09-VXLAN Configuration Guide

HomeSupportSwitchesS12500R SeriesConfigure & DeployConfiguration GuidesH3C S12500R Switch Router Series Configuration Guides(R51xx)-6W10109-VXLAN Configuration Guide
01-Basic VXLAN configuration
Title Size Download
01-Basic VXLAN configuration 315.49 KB

Contents

VXLAN overview·· 1

VXLAN benefits· 1

VXLAN network model 1

VXLAN packet format 2

VXLAN working mechanisms· 3

Generic VXLAN network establishment and forwarding process· 3

VXLAN tunnel establishment and assignment 3

Assignment of traffic to VXLANs· 3

MAC learning· 4

Unicast forwarding· 4

Flood· 6

Access modes of VSIs· 8

ARP flood suppression· 9

VXLAN IP gateways· 10

Protocols and standards· 10

Configuring basic VXLAN features· 11

Restrictions: Interface link mode· 11

VXLAN tasks at a glance· 11

Prerequisites for VXLAN· 11

Setting the forwarding mode for VXLANs· 11

Creating a VXLAN on a VSI 12

Configuring a VXLAN tunnel 13

Manually creating a VXLAN tunnel 13

Manually assigning VXLAN tunnels to a VXLAN· 14

Assigning customer frames to a VSI 15

Mapping an Ethernet service instance to a VSI 15

Managing MAC address entries· 16

About MAC address entry management 16

Configuring static MAC address entries· 16

Disabling remote-MAC address learning· 17

Enabling local-MAC logging· 17

Setting the destination UDP port number of VXLAN packets· 17

Configuring VXLAN packet check· 18

Disabling flooding for a VSI 18

Enabling ARP flood suppression· 19

Enabling VXLAN packet statistics· 19

Enabling packet statistics for a VSI 19

Enabling packet statistics for an AC· 20

Testing the connectivity of a VXLAN tunnel 20

Enabling overlay OAM·· 20

Pinging a VXLAN tunnel destination· 21

Tracing the path to a VXLAN tunnel destination· 22

Verifying and maintaining VXLANs· 22

Verifying VXLAN tunnel configuration and running status· 22

Displaying information about Ethernet service instances· 23

Verifying and maintaining VSIs· 23

Verifying and maintaining ACs· 23

Displaying the current packet statistic collection mode· 24

VXLAN configuration examples· 24

Example: Configuring a unicast-mode VXLAN· 24


 

VXLAN overview

Virtual eXtensible LAN (VXLAN) is a MAC-in-UDP technology that provides Layer 2 connectivity between distant network sites across an IP network. VXLAN is typically used in data centers and the access layer of campus networks for multitenant services.

The device supports only IPv4-based VXLAN. IPv6-based VXLAN is not supported.

VXLAN benefits

VXLAN provides the following benefits:

·     Support for more virtual switched domains than VLANs—Each VXLAN is uniquely identified by a 24-bit VXLAN ID. The total number of VXLANs can reach 16777216 (224). This specification makes VXLAN a better choice than 802.1Q VLAN to isolate traffic for user terminals.

·     Easy deployment and maintenance—VXLAN requires deployment only on the edge devices of the transport network. Devices in the transport network perform typical Layer 3 forwarding.

VXLAN network model

As shown in Figure 1, a VXLAN is a virtual Layer 2 network (known as the overlay network) built on top of an existing physical Layer 3 network (known as the underlay network). The overlay network encapsulates inter-site Layer 2 frames into VXLAN packets and forwards the packets to the destination along the Layer 3 forwarding paths provided by the underlay network. The underlay network is transparent to tenants, and geographically dispersed sites of a tenant are merged into a Layer 2 network.

The transport edge devices assign user terminals to different VXLANs, and then forward traffic between sites for user terminals by using VXLAN tunnels. Supported user terminals include PCs, wireless terminals, and VMs on servers.

 

 

NOTE:

This document uses VMs as examples to describe the mechanisms of VXLAN. The mechanisms do not differ between different kinds of user terminals.

 

The transport edge devices are VXLAN tunnel endpoints (VTEP). The VTEP implementation of the device uses ACs, VSIs, and VXLAN tunnels to provide VXLAN services.

·     VSI—A virtual switch instance is a virtual Layer 2 switched domain. Each VSI provides switching services only for one VXLAN. VSIs learn MAC addresses and forward frames independently of one another. VMs in different sites have Layer 2 connectivity if they are in the same VXLAN.

·     Attachment circuit (AC)—An AC is a physical or virtual link that connects a VTEP to a local site. Typically, ACs are Ethernet service instances that are associated with the VSI of a VXLAN. Traffic received from an AC is assigned to the VSI associated with the AC. Ethernet service instances are created on site-facing Layer 2 interfaces. An Ethernet service instance matches a list of custom VLANs by using a frame match criterion.

