times, the most recent configuration takes effect.

If you specify a static SRv6 SID for a peer, the specified static SRv6 SID must belong to the locator specified by using the segment-routing ipv6 egress-engineering locator command in BGP instance view. To identify whether the static SRv6 SID takes effect, use the display bgp egress-engineering ipv6 command. If the static SRv6 SID does not take effect, the static SRv6 SID has been used by other protocols. If the static SRv6 SID has been used by other protocols, BGP-EPE does not dynamically allocate an SRv6 SID. After the static SRv6 SID is released, first use the undo peer egress-engineering srv6 command to remove the original static SRv6 SID configuration. Then, use the peer egress-engineering srv6 command to reconfigure the static SRv6 SID.

The static SRv6 SIDs specified by using the following commands cannot be the same:

·     peer egress-engineering srv6.

·     egress-engineering srv6 peer-set.

The auto-sid-coc32 and coc32 keywords take effect only when the locator applied to BGP-EPE is a COC32 locator.

The auto-sid-coc-both and coc-both keywords take effect only when the locator applied to BGP-EPE is a COC-both locator.

If you do not specify any parameters, the device will dynamically allocate SRv6 SIDs to peers from the locator applied to BGP-EPE by using the segment-routing ipv6 egress-engineering locator command.

·     If the applied locator is a common locator, BGP will allocate three End.X SIDs of no-flavor, psp, and psp-usp-usd types.

·     If the applied locator is a COS32 locator, BGP will allocate three End.X SIDs of no-flavor, psp, and psp-usp-usd types.

·     If the applied locator is a COC-both locator, BGP might allocate one of the following SID combinations:

¡     Three End.X SIDs of no-flavor, psp, and psp-usp-usd types.

¡     Two End.X (COC32) SIDs of no-flavor and psp types and two End.X (COCNONE) SIDs of no-flavor and psp-usp-usd types.

Examples

# Enable SRv6 BGP-EPE.

<Sysname> system-view

[Sysname] bgp 100

[Sysname-bgp-default] peer 1::1 egress-engineering srv6

Related commands

egress-engineering srv6 peer-set

segment-routing ipv6 egress-engineering locator

peer peer-set

Use peer peer-set to add a peer to a BGP-EPE SRv6 peer set.

Use undo peer peer-set to remove a peer from a BGP-EPE SRv6 peer set.

Syntax

peer { ipv6-address [ prefix-length ] } peer-set srv6-peer-set-name

undo peer { ipv6-address [ prefix-length ] } peer-set

Default

No peers are added to a BGP-EPE SRv6 peer set.

Views

BGP instance view

Predefined user roles

network-admin

Parameters

ipv6-address: Specifies a peer by its IPv6 address. The peer must exist.

prefix-length: Specifies a prefix length in the range of 0 to 128. To specify a subnet, you must specify both the ipv6-address and prefix-length arguments.

peer-set-name: Specifies a BGP-EPE SRv6 peer set by its name, a case-sensitive string of 1 to 63 characters.

Usage guidelines

A PeerSet SID can be allocated to a BGP-EPE SRv6 peer set. When the device forwards traffic based on the PeerSet SID, it distributes the traffic among the peers in the peer set for load sharing.

Before adding a peer to a BGP-EPE SRv6 peer set, you must enable SRv6 BGP-EPE for that peer.

To change the BGP-EPE SRv6 peer set for a peer, you must first use undo peer peer-set command to remove that peer from the original BGP-EPE SRv6 peer set.

Examples

# Add peer 10::1 to the BGP-EPE SRv6 peer set named abc.

<Sysname> system-view

[Sysname] bgp 100

[Sysname-bgp-default] peer 10::1 peer-set abc

Related commands

egress-engineering srv6 peer-set

peer egress-engineering srv6

remote-locator

Use remote-locator to create a remote SRv6 locator and enter its view, or enter the view of an existing remote SRv6 locator.

Use undo remote-locator to delete a remote SRv6 locator.

Syntax

remote-locator remote-locator-name [ ipv6-prefix ipv6-address prefix-length [ args args-length | static static-length ] * ]

undo remote-locator remote-locator-name

Default

No remote SRv6 locators exist.

Views

SRv6 view

Predefined user roles

network-admin

Parameters

remote-locator-name: Specifies a remote locator name, a case-sensitive string of 1 to 31 characters.

ipv6-prefix ipv6-address prefix-length: Specifies an IPv6 address prefix and the prefix length. The ipv6-address argument represents the IPv6 address prefix. The prefix-length argument represents the prefix length, in the range of 32 to 120. The IPv6 address prefix cannot be an IPv4-compatible IPv6 address.

args args-length: Specifies an argument length. The value range for the args-length argument depends on the value of the prefix-length argument and varies by device model.

static static-length: Specifies the static length. The value range for the static-length argument varies by the value of the prefix-length argument and varies by device model.

Usage guidelines

In the EVPN VPWS over SRv6 scenario, if the PEs cannot use BGP routes to establish SRv6 PWs, you need to establish a static SRv6 PW between the PEs to ensure correct packet forwarding. Because the PEs cannot transmit SRv6 SID information through BGP routes, you need to configure the SRv6 SIDs assigned by the local and remote ends to the cross-connect. To configure the SRv6 SID assigned by the local end, configure the opcode command for the associated locator. To configure the SRv6 SID assigned by the remote end, create the remote locator, and then use the peer command to specify the remote locator in static SRv6 configuration view of the cross-connect.