·     VXLAN tunnel—Logical point-to-point tunnels between VTEPs over the transport network. Each VXLAN tunnel can trunk multiple VXLANs.

VTEPs encapsulate VXLAN traffic in the VXLAN, outer UDP, and outer IP headers. The devices in the transport network forward VXLAN traffic only based on the outer IP header.

Figure 1 VXLAN network model

 

VXLAN packet format

As shown in Figure 2, a VTEP encapsulates a frame in the following headers:

·     8-byte VXLAN header—VXLAN information for the frame.

¡     Flags—If the I bit is 1, the VXLAN ID is valid. If the I bit is 0, the VXLAN ID is invalid. All other bits are reserved and set to 0.

¡     24-bit VXLAN ID—Identifies the VXLAN of the frame. It is also called the virtual network identifier (VNI).

·     8-byte outer UDP header for VXLAN—The default VXLAN destination UDP port number is 4789.

·     20-byte outer IP header—Valid addresses of VTEPs or VXLAN multicast groups on the transport network. Devices in the transport network forward VXLAN packets based on the outer IP header.

Figure 2 VXLAN packet format

 

VXLAN working mechanisms

Generic VXLAN network establishment and forwarding process

The VTEP uses the following process to establish the VXLAN network and forward an inter-site frame:

1.     Discovers remote VTEPs, establishes VXLAN tunnels, and assigns the VXLAN tunnels to VXLANs.

2.     Assigns the frame to its matching VXLAN if the frame is sent between sites.

3.     Performs MAC learning on the VXLAN's VSI.

4.     Forwards the frame through VXLAN tunnels.

This section describes this process in detail. For intra-site frames in a VSI, the system performs typical Layer 2 forwarding, and it processes 802.1Q VLAN tags as described in "Access modes of VSIs."

VXLAN tunnel establishment and assignment

To provide Layer 2 connectivity for a VXLAN between two sites, you must create a VXLAN tunnel between the sites and assign the tunnel to the VXLAN.

VXLAN tunnel establishment

VXLAN supports manual and automatic VXLAN tunnel establishment.

·     Manual creation—Manually create a VXLAN tunnel interface, and specify the tunnel source and destination IP addresses on the peer VTEPs.

·     Automatic creation—Configure Ethernet Virtual Private Network (EVPN) to automatically discover VTEPs and set up VXLAN tunnels. For more information about EVPN, see EVPN Configuration Guide.

VXLAN tunnel assignment

VXLAN supports manual and automatic VXLAN tunnel assignment.

·     Manual assignment—Manually assign VXLAN tunnels to VXLANs.

·     Automatic assignment—Run EVPN to automatically assign VXLAN tunnels to VXLANs. For more information about EVPN, see EVPN Configuration Guide.

Assignment of traffic to VXLANs

Traffic from the local site to a remote site

The VTEP uses the frame match criterion of an Ethernet service instance to match a list of VLANs on a site-facing Layer 2 interface. The frame match criterion specifies the characteristics of traffic from the VLANs, such as tagging status and VLAN IDs. The VTEP assigns customer traffic to a VXLAN by mapping the Ethernet service instance to a VSI.

As shown in Figure 3, Ethernet service instance 1 matches VLAN 2 and is mapped to VSI A (VXLAN 10). When a frame from VLAN 2 arrives, the VTEP assigns the frame to VXLAN 10, and looks up VSI A's MAC address table for the outgoing interface.

Figure 3 Identifying traffic from the local site

 

Traffic from a remote site to the local site

When a frame arrives at a VXLAN tunnel, the VTEP uses the VXLAN ID in the frame to identify its VXLAN.

MAC learning

The VTEP performs source MAC learning on the VSI as a Layer 2 switch.

·     For traffic from the local site to the remote site, the VTEP learns the source MAC address before VXLAN encapsulation.

·     For traffic from the remote site to the local site, the VTEP learns the source MAC address after removing the VXLAN header.

A VSI's MAC address table includes the following types of MAC address entries:

·     Local MAC—MAC entries learned from the local site. The outgoing interfaces for the MAC address entries are site-facing interfaces.

¡     Static—Manually added MAC entries.

¡     Dynamic—Dynamically learned MAC entries.

·     Remote MAC—MAC entries learned from a remote site, including static and dynamic MAC entries. The outgoing interfaces for the MAC addresses are VXLAN tunnel interfaces.

¡     Static—Manually added MAC entries.

¡     Dynamic—MAC entries learned in the data plane from incoming traffic on VXLAN tunnels. The learned MAC addresses are contained in the inner Ethernet header.

¡     BGP EVPN—MAC entries advertised through BGP EVPN. For more information, see EVPN Configuration Guide.

¡     OpenFlow—MAC entries issued by a remote controller through OpenFlow. For more information, see OpenFlow Configuration Guide.

The following shows the priority order of different types of remote MAC address entries:

a.     Static MAC address entries and MAC address entries issued by a remote controller through OpenFlow. These types of entries have the same priority and overwrite each other.

b.     MAC address entries advertised through BGP EVPN.

c.     Dynamic MAC address entries.

Unicast forwarding

Intra-site unicast forwarding

The VTEP uses the following process to forward a known unicast frame within a site:

1.     Identifies the VSI of the frame.

2.     Looks up the destination MAC address in the VSI's MAC address table for the outgoing interface.

3.     Sends the frame out of the matching outgoing interface.

As shown in Figure 4, VTEP 1 forwards a frame from VM 1 to VM 4 within the local site in VLAN 10 as follows:

4.     Identifies that the frame belongs to VSI A when the frame arrives at Interface A.

5.     Looks up the destination MAC address (MAC 4) in the MAC address table of VSI A for the outgoing interface.

6.     Sends the frame out of the matching outgoing interface (Interface B) to VM 4 in VLAN 10.

Figure 4 Intra-site unicast

 

Inter-site unicast forwarding

The following process (see Figure 5) applies to a known unicast frame between sites:

1.     The source VTEP encapsulates the Ethernet frame in the VXLAN/UDP/IP header.

In the outer IP header, the source IP address is the source VTEP's VXLAN tunnel source IP address. The destination IP address is the VXLAN tunnel destination IP address.

2.     The source VTEP forwards the encapsulated packet out of the outgoing VXLAN tunnel interface found in the VSI's MAC address table.

3.     The intermediate transport devices (P devices) forward the frame to the destination VTEP by using the outer IP header.

4.     The destination VTEP removes the headers on top of the inner Ethernet frame. It then performs MAC address table lookup in the VXLAN's VSI to forward the frame out of the matching outgoing interface.

Figure 5 Inter-site unicast

Flood

The source VTEP floods a broadcast, multicast, or unknown unicast frame to all site-facing interfaces and VXLAN tunnels in the VXLAN, except for the incoming interface. Each destination VTEP floods the inner Ethernet frame to all site-facing interfaces in the VXLAN. To avoid loops, the destination VTEPs do not flood the frame back to VXLAN tunnels.

VXLAN supports unicast mode (also called head-end replication) and flood proxy mode for flood traffic.

Unicast mode (head-end replication)

As shown in Figure 6, the source VTEP replicates the flood frame, and then sends one replica to the destination IP address of each VXLAN tunnel in the VXLAN.

Figure 6 Unicast mode

 

Flood proxy mode (proxy server replication)

As shown in Figure 7, the source VTEP sends the flood frame in a VXLAN packet over a VXLAN tunnel to a flood proxy server. The flood proxy server replicates and forwards the packet to each remote VTEP through its VXLAN tunnels.

The flood proxy mode applies to VXLANs that have many sites. This mode reduces flood traffic in the transport network without using a multicast protocol. To use a flood proxy server, you must set up a VXLAN tunnel to the server on each VTEP.

Figure 7 Flood proxy mode

 

The flood proxy mode is typically used in SDN transport networks that have a flood proxy server. For VTEPs to forward packets based on the MAC address table issued by an SDN controller, you must perform the following tasks on the VTEPs:

·     Disable remote-MAC address learning by using the vxlan tunnel mac-learning disable command.

·     Disable source MAC check on all transport-facing interfaces by using the undo mac-address static source-check enable command.

Access modes of VSIs

The access mode of a VSI determines how the VTEP processes the 802.1Q VLAN tags in the Ethernet frames.

VLAN access mode

In this mode, Ethernet frames received from or sent to the local site must contain 802.1Q VLAN tags.

·     For an Ethernet frame received from the local site, the VTEP removes all its 802.1Q VLAN tags before forwarding the frame.

·     For an Ethernet frame destined for the local site, the VTEP adds 802.1Q VLAN tags to the frame before forwarding the frame.

In VLAN access mode, VXLAN packets sent between sites do not contain 802.1Q VLAN tags. You can use different 802.1Q VLANs to provide the same service in different sites.

Ethernet access mode

The VTEP does not process the 802.1Q VLAN tags of Ethernet frames received from or sent to the local site.

·     For an Ethernet frame received from the local site, the VTEP forwards the frame with the 802.1Q VLAN tags intact.

·     For an Ethernet frame destined for the local site, the VTEP forwards the frame without adding 802.1Q VLAN tags.

In Ethernet access mode, VXLAN packets sent between VXLAN sites contain 802.1Q VLAN tags. You must use the same VLAN to provide the same service between sites.

ARP flood suppression

ARP flood suppression reduces ARP request broadcasts by enabling the VTEP to reply to ARP requests on behalf of VMs.