The remote locator setting on the local PE must be the same as the locator setting on the remote PE. The local and remote PEs must use consistent locator, remote locator, and SRv6 SID settings. For example:

·     Configuration on the local PE (PE 1):

locator pe1 ipv6-prefix 100:: 64 static 32

  opcode 1 end.dx2 xconnect-group pe1 connection pe1

remote-locator pe2 ipv6-prefix 200:: 64 static 32

xconnect-group pe1

  connection pe1

    static-srv6 local-service-id 1 remote-service-id 2

      peer 2::2 end-dx2-sid remote-locator pe2 opcode 1

·     Configuration on the remote PE (PE 2):

locator pe2 ipv6-prefix 200:: 64 static 32

  opcode 1 end.dx2 xconnect-group pe2 connection pe2

remote-locator pe1 ipv6-prefix 100:: 64 static 32

xconnect-group pe2

  connection pe2

    static-srv6 local-service-id 1 remote-service-id 2

      peer 1::1 end-dx2-sid remote-locator pe1 opcode 1

The locator for the local PE is 100::/64, and the remote locator is 200::/6. The locator for the remote PE is 200::/64, and the remote locator is 100::/6. The SRv6 SID assigned by the local PE to the cross-connect is End.DX2 SID 100::1. The SRv6 SID assigned by the remote PE to the cross-connect is End.DX2 SID 200::1.

When deploying an SRv6 PW in the EVPN VPWS over SRv6 scenario for packet forwarding, make sure the destination IPv6 address for packets is the SRv6 SID of the remote locator. Upon receiving the packets, the remote PE searches the local locator SID forwarding table, and perform one of the following operations:

·     If a matching SRv6 SID is found in the local locator, the remote PE forwards the packets based on the SRv6 SID.

·     If no matching SRv6 SID is found in the local locator, the remote PE discards the packets.

When you create a remote locator, you must specify an IPv6 address prefix, prefix length, and static length for the remote locator. When you enter the view of an existing remote SRv6 locator, you only need to specify the remote locator name.

Each remote locator must have a unique name.

Do not specify the same IPv6 address prefix for different remote locators. In addition, the IPv6 address prefixes of different remote locators cannot overlap.

Do not specify the same IPv6 address prefix for the remote locator and local locator. In addition, the IPv6 address prefixes of the remote locator and local locator cannot overlap.

Examples

# Configure remote locator test1, setting the IPv6 address prefix to 100::, prefix length to 64, and static length to 32, and enter the remote SRv6 locator view of this locator.

<Sysname> system-view

[Sysname] segment-routing ipv6

[Sysname-segment-routing-ipv6] remote-locator test1 ipv6-prefix 200:: 64 static 32

[Sysname-segment-routing-ipv6-rmtlocator-test1]

Related commands

locator

opcode

peer

reserved-sid-start

Use reserved-sid-start to reserve SRv6 SIDs.

Use undo reserved-sid-start to restore the default.

Syntax

reserved-sid-start sid-value count reserved-sid-count

undo reserved-sid-start

Default

No SRv6 SIDs are reserved.

Views

SRv6 locator view

Predefined user roles

network-admin

Parameters

sid-value: Specifies the start SRv6 SID for reservation.

count reserved-sid-count: Specifies the number of reserved SRv6 SIDs, in the range of 1 to 4294967295.

Usage guidelines

When the device generates an SRv6 TE policy based on received SRv6 TE policy routes, it must assign a BSID to the SRv6 TE policy. Use this command to reserve SRv6 SIDs. The reserve SRv6 SIDs can only be assigned to SRv6 TE policies as BSIDs.

To use this command on a locator, you must enable the locator to allocate both compressible and non-compressible SRv6 SIDs. In addition, make sure all reserved SRv6 SIDs belong to the non-compressible dynamic SRv6 SID range for the locator. To obtain the range, use the display segment-routing ipv6 locator command.

As a best practice, reserve the biggest several SIDs in the non-compressible dynamic SRv6 SID range for the locator. That is, the end reserved SRv6 SID is the end value of the non-compressible dynamic SRv6 SID range. The start reserved SRv6 SID equals the end value of the non-compressible dynamic SRv6 SID range minus reserved-sid-count and then plus 1. If you fail to do so, the dynamic allocated SID might be greater than the maximum reserved SID. In this case, you cannot edit or delete the configured reserved SRv6 SIDs.

When you allocate reserved SRv6 SIDs in the non-compressible dynamic SRv6 SID range, make sure the length of the reserved SRv6 SIDs does not exceed 32 bits (all 32 bits are set to 1). If the length exceeds 32 bits, the reserved SIDs might not be allocated correctly or might not be as expected. Assume that the start value for non-compressible dynamic SRv6 SIDs is 100:0:0:1::100 and the end value is 100::1:0:FFFF:FFFF:FFFF, the dynamic portion length is 40 bits, and the static portion length is 8 bits, without the Args portion. If the start SRv6 SID for reservation is 100::1:0:FF:FFFF:FFF0 and the number of reserved SRv6 SIDs is 20, no reserved SRv6 SIDs can be allocated.

Examples

# Configure the device to reserve 1000 SRv6 SIDs starting from 100:200:DB8:ABCD::1:0 for locator abc.

<Sysname> system-view

[Sysname] segment-routing ipv6

[Sysname-segment-routing-ipv6] locator abc

[Sysname-segment-routing-ipv6-locator-abc] reserved-sid-start 100:200:DB8:ABCD::1:0 count 1000

Related commands

display segment-routing ipv6 locator

router-id

Use router-id to configure the router ID for an IPv6 IS-IS process and enable IPv6 TE.

Use undo router-id to remove the router ID from an IPv6 IS-IS process and disable IPv6 TE.

Syntax

router-id ipv6-address

undo router-id

Default

No router ID is configured for an IPv6 IS-IS process and IPv6 TE is disabled.

Views

IS-IS IPv6 address family view

Predefined user roles

network-admin

Parameters

ipv6-address: Specifies an IPv6 router ID.

Usage guidelines

The IPv6 router ID must be unique in the IPv6 network.

The IPv6 router ID determines the source and destination addresses of the SRv6 tunnel distributed to the IGP. The destination address of the SRv6 tunnel must be the same as the IPv6 router ID of the destination node.

To avoid route calculation errors when multiple IS-IS P2P neighbors exist between two devices, use the advertise link-attributes or router-id command to enable IS-IS to advertise the IP address of the local interface connected to the peer to the neighbors.

Configuring an IPv6 route ID on a router also enables the IPv6 TE feature on that router. After the SRv6 tunnel participates in IGP route calculation, traffic can be directed to the SRv6 tunnel.

Examples

# Configure the router ID for an IPv6 IS-IS process and enable IPv6 TE.

<Sysname> system-view

[Sysname] isis 1

[Sysname-isis-1] cost-style wide

[Sysname-isis-1] address-family ipv6

[Sysname-isis-1-ipv6] router-id 1000::1

segment-routing ipv6 (system view)

Use segment-routing ipv6 to enable SRv6 and enter SRv6 view.

Use undo segment-routing ipv6 to disable SRv6.

Syntax

segment-routing ipv6

undo segment-routing ipv6

Default

SRv6 is disabled.

Views

System view

Predefined user roles

network-admin

Usage guidelines

After you execute this command, you can configure locators in SRv6 view. Then, you can configure the opcode portion in SRv6 locator view to generate local SID forwarding table entries.

You cannot disable SRv6 when a locator in SRv6 view has dynamic SRv6 SIDs that are being used.

Examples

# Enable SRv6 and enter SRv6 view.

<Sysname> system-view

[Sysname] segment-routing ipv6

[Sysname-segment-routing-ipv6]

segment-routing ipv6 egress-engineering locator

Use segment-routing ipv6 egress-engineering locator to apply a locator to BGP-EPE.

Use undo segment-routing ipv6 egress-engineering locator to restore the default.

Syntax

segment-routing ipv6 egress-engineering locator locator-name [ auto-sid-coc-both { all | coc32 | coc32-all | coc32-none } | auto-sid-coc32 [ additive ] | auto-sid-disable ]

undo segment-routing ipv6 egress-engineering locator

Default

No locator is applied to BGP-EPE.

Views

BGP instance view

Predefined user roles

network-admin

Parameters

locator-name: Specifies a locator by its name, a case-sensitive string of 1 to 31 characters.

auto-sid-coc-both: Dynamically allocates SRv6 SIDs to BGP-EPE from the specified COC-both locator.

·     all: Specifies the common, compressible, and non-compressible SRv6 SIDs. During dynamic End.X SID allocation, BGP will allocate two End.X (COC32) SIDs of no-flavor and psp types, three End.X (COCNONE) SIDs of no-flavor, psp, and psp-usp-usd types, and three End.X SIDs of no-flavor, psp, and psp-usp-usd types.

·     coc32: Specifies the compressible End.X (COC32) SRv6 SIDs. BGP will allocate two End.X (COC32) SIDs of no-flavor and psp types.

·     coc32-all: Specifies the compressible and non-compressible SRv6 SIDs. During dynamic End.X SID allocation, BGP will allocate two End.X (COC32) SIDs of no-flavor and psp types and three End.X (COCNONE) SIDs of no-flavor, psp, and psp-usp-usd types.

·     coc32-none: Specifies the non-compressible End.X (COCNONE) SRv6 SIDs. BGP will allocate three End.X (COCNONE) SIDs of no-flavor, psp, and psp-usp-usd types.

auto-sid-coc32: Dynamically allocates compressible End.X (COC32) SRv6 SIDs to BGP-EPE from the specified COC32 locator. BGP will allocate two End.X (COC32) SIDs of no-flavor and psp types.

auto-sid-coc32 additive: Dynamically allocates a common SRv6 SID to BGP-EPE from the specified COC32 locator in addition to the allocated compressible SRv6 SID. During dynamic End.X SID allocation, BGP will allocate two End.X (COC32) SIDs of no-flavor and psp flavor types and three End.X SIDs of no-flavor, PSP, and psp-usp-usd flavor types.

auto-sid-disable: Disables dynamic SRv6 SID allocation and releases all allocated SRv6 SIDs. End.X SIDs will be released with a delay of 1800 seconds. If you do not specify this keyword, the device allows dynamic SRv6 SID allocation. If you do not specify this keyword and static SRv6 SIDs are configured, the device prefers to use the static SRv6 SIDs. If no static SRv6 SIDs are configured, the device dynamically allocates SRv6 SIDs.

Usage guidelines

Use this command to restrict the range of End.X SIDs that can be allocated to BGP-EPE SRv6 peer sets and BGP-EPE-enabled peers in a BGP instance. All static SRv6 SIDs configured for the BGP-EPE SRv6 peer sets and peers must belong to the locator specified by using this command.