As shown in Figure 8, this feature snoops ARP packets to populate the ARP flood suppression table with local and remote MAC addresses. If an ARP request has a matching entry, the VTEP replies to the request on behalf of the VM. If no match is found, the VTEP floods the request to both local and remote sites.

Figure 8 ARP flood suppression

 

ARP flood suppression uses the following workflow:

1.     VM 1 sends an ARP request to obtain the MAC address of VM 7.

2.     VTEP 1 creates a suppression entry for VM 1, and floods the ARP request in the VXLAN.

3.     VTEP 2 and VTEP 3 de-encapsulate the ARP request. The VTEPs create a suppression entry for VM 1, and broadcast the request in the local site.

4.     VM 7 sends an ARP reply.

5.     VTEP 2 creates a suppression entry for VM 7 and forwards the ARP reply to VTEP 1.

6.     VTEP 1 de-encapsulates the ARP reply, creates a suppression entry for VM 7, and forwards the ARP reply to VM 1.

7.     VM 4 sends an ARP request to obtain the MAC address of VM 1 or VM 7.

8.     VTEP 1 creates a suppression entry for VM 4 and replies to the ARP request.

9.     VM 10 sends an ARP request to obtain the MAC address of VM 1.

10.     VTEP 3 creates a suppression entry for VM 10 and replies to the ARP request.

VXLAN IP gateways

A VXLAN IP gateway provides Layer 3 forwarding services for VMs in VXLANs. A VXLAN IP gateway can be an independent device or be collocated with a VTEP. For more information about VXLAN IP gateway placement, see "Configuring VXLAN IP gateways."

Protocols and standards

RFC 7348, Virtual eXtensible Local Area Network (VXLAN): A Framework for Overlaying Virtualized Layer 2 Networks over Layer 3 Networks


Configuring basic VXLAN features

Restrictions: Interface link mode

By default, interfaces on the device operate in Layer 3 mode. To have interfaces operate in Layer 2 mode, use the port link-mode command.

VXLAN tasks at a glance

To configure basic VXLAN settings, perform the following tasks on VTEPs:

1.     Setting the forwarding mode for VXLANs

2.     Creating a VXLAN on a VSI

3.     Configuring a VXLAN tunnel

4.     Manually assigning VXLAN tunnels to a VXLAN

5.     Assigning customer frames to a VSI

6.     (Optional.) Managing MAC address entries

¡     Configuring static MAC address entries

¡     Disabling remote-MAC address learning

¡     Enabling local-MAC logging

7.     (Optional.) Configuring VXLAN packet parameters

¡     Setting the destination UDP port number of VXLAN packets

¡     Configuring VXLAN packet check

8.     (Optional.) Reducing flood traffic in the transport network

¡     Disabling flooding for a VSI

¡     Enabling ARP flood suppression

9.     (Optional.) Enabling VXLAN packet statistics

10.     (Optional.) Testing the connectivity of a VXLAN tunnel

¡     Enabling overlay OAM

¡     Pinging a VXLAN tunnel destination

¡     Tracing the path to a VXLAN tunnel destination

Prerequisites for VXLAN

Configure a routing protocol on the devices in the transport network to make sure the VTEPs can reach one another.

Setting the forwarding mode for VXLANs

About this task

A VXLAN tunnel supports the following modes:

·     Layer 3 forwarding mode—The device uses the ARP table (IPv4 network) to forward traffic for VXLANs.

·     Layer 2 forwarding mode—The device uses the MAC address table to forward traffic for VXLANs.

If the device is a VTEP, enable Layer 2 forwarding for VXLANs. If the device is a VXLAN IP gateway, enable Layer 3 forwarding for VXLANs. For more information about VXLAN IP gateways, see "Configuring VXLAN IP gateways."

If you enable Layer 3 forwarding for VXLANs, the tagging status of VXLAN packets is not determined by the link type of the outgoing interface. You must use this command to set the tagging mode of VXLAN packets.

·     Set the tagging mode to untagged if the following requirements are met:

¡     The link type of the outgoing interface is access, trunk, or hybrid.

¡     VXLAN packets are transmitted to the next hop through the PVID of the outgoing interface.

·     Set the tagging mode to tagged if the following requirements are met:

¡     The link type of the outgoing interface is trunk or hybrid.

¡     VXLAN packets are transmitted to the next hop through a VLAN other than the PVID of the outgoing interface.

Restrictions and guidelines

You must delete all VSIs, VSI interfaces, and VXLAN tunnel interfaces before you can change the forwarding mode. As a best practice, finish VXLAN network planning and determine the VXLAN forwarding mode of each device before your configuration, and set the VXLAN forwarding mode before other VXLAN settings.

You must delete all VXLAN tunnel interfaces before you can change the tagging mode of VXLAN packets.