To dynamically allocate End.X SIDs from the specified locator:

·     Do not configure a static SRv6 SID when you create a BGP-EPE SRv6 peer set by using the egress-engineering srv6 peer-set command.

·     Do not specify a locator or configure a static SRv6 SID when you enable SRv6 BGP-EPE for a peer by using the peer egress-engineering srv6 command.

The auto-sid-coc32 keyword takes effect only when the specified locator is a COC32 locator.

The auto-sid-coc-both { all | coc32 | coc32-all | coc32-none } keyword takes effect only when the specified locator is a COC-both locator.

Without any parameters specified in the command, the system takes the following actions:

·     If static SRv6 SIDs are configured, the system preferentially uses static SRv6 SIDs.

·     If no static SRv6 SIDs are configured, the system dynamically allocates SRv6 SIDs.

Without any parameters specified in the command, BGP allocates SRv6 SIDs according to the type of the applied locator:

·     If the applied locator is a common locator, BGP will allocate three End.X SIDs of no-flavor, psp, and psp-usp-usd types.

·     If the applied locator is a COS32 locator, BGP will allocate three End.X SIDs of no-flavor, psp, and psp-usp-usd types.

·     If the applied locator is a COC-both locator, BGP might allocate one of the following SID combinations:

¡     Three End.X SIDs of no-flavor, psp, and psp-usp-usd types.

¡     Two End.X (COC32) SIDs of no-flavor and psp types and two End.X (COCNONE) SIDs of no-flavor and psp-usp-usd types.

Examples

# Apply locator test to BGP-EPE.

<Sysname> system-view

[Sysname] bgp 100

[Sysname-bgp-default] segment-routing ipv6 egress-engineering locator test

Related commands

egress-engineering srv6 peer-set

peer egress-engineering srv6

segment-routing ipv6 end-x delete-delay

Use segment-routing ipv6 end-x delete-delay to enable dynamic End.X SID deletion delay and set the delay time.

Use undo segment-routing ipv6 end-x delete-delay to restore the default.

Syntax

segment-routing ipv6 end-x delete-delay [ time-value ]

undo segment-routing ipv6 end-x delete-delay

Default

Dynamic End.X SID deletion delay is enabled. The delay time is 1800 seconds.

Views

IS-IS IPv6 address family view

OSPFv3 process view

Predefined user roles

network-admin

Parameters

time-value: Sets the dynamic End.X SID deletion delay time in seconds, in the range of 0 to 2592000. The default value is 1800. If the value is 0, dynamic End.X SID deletion delay is disabled.

Usage guidelines

Packet loss occurs between OSPFv3 or IS-IS neighbors if the neighbors frequently delete and request dynamically allocated End.X SIDs for the links between them because of neighbor flapping. To resolve this issue, set a delay timer for deleting dynamically allocated End.X SIDs when the neighbors are disconnected. If the neighbors are still disconnected when the delay timer expires, the device deletes the dynamically allocated End.X SIDs.

The device always immediately deletes automatically allocated End.X SIDs without any delay in the following situations:

·     The reset ospfv3 process command is executed.

·     The reset isis all command is executed.

·     Interfaces are deleted or removed. For example, an interface module is removed, or a subinterface or VLAN interface is deleted.

Examples

# Enable dynamic End.X SID deletion delay for IPv6 IS-IS process 1.

<Sysname> system-view

[Sysname] isis 1

[Sysname-isis-1] address-family ipv6

[Sysname-isis-1-ipv6] segment-routing ipv6 end-x delete-delay

# Enable dynamic End.X SID deletion delay for OSPFv3 process 1.

<Sysname> system-view

[Sysname] ospfv3 1

[Sysname-ospfv3-1] segment-routing ipv6 end-x delete-delay

Related commands

reset isis all (Layer 3—IP Routing Command Reference)

reset ospfv3 process (Layer 3—IP Routing Command Reference)

segment-routing ipv6 locator (IS-IS IPv6 address family view)

Use segment-routing ipv6 locator to apply an SRv6 locator to an IPv6 IS-IS process.

Use undo segment-routing ipv6 locator to remove the specified SRv6 locator from an IPv6 IS-IS process.

Syntax

segment-routing ipv6 locator locator-name [ level-1 | level-2 ] [ auto-sid-coc32 [ additive ] | auto-sid-coc-both { all | coc32 | coc32-all | coc32-none } | auto-sid-disable ] [ member-port-enable ]

undo segment-routing ipv6 locator locator-name

Default

No SRv6 locators are applied to an IPv6 IS-IS process.

Views

IS-IS IPv6 address family view

Predefined user roles

network-admin

Parameters

locator-name: Specifies a locator by its name, a case-sensitive string of 1 to 31 characters.

level-1: Specifies the level-1 area.

level-2: Specifies the level-2 area.

auto-sid-coc32: Dynamically allocates a compressible End (COC32) or End.X (COC32) SRv6 SID from the specified COC32 locator.

·     For dynamic End SID allocation, IS-IS will allocate two End (COC32) SIDs of the no-flavor and psp flavor types.

·     For dynamic End.X SID allocation, IS-IS will allocate two End.X (COC32) SIDs of the no-flavor and psp flavor types.

additive: Dynamically allocates a common SRv6 SID from the specified COC32 locator in addition to the compressible SRv6 SID.

·     For dynamic End SID allocation, IS-IS will allocate the following SIDs:

¡     Two End (COC32) SIDs of the no-flavor and psp flavor types.

¡     Three End SIDs of the no-flavor, psp, and psp-usp-usd flavor types.

·     For dynamic End.X SID allocation, IS-IS will allocate the following SIDs:

¡     Two End.X (COC32) SIDs of the no-flavor and psp flavor types.

¡     Three End.X SIDs of the no-flavor, psp, and psp-usp-usd flavor types.

If you do not specify the additive keyword, the device only dynamically allocates a compressible End (COC32) or End.X (COC32) SRv6 SID.

auto-sid-coc-both: Dynamically allocates the specified type of SRv6 SIDs from the specified COC-both locator.

·     coc32: Specifies the compressible SRv6 SID type.

¡     For dynamic End SID allocation, IS-IS will allocate two End (COC32) SIDs of the no-flavor and psp flavor types.

¡     For dynamic End.X SID allocation, IS-IS will allocate two End.X (COC32) SIDs of the no-flavor and psp flavor types.

·     coc32-none: Specifies the non-compressible End (COCNONE) and End.X (COCNONE) SRv6 SID types.

¡     For dynamic End SID allocation, IS-IS will allocate three End (COCNONE) SIDs of the no-flavor, psp, and psp-usp-usd flavor types.

¡     For dynamic End.X SID allocation, IS-IS will allocate three End.X (COCNONE) SIDs of the no-flavor, psp, and psp-usp-usd flavor types.

·     coc32-all: Specifies both the compressible and non-compressible SRv6 SID types.

¡     For dynamic End SID allocation, IS-IS will allocate the following SIDs:

-     Two End (COC32) SIDs of the no-flavor and psp flavor types.

-     Three End (COCNONE) SIDs of the no-flavor, psp, and psp-usp-usd flavor types.

¡     For dynamic End.X SID allocation, IS-IS will allocate the following SIDs:

-     Two End.X (COC32) SIDs of the no-flavor and psp flavor types.

-     Three End.X (COCNONE) SIDs of the no-flavor, psp, and psp-usp-usd flavor types.

·     all: Specifies the common, compressible, and non-compressible SRv6 SID types.

¡     For dynamic End SID allocation, IS-IS will allocate the following SIDs:

-     Two End (COC32) SIDs of the no-flavor and psp flavor types.

-     Three End (COCNONE) SIDs of the no-flavor, psp, and psp-usp-usd flavor types.

-     Three End SIDs of the no-flavor, psp, and psp-usp-usd flavor types.

¡     For dynamic End.X SID allocation, IS-IS will allocate the following SIDs:

-     Two End.X (COC32) SIDs of the no-flavor and psp flavor types.

-     Three End.X (COCNONE) SIDs of the no-flavor, psp, and psp-usp-usd flavor types.

-     Three End.X SIDs of the no-flavor, psp, and psp-usp-usd flavor types.

auto-sid-disable: Disables automatic SRv6 SID allocation, immediately releases allocated End SIDs, and releases allocated End.X SIDs in 1800 seconds. If you do not specify this keyword, the device allows dynamically allocated SRv6 SIDs. If static SRv6 SIDs are configured when automatic SRv6 SID allocation is enabled, the static SRv6 SIDs take precedence. If no static SRv6 SIDs are configured when automatic SRv6 SID allocation is enabled, the system dynamically allocates SRv6 SIDs.

member-port-enable: Enables SRv6 SID allocation to the Layer 3 aggregate interface and its member ports when the neighboring interface is a Layer 3 aggregate interface. If you do not specify this keyword, the system cannot allocate SRv6 SIDs to the member ports.

Usage guidelines

Use this command to enable IPv6 IS-IS to advertise SRv6 SIDs.

If you do not specify a level, this command applies the specified locator to both level-1 and level-2 areas.

Use this command only when the cost style of IS-IS is wide, compatible, or wide-compatible.

Execute this command multiple times to apply multiple locators to an IPv6 IS-IS process so that the process can advertise multiple SRv6 SIDs.

The auto-sid-coc32 keyword takes effect only when the specified locator is a COC32 locator.

The auto-sid-coc-both { all | coc32 | coc32-all | coc32-none } keyword takes effect only when the specified locator is a COC-both locator.

In an SRv6 network, some SRv6 nodes are connected by a Layer 3 aggregate link. To process data traffic on a specific member port instead of load balancing in the aggregate group, specify the member-port-enable keyword to enable SRv6 SID allocation to the aggregate interface and its member ports. In an SID list of an SRv6 TE policy, you can specify the SRv6 SID of a member port instead of the SRv6 SID of the aggregate interface. Then, traffic steered into the SRv6 TE policy is forwarded through the specified member port.

Examples

# Apply locator abc to an IPv6 IS-IS process.

<Sysname> system-view

[Sysname] isis 1

[Sysname-isis-1] cost-style wide

[Sysname-isis-1] address-family ipv6

[Sysname-isis-1-ipv6] segment-routing ipv6 locator abc

Related commands

display segment-routing ipv6 locator

locator

segment-routing ipv6 locator (OSPFv3 process view)

Use segment-routing ipv6 locator to apply an SRv6 locator to an OSPFv3 process.

Use undo segment-routing ipv6 locator to remove the specified SRv6 locator from an OSPFv3 process.

Syntax

segment-routing ipv6 locator locator-name [ auto-sid-disable ]

undo segment-routing ipv6 locator locator-name

Default

No SRv6 locators are applied to an OSPFv3 process.