Procedure

1.     Enter system view.

system-view

2.     Set the forwarding mode of VXLANs.

¡     Enable Layer 2 forwarding.

undo vxlan ip-forwarding

¡     Enable Layer 3 forwarding.

vxlan ip-forwarding [ tagged | untagged ]

By default, Layer 3 forwarding is enabled for VXLANs.

Creating a VXLAN on a VSI

1.     Enter system view.

system-view

2.     Enable L2VPN.

l2vpn enable

By default, L2VPN is disabled.

3.     Create a VSI and enter VSI view.

vsi vsi-name

4.     Configure a description for the VSI.

description text

By default, a VSI does not have a description.

5.     Enable the VSI.

undo shutdown

By default, a VSI is enabled.

6.     Create a VXLAN and enter VXLAN view.

vxlan vxlan-id

You can create only one VXLAN on a VSI.

The VXLAN ID must be unique for each VSI.

Configuring a VXLAN tunnel

Manually creating a VXLAN tunnel

About this task

When you manually create a VXLAN tunnel, specify addresses on the local VTEP and the remote VTEP as the tunnel source and destination addresses, respectively.

Restrictions and guidelines

As a best practice, do not configure multiple VXLAN tunnels to use the same source and destination IP addresses.

Make sure the following VXLAN tunnels are not associated with the same VXLAN when they have the same tunnel destination IP address:

·     A VXLAN tunnel automatically created by EVPN.

·     A manually created VXLAN tunnel.

For more information about EVPN, see EVPN Configuration Guide.

This task provides basic VXLAN tunnel configuration. For more information about tunnel interface configuration and commands, see Interface Configuration Guide and Interface Command Reference.

Procedure

1.     Enter system view.

system-view

2.     (Optional.) Specify a global source IP address for VXLAN tunnels.

tunnel global source-address ip-address

By default, no global source IP address is specified for VXLAN tunnels.

A VXLAN tunnel uses the global source address if you do not specify a source interface or source address for the tunnel.

3.     Create a VXLAN tunnel interface and enter tunnel interface view.

interface tunnel tunnel-number mode vxlan

The endpoints of a tunnel must use the same tunnel mode.

4.     Specify a source address for the tunnel. Choose one of the following methods:

¡     Specify a source IP address for the tunnel.

source ipv4-address

The specified IP address is used in the outer IP header of tunneled VXLAN packets.

¡     Specify a source interface for the tunnel.

source interface-type interface-number

The primary IP address of the specified interface is used in the outer IP header of tunneled VXLAN packets.

By default, no source IP address or source interface is specified for a tunnel.

5.     Specify a destination IP address for the tunnel.

destination ipv4-address

By default, no destination IP address is specified for a tunnel.

Specify the remote VTEP's IP address. This IP address will be the destination IP address in the outer IP header of tunneled VXLAN packets.

Manually assigning VXLAN tunnels to a VXLAN

About this task

To provide Layer 2 connectivity for a VXLAN between two sites, you must assign the VXLAN tunnel between the sites to the VXLAN.

You can assign multiple VXLAN tunnels to a VXLAN, and configure a VXLAN tunnel to trunk multiple VXLANs. For a unicast-mode VXLAN, the system floods unknown unicast, multicast, and broadcast traffic to each tunnel associated with the VXLAN. If a flood proxy server is used, the VTEP sends flood traffic to the server through the flood proxy tunnel. The flood proxy server replicates and forwards flood traffic to remote VTEPs.

Restrictions and guidelines

For full Layer 2 connectivity in the VXLAN, make sure the VXLAN contains the VXLAN tunnel between each pair of sites in the VXLAN.

Procedure

1.     Enter system view.

system-view

2.     Enter VSI view.

vsi vsi-name

3.     Enter VXLAN view.

vxlan vxlan-id

4.     Assign VXLAN tunnels to the VXLAN.

tunnel { tunnel-number [ backup-tunnel tunnel-number | flooding-proxy ] | all }

By default, a VXLAN does not contain any VXLAN tunnels.

 

Parameter

Description

backup-tunnel tunnel-number

Specifies a backup tunnel. When the primary VXLAN tunnel is operating correctly, the backup VXLAN tunnel does not forward traffic. When the primary VXLAN tunnel goes down, traffic is switched to the backup VXLAN tunnel.

flooding-proxy

Enables flood proxy on a tunnel for it to send flood traffic to the flood proxy server. The flood proxy server replicates and forwards flood traffic to remote VTEPs.

 

Assigning customer frames to a VSI

Mapping an Ethernet service instance to a VSI

About this task

An Ethernet service instance matches a list of VLANs on a site-facing interface. The VTEP assigns customer traffic from the VLANs to a VXLAN by mapping the Ethernet service instance to a VSI.

Restrictions and guidelines

Link aggregation group membership is mutually exclusive with Ethernet service instance-to-VSI mappings on a Layer 2 interface. Do not map a VSI to an Ethernet service instance on a Layer 2 interface if the interface is in a Layer 2 aggregation group.