Views

OSPFv3 process view

Predefined user roles

network-admin

Parameters

locator-name: Specifies a locator by its name, a case-sensitive string of 1 to 31 characters.

auto-sid-disable: Disables automatic SRv6 SID allocation. If you do not specify this keyword, the device allows dynamically allocated SRv6 SIDs. If static SRv6 SIDs are configured when automatic SRv6 SID allocation is enabled, the static SRv6 SIDs take precedence. If no static SRv6 SIDs are configured when automatic SRv6 SID allocation is enabled, the system dynamically allocates SRv6 SIDs.

Usage guidelines

Use this command to enable OSPFv3 to advertise SRv6 SIDs.

Execute this command multiple times to apply multiple locators to an OSPFv3 process so that the process can advertise multiple SRv6 SIDs.

Examples

# Apply locator abc to an OSPFv3 process.

<Sysname> system-view

[Sysname] ospfv3 1

[Sysname-ospfv3-1] segment-routing ipv6 locator abc

Related commands

display segment-routing ipv6 locator

locator

segment-routing ipv6 sid delete-delay

Use segment-routing ipv6 sid delete-delay to configure a deletion delay for dynamic SIDs.

Use undo segment-routing ipv6 sid delete-delay to restore the default.

Syntax

segment-routing ipv6 sid delete-delay [ time-value ]

undo segment-routing ipv6 sid delete-delay

Default

The dynamic SID deletion delay time is 1800 seconds.

Views

BGP instance view

Predefined user roles

network-admin

Parameters

time-value: Specifies the deletion delay time, in the range of 0 to 3600 seconds. A value of 0 means no delay and the device deletes the SRv6 SIDs allocated by BGP immediately after the BGP session is down.

Usage guidelines

To make sure BGP allocates the same SRv6 SID before and after a BGP session down-up event, use this command to set a proper dynamic SID deletion delay. After the BGP session is down, the BGP-allocated SRv6 SID is not deleted within the delay time. If the BGP session becomes up within the delay time, the original SRv6 SID is used.

If you delete the BGP configuration actively, the device immediately deletes the SRv6 SIDs dynamically allocated by BGP without a delay.

Examples

# Configure the dynamic SID deletion delay time as 30 seconds.

<Sysname> system-view

[Sysname] bgp 100

[Sysname-bgp-default] segment-routing ipv6 sid delete-delay 30

segment-routing ipv6 sid-sub-tlv-type

Use segment-routing ipv6 sid-sub-tlv-type to specify a type value for an SRv6 SID sub-TLV included in OSPFv3 routes.

Use undo segment-routing ipv6 sid-sub-tlv-type to restore the default.

Syntax

segment-routing ipv6 sid-sub-tlv-type { end-x end-x-value | lan-end-x lan-end-x-value }

undo segment-routing ipv6 sid-sub-tlv-type

Default

The type value is 11 for the P2P End.X SID sub-TLV included in OSPFv3 routes and 12 for the LAN End.X SID sub-TLV included in OSPFv3 routes.

Views

OSPFv3 process view

Predefined user roles

network-admin

Parameters

end-x end-x-value: Specifies a type value for the P2P End.X SID sub-TLV, in the range of 1 to 1000. The default value is 11.

lan-end-x lan-end-x-value: Specifies a type value for the LAN End.X SID sub-TLV, in the range of 1 to 1000. The default value is 12.

Usage guidelines

The type values for the End.X SID sub-TLVs included in OSPFv3 routes might vary by device model. For device intercommunication, use this command to ensure that all devices have the same type value for the same End.X SID sub-TLV included in OSPFv3 routes.

By default, the type value is 11 for both the P2P End.X SID sub-TLV and ASLA sub-TLV. To avoid conflict, you must use this command to change the type value of the P2P End.X SID sub-TLV.

Examples

# Set the type value of the P2P End.X SID sub-TLV to 20.

<Sysname> system-view

[Sysname] ospfv3 1

[Sysname-ospfv3-1] segment-routing ipv6 sid-sub-tlv-type end-x 20

segment-routing microloop-avoidance enable

Use segment-routing microloop-avoidance enable to enable SR microloop avoidance.

Use undo segment-routing microloop-avoidance enable to disable SR microloop avoidance.

Syntax

In IS-IS IPv6 unicast address family view:

segment-routing microloop-avoidance enable [ level-1 | level-2 ]

undo segment-routing microloop-avoidance enable [ level-1 | level-2 ]

In OSPFv3 process view:

segment-routing microloop-avoidance enable

undo segment-routing microloop-avoidance enable

Default

SR microloop avoidance is disabled.

Views

IS-IS IPv6 unicast address family view

OSPFv3 process view

Predefined user roles

network-admin

Parameters

level-1: Specifies IS-IS Level-1.

level-2: Specifies IS-IS Level-2.

Usage guidelines

After a network failure occurs or recovers, route convergence occurs on relevant network devices. Because of nonsimultaneous convergence on network devices, microloops might be formed. After you configure SR microloop avoidance, the devices will forward traffic along the specified path before route convergence is finished on all the relevant network devices. Because the forwarding path is independent of route convergence, microloops are avoided.

If you do not specify the level-1 or level-2 keyword, this command applies to both IS-IS levels.

Examples

# Enable SR microloop avoidance for IPv6 IS-IS process 1.

<Sysname> system-view

[Sysname] isis 1

[Sysname-isis-1] address-family ipv6

[Sysname-isis-1-ipv6] segment-routing microloop-avoidance enable

# Enable SR microloop avoidance for OSPFv3 process 1.

<Sysname> system-view

[Sysname] ospfv3 1

[Sysname-isis-1] address-family ipv6

[Sysname-ospfv3-1] segment-routing microloop-avoidance enable

Related commands

segment-routing microloop-avoidance rib-update-delay

segment-routing microloop-avoidance encaps

Use segment-routing microloop-avoidance encaps to specify the encap encapsulation mode for SR microloop avoidance.

Use undo segment-routing microloop-avoidance encaps to restore the default.

Syntax

segment-routing microloop-avoidance encaps

undo segment-routing microloop-avoidance encaps

Default

SR microloop avoidance uses the insert mode.

Views

IS-IS IPv6 unicast address family view

Predefined user roles

network-admin

Usage guidelines

SR microloop avoidance supports the following SID list encapsulation modes:

·     Insert mode—In this mode, the device handles packets as follows when SR microloop avoidance is enabled:

¡     For an SRv6 packet, the device inserts a new SRH between the outer IPv6 header and the original SRH. The new SRH includes all SIDs in the SID list.

¡     For a non-SRv6 IPv6 packet, the device replaces the destination address in the original IPv6 header with the first SID in the SID list and adds an SRH to the packet. The SRH includes all SIDs in the SID list.

·     Encap mode—In this mode, the device adds a new outer IPv6 header and SRH to each packet.

¡     The destination address in the new outer IPv6 header is the first SID in the SID list, and the source IPv6 address is manually configured.

¡     The SRH includes all SIDs in the SID list.

Examples

# Specify the encap encapsulation mode for SR microloop avoidance in IS-IS process 1.

<Sysname> system-view

[Sysname] isis 1

[Sysname-isis-1] address-family ipv6

[Sysname-isis-1-ipv6] segment-routing microloop-avoidance encaps

Related commands

segment-routing microloop-avoidance enable

segment-routing microloop-avoidance rib-update-delay

Use segment-routing microloop-avoidance rib-update-delay to set the SR microloop avoidance RIB-update-delay time.

Use undo segment-routing microloop-avoidance rib-update-delay to restore the default.

Syntax

In IS-IS IPv6 unicast address family view:

segment-routing microloop-avoidance rib-update-delay delay-time [ level-1 | level-2 ]

undo segment-routing microloop-avoidance rib-update-delay [ level-1 | level-2 ]

In OSPFv3 process view:

segment-routing microloop-avoidance rib-update-delay delay-time

undo segment-routing microloop-avoidance rib-update-delay

Default

The SR microloop avoidance RIB-update-delay time is 5000 milliseconds.

Views

IS-IS IPv6 unicast address family view

OSPFv3 process view

Predefined user roles

network-admin

Parameters

delay-time: Sets the delay time in milliseconds, in the range of 1 to 60000.

level-1: Specifies IS-IS Level-1.

level-2: Specifies IS-IS Level-2.

Usage guidelines

To ensure sufficient time for IGP to complete route convergence, set the SR microloop avoidance RIB-update-delay time. Before the timer expires, faulty relevant devices will forward traffic along the specified path. Upon expiration of the timer and completion of IGP route convergence, traffic will traverse along the IGP-calculated path.

If you do not specify the level-1 or level-2 keyword, this command applies to both IS-IS levels.

Examples

# Set the SR microloop avoidance RIB-update-delay time to 6000 milliseconds for IPv6 IS-IS process 1.

<Sysname> system-view

[Sysname] isis 1

[Sysname-isis-1] address-family ipv6

[Sysname-isis-1-ipv6] segment-routing microloop-avoidance rib-update-delay 6000

# Set the SR microloop avoidance RIB-update-delay time to 6000 milliseconds for OSPFv3 process 1.

<Sysname> system-view

[Sysname] ospfv3 1

[Sysname-isis-1] address-family ipv6

[Sysname-ospfv3-1] segment-routing microloop-avoidance rib-update-delay 6000

Related commands

segment-routing microloop-avoidance enable

segment-routing microloop-avoidance strict-sid-only

Use segment-routing microloop-avoidance strict-sid-only to configure SR microloop avoidance to encapsulate only strict SIDs in the SID list.

Use undo segment-routing microloop-avoidance strict-sid-only to restore the default.

Syntax

segment-routing microloop-avoidance strict-sid-only

undo segment-routing microloop-avoidance strict-sid-only

Default

The strict-SID-only feature is not configured for SR microloop avoidance.

Views

IS-IS IPv6 unicast address family view

Predefined user roles

network-admin

Usage guidelines

By default, SR microloop avoidance first calculates the End SID to the P node, and then calculates the End.X SIDs from the P node to the destination node. Then, the SIDs are encapsulated into the SRH in the order of the End SID of the P node and the End.X SIDs from the P node to the destination node.

If multipoint failure exists and the forwarding path is frequently switched, a microloop might exist on the path to the P node identified by the End SID. To resolve this issue, use this command to strictly constrain the path to the P node.

This command strictly constrains the path to the P node by calculating an End.X SID to reach the P node. The SIDs are encapsulated into the SID list of the SRH in the order of the End.X SID to the P node and the End.X SIDs from the P node to the destination node.

Examples

# Configure SR microloop avoidance to encapsulate only strict SIDs in the SID list for IS-IS process 1.

<Sysname> system-view

[Sysname] isis 1

[Sysname-isis-1] address-family ipv6

[Sysname-isis-1-ipv6] segment-routing microloop-avoidance strict-sid-only

snmp-agent trap enable srv6

Use snmp-agent trap enable srv6 to enable SNMP notifications for SRv6.