Procedure

1.     Enter system view.

system-view

2.     Enter interface view.

¡     Enter Layer 2 Ethernet interface view.

interface interface-type interface-number

¡     Enter Layer 2 aggregate interface view.

interface bridge-aggregation interface-number

3.     Create an Ethernet service instance and enter Ethernet service instance view.

service-instance instance-id

4.     Configure a frame match criterion. Choose one of the following options:

¡     Match frames tagged with the specified outer 802.1Q VLAN IDs.

encapsulation s-vid vlan-id-list [ only-tagged ]

¡     Match frames tagged with the specified outer and inner 802.1Q VLAN IDs.

encapsulation s-vid vlan-id-list c-vid vlan-id

¡     Match any 802.1Q untagged frames.

encapsulation untagged

¡     Match frames that do not match any other service instance on the interface.

encapsulation default

An interface can contain only one Ethernet service instance that uses the encapsulation default match criterion.

An Ethernet service instance that uses the encapsulation default match criterion matches any frames if it is the only instance on the interface.

By default, an Ethernet service instance does not contain a frame match criterion.

5.     (Optional.) Configure the VLAN tag processing rule for incoming traffic.

rewrite inbound tag { nest { c-vid vlan-id | s-vid vlan-id [ c-vid vlan-id ] } | remark { { 1-to-1 | 2-to-1 } { c-vid vlan-id | s-vid vlan-id } | { 1-to-2 | 2-to-2 } s-vid vlan-id c-vid vlan-id } | strip { c-vid | s-vid [ c-vid ] } } [ symmetric ]

By default, VLAN tags of incoming traffic are not processed.

6.     (Optional.) Configure the VLAN tag processing rule for outgoing traffic.

rewrite outbound tag { nest { c-vid vlan-id | s-vid vlan-id [ c-vid vlan-id ] } | remark { { 1-to-1 | 2-to-1 } { c-vid vlan-id | s-vid vlan-id } | { 1-to-2 | 2-to-2 } s-vid vlan-id c-vid vlan-id } | strip { c-vid | s-vid [ c-vid ] } }

By default, VLAN tags of outgoing traffic are not processed.

7.     Map the Ethernet service instance to a VSI.

xconnect vsi vsi-name [ access-mode { ethernet | vlan } ] [ track track-entry-number&<1-3> ]

By default, an Ethernet service instance is not mapped to any VSI.

Managing MAC address entries

About MAC address entry management

Local-MAC address entries can be manually added or dynamically learned. You can log local MAC addresses and local-MAC changes.

Remote-MAC address entries have a variety of types, including manually added entries and dynamically learned entries.

Configuring static MAC address entries

Restrictions and guidelines

Do not configure static remote-MAC entries for VXLAN tunnels that are automatically established by using EVPN.

·     EVPN re-establishes VXLAN tunnels if the transport-facing interface goes down and then comes up. If you have configured static remote-MAC entries, the entries are deleted when the tunnels are re-established.

·     EVPN re-establishes VXLAN tunnels if you perform configuration rollback. If the tunnel IDs change during tunnel re-establishment, configuration rollback fails, and static remote-MAC entries on the tunnels cannot be restored.

For more information about EVPN, see EVPN Configuration Guide.

Procedure

1.     Enter system view.

system-view

2.     Add a static local-MAC address entry.

mac-address static mac-address interface interface-type interface-number service-instance instance-id vsi vsi-name

For successful configuration, make sure the Ethernet service instance has been mapped to the VSI.

3.     Add a static remote-MAC address entry.

mac-address static mac-address interface tunnel tunnel-number vsi vsi-name

For the setting to take effect, make sure the VSI's VXLAN has been specified on the VXLAN tunnel.

Disabling remote-MAC address learning

About this task

When network attacks occur, disable remote-MAC address learning to prevent the device from learning incorrect remote MAC addresses. You can manually add static remote-MAC address entries.

Procedure

1.     Enter system view.

system-view

2.     Disable remote-MAC address learning.

vxlan tunnel mac-learning disable

By default, remote-MAC address learning is enabled.

Enabling local-MAC logging

About this task

When the local-MAC logging feature is enabled, the VXLAN module immediately sends a log message with its local MAC addresses to the information center. When a local MAC address is added or removed, a log message is also sent to the information center to notify the local-MAC change.

With the information center, you can set log message filtering and output rules, including output destinations. For more information about configuring the information center, see System Management Configuration Guide.

Procedure

1.     Enter system view.

system-view

2.     Enable local-MAC logging.

vxlan local-mac report

By default, local-MAC logging is disabled.

Setting the destination UDP port number of VXLAN packets

Restrictions and guidelines

If you have configured an ACL rule to match VXLAN packets, delete the ACL rule and reconfigure it after you modify the destination UDP port for VXLAN packets.