Use undo snmp-agent trap enable srv6 to disable SNMP notifications for SRv6.

Syntax

snmp-agent trap enable srv6

undo snmp-agent trap enable srv6

Default

SNMP notifications are disabled for SRv6.

Views

System view

Predefined user roles

network-admin

Usage guidelines

To report critical SRv6 events to an NMS, enable SNMP notifications for SRv6. For SRv6 event notifications to be sent correctly, you must also configure SNMP on the device. For more information about SNMP configuration, see Network Management and Monitoring Configuration Guide.

Examples

# Enable SNMP notifications for SRv6.

<Sysname> system-view

[Sysname] snmp-agent trap enable srv6

srv6 compress enable (IS-IS IPv6 address family view)

Use srv6 compress enable to enable SRv6 compression for IPv6 IS-IS.

Use undo srv6 compress enable to disable SRv6 compression for IPv6 IS-IS.

Syntax

srv6 compress enable [ level-1 | level-2 ]

undo srv6 compress enable [ level-1 | level-2 ]

Default

SRv6 compression is disabled for IPv6 IS-IS.

Views

IS-IS IPv6 address family view

Predefined user roles

network-admin

Parameters

level-1: Specifies the level-1 area.

level-2: Specifies the level-2 area.

Usage guidelines

If you do not specify a level, this command enables or disables SRv6 compression for both level-1 and level-2 areas.

If IPv6 IS-IS is used to advertise G-SIDs to neighbors, you must use this command to enable SRv6 compression for IPv6 IS-IS.

Use this command only when the cost style of IS-IS is wide, compatible, or wide-compatible.

Before you use this command, apply a locator to IS-IS IPv6 address family view by using the segment-routing ipv6 locator command.

Examples

# Enable SRv6 compression for IPv6 IS-IS process 1.

<Sysname> system-view

[Sysname] isis 1

[Sysname-isis-1] cost-style wide

[Sysname-isis-1] address-family ipv6

[Sysname-isis-1-ipv6] srv6 compress enable

Related commands

segment-routing ipv6 locator (IS-IS IPv6 address family view)

srv6 compress enable (SRv6 view)

Use srv6 compress enable to enable SRv6 compression.

Use undo srv6 compress enable to disable SRv6 compression.

Syntax

srv6 compress enable

undo srv6 compress enable

Default

SRv6 compression is disabled.

Views

SRv6 view

Predefined user roles

network-admin

Usage guidelines

Typically, an address space is reserved for SRv6 SID allocation in an SRv6 subnet. This address space is called an SID space. In the SRv6 subnet, all SIDs are allocated from the SID space. The SIDs have the same prefix (common prefix). The SID common prefix is redundant information in the SRH.

SRv6 compression removes the common prefix from the SIDs in the SID list of the SRH. The remaining part of an SID is called a G-SID. G-SIDs reduce the cost of SRH.

When SRv6 uses the SID list in the SRH to replace the destination address of a packet, it combines the common prefix and the destination G-SID to form a new SID. This new SID is used as the destination address of the packet.

Examples

# Enable SRv6 compression.

<Sysname> system-view

[Sysname] segment-routing ipv6

[Sysname-segment-routing-ipv6] srv6 compress enable

summary algorithm

Use summary algorithm to configure an aggregate route for a locator.

Use undo summary algorithm to delete the aggregate route for a locator.

Syntax

summary ipv6-prefix prefix-length algorithm algo-id [ explicit ]

undo summary ipv6-prefix prefix-length

Default

Routes for a locator are not aggregated.

Views

IS-IS IPv6 unicast address family view

Predefined user roles

network-admin

Parameters

ipv6-prefix: Specifies the IPv6 prefix of a locator.

prefix-length: Specifies the prefix length.

algorithm algo-id: Specifies a Flex-Algo algorithm for locator route aggregation. The algo-id argument represents the algorithm ID, in the range of 128 to 255. The algorithm value for the aggregate route is the value specified by using this option.

explicit: Aggregates only the locator routes calculated by the same Flex-Algo algorithm into one aggregate route. If you do not specify this keyword, the command can aggregate locator routes calculated by different Flex-Algo algorithms into one aggregate route.

Usage guidelines

Use this command to aggregate locator routes associated with a Flex-Algo algorithm to reduce the size of the local LSDB and the LSPs generated by the local router.

To associate the routes for a locator with a Flex-Algo algorithm, use the flex-algo algorithm command.

The device can aggregate only routes in the locally generated LSPs.

Examples

# Configure aggregate route 100:1::/96.

<Sysname> system-view

[Sysname] isis 1

[Sysname-isis-1] address-family ipv6

[Sysname-isis-1-ipv6] summary 100:1:: 96 algorithm 128

Related commands

flex-algo algorithm (Layer 3—IP Routing Command Reference)

 

  • Cloud & AI
  • InterConnect
  • Intelligent Computing
  • Security
  • SMB Products
  • Intelligent Terminal Products
  • Product Support Services
  • Technical Service Solutions
All Services
  • Resource Center
  • Policy
  • Online Help
All Support
  • Become A Partner
  • Partner Policy & Program
  • Global Learning
  • Partner Sales Resources
  • Partner Business Management
  • Service Business
All Partners
  • Profile
  • News & Events
  • Online Exhibition Center
  • Contact Us
All About Us
新华三官网