Procedure

1.     Enter system view.

system-view

2.     Set a destination UDP port for VXLAN packets.

vxlan udp-port port-number

By default, the destination UDP port number is 4789 for VXLAN packets.

You must configure the same destination UDP port number on all VTEPs in a VXLAN.

Configuring VXLAN packet check

About this task

The device can check the UDP checksum and 802.1Q VLAN tags of each received VXLAN packet.

·     UDP checksum check—The device always sets the UDP checksum of VXLAN packets to zero. For compatibility with third-party devices, a VXLAN packet can pass the check if its UDP checksum is zero or correct. If its UDP checksum is incorrect, the VXLAN packet fails the check and is dropped.

·     VLAN tag check—The device checks the inner Ethernet header of each VXLAN packet for 802.1Q VLAN tags. If the header contains 802.1Q VLAN tags, the device drops the packet.

Restrictions and guidelines

If a remote VTEP uses the Ethernet access mode, its VXLAN packets might contain 802.1Q VLAN tags. To prevent the local VTEP from dropping the VXLAN packets, do not execute the vxlan invalid-vlan-tag discard command on the local VTEP.

The access mode is configurable by using the xconnect vsi command.

Procedure

1.     Enter system view.

system-view

2.     Enable the VTEP to drop VXLAN packets that fail UDP checksum check.

vxlan invalid-udp-checksum discard

By default, the VTEP does not check the UDP checksum of VXLAN packets.

3.     Enable the VTEP to drop VXLAN packets that have 802.1Q VLAN tags in the inner Ethernet header.

vxlan invalid-vlan-tag discard

By default, the VTEP does not check the inner Ethernet header for 802.1Q VLAN tags.

Disabling flooding for a VSI

About this task

By default, the VTEP floods broadcast, unknown unicast, and unknown multicast frames received from the local site to the following interfaces in the frame's VXLAN:

·     All site-facing interfaces except for the incoming interface.

·     All VXLAN tunnel interfaces.

When receiving broadcast, unknown unicast, and unknown multicast frames on VXLAN tunnel interfaces, the device floods the frames to all site-facing interfaces in the frames' VXLAN.

To confine a kind of flood traffic, disable flooding for that kind of flood traffic on the VSI bound to the VXLAN.

To exclude a remote MAC address from the remote flood suppression done by using this feature, enable selective flood for the MAC address. The VTEP will flood the frames destined for the MAC address to remote sites.

Procedure

1.     Enter system view.

system-view

2.     Enter VSI view.

vsi vsi-name

3.     Disable flooding for the VSI.

flooding disable { all | { broadcast | unknown-multicast | unknown-unicast } * }

By default, flooding is enabled for a VSI.

4.     (Optional.) Enable selective flood for a MAC address.

selective-flooding mac-address mac-address

Enabling ARP flood suppression

Restrictions and guidelines

The aging timer is fixed at 25 minutes for ARP flood suppression entries. If the suppression table is full, the VTEP stops learning new entries. For the VTEP to learn new entries, you must wait for old entries to age out, or use the reset arp suppression vsi command to clear the table.

If the flooding disable command is configured, set the MAC aging timer to a higher value than the aging timer for ARP flood suppression entries on all VTEPs. This setting prevents the traffic blackhole that occurs when a MAC address entry ages out before its ARP flood suppression entry ages out. To set the MAC aging timer, use the mac-address timer command.

When remote ARP learning is disabled for VXLANs, the device does not use ARP flood suppression entries to respond to ARP requests received on VXLAN tunnels.

Procedure

1.     Enter system view.

system-view

2.     Enter VSI view.

vsi vsi-name

3.     Enable ARP flood suppression.

arp suppression enable

By default, ARP flood suppression is disabled.

Enabling VXLAN packet statistics

Enabling packet statistics for a VSI

Restrictions and guidelines

To display the packet statistics for a VSI, use the display l2vpn vsi verbose command in any view.

To clear the packet statistics for a VSI, use the reset l2vpn statistics vsi command in user view.

Procedure

1.     Enter system view.

system-view

2.     Set the packet statistic collection mode to VSI.

statistic mode vsi

The default packet statistic collection mode is VSI.

3.     Enter VSI view.

vsi vsi-name

4.     Enable packet statistics for the VSI.

statistics enable

By default, the packet statistics feature is disabled for all VSIs.

Enabling packet statistics for an AC

Restrictions and guidelines

For the statistics enable command to take effect on an Ethernet service instance, you must configure a frame match criterion for the Ethernet service instance and map it to a VSI. When you modify the frame match criterion or VSI mapping, the packet statistics of the instance are cleared.

Procedure

1.     Enter system view.

system-view

2.     Set the packet statistic collection mode to AC.

statistic mode ac

The default packet statistic collection mode is VSI.

3.     Enter interface view.

¡     Enter Layer 2 Ethernet interface view.

interface interface-type interface-number

¡     Enter Layer 2 aggregate interface view.

interface bridge-aggregation interface-number

4.     Enter Ethernet service instance view.

service-instance instance-id

5.     Enable packet statistics for the Ethernet service instance.

statistics enable

By default, the packet statistics feature is disabled for all Ethernet service instances.

Testing the connectivity of a VXLAN tunnel

Enabling overlay OAM

About this task

You must enable overlay OAM on the tunnel destination device for a VXLAN tunnel before you can use the ping vxlan or tracert vxlan command to test reachability of the VXLAN tunnel on the tunnel source device.

Restrictions and guidelines

To specify the -r 3 parameter in the ping vxlan or tracert vxlan command on the tunnel source device, you must also enable overlay OAM on the tunnel source device.

Procedure

1.     Enter system view.

system-view

2.     Enable overlay OAM.

overlay oam enable

By default, overlay OAM is disabled.

Pinging a VXLAN tunnel destination

About this task

Perform this task to test the connectivity of a VXLAN tunnel in a VXLAN or EVPN VXLAN network when the tunnel has traffic loss or interruption issues. The process of a ping VXLAN operation is as follows:

1.     The tunnel source VTEP sends VXLAN-encapsulated VXLAN echo requests to the tunnel destination VTEP.

2.     The tunnel destination VTEP responds with VXLAN echo replies.

3.     The tunnel source VTEP outputs packet statistics and the test result based on the received VXLAN echo replies.

Restrictions and guidelines

Before you perform this task on the tunnel source device, you must enable overlay OAM on the tunnel destination device by using the overlay oam enable command.

The VTEP can distribute VXLAN echo requests among multiple paths to the destination based on the source UDP port. When a VXLAN tunnel has multiple paths on the transport network, you can configure load sharing parameters to ensure accuracy of the test result. You can use one of the following methods to configure source UDP ports for VXLAN echo requests:

·     Specify a source UDP port range. The device will send VXLAN echo requests sourced from each UDP port in the UDP port range. You need to execute the ping vxlan command only once.

·     Specify load balancing parameters such as source and destination MAC addresses, source and destination IP addresses, and protocol for the VTEP to calculate a source UDP port number. You need to execute the ping vxlan command multiple times to test connectivity of all paths.

The load balancing parameters change only the source UDP port number of VXLAN echo requests. Other fields of the requests will not be changed.

If you specify the vxlan-source-udpport vxlan-source-udpport [ end-vxlan-src-udpport ] parameters, the number of VXLAN echo requests sourced from each UDP port in the UDP port range is determined by the -c count parameter.

Procedure

Execute the following command in any view.

ping vxlan [ -a inner-src-address | -c count | -m interval | -r reply-mode | -t timeout | -tos tos-value ] * vxlan-id vxlan-id tunnel-source source-address tunnel-destination dest-address [ destination-udpport dest-port ] [ vxlan-source-address vxlan-source-address ] [ load-balance { vxlan-source-udpport vxlan-source-udpport [ end-vxlan-src-udpport ] | source-address lb-src-address destination-address lb-dest-address protocol { udp | lb-protocol-id } source-port lb-src-port destination-port lb-dest-port source-mac lb-source-mac destination-mac lb-destination-mac } ]

Tracing the path to a VXLAN tunnel destination

About this task

Perform this task to locate failed nodes on the path for a VXLAN tunnel that has traffic loss or interruption issues in a VXLAN or EVPN VXLAN network. The process of a tracert VXLAN operation is as follows:

1.     The tunnel source VTEP sends VXLAN-encapsulated VXLAN echo requests to the tunnel destination VTEP. The TTL in the IP header of the requests is set to 1.

2.     The first hop on the path responds to the tunnel source VTEP with a TTL-expired ICMP error message.

3.     The tunnel source VTEP sends VXLAN echo requests with the TTL set to 2.

4.     The second hop responds with a TTL-expired ICMP error message.

5.     This process continues until a VXLAN echo request reaches the tunnel destination VTEP or the maximum TTL value is reached. If a VXLAN echo request reaches the tunnel destination VTEP, the tunnel destination VTEP sends a VXLAN echo reply to the tunnel source VTEP.

6.     The tunnel source VTEP outputs packet statistics and the test result based on the received ICMP error messages and whether a VXLAN echo reply is received.

Restrictions and guidelines

Before you perform this task on the tunnel source device, you must enable overlay OAM on the tunnel destination device by using the overlay oam enable command.

The VTEP can distribute VXLAN echo requests among multiple paths to the destination based on the source UDP port. When a VXLAN tunnel has multiple paths on the transport network, you can configure load sharing parameters to ensure accuracy of the test result. You can use one of the following methods to configure source UDP ports for VXLAN echo requests:

·     Specify a source UDP port range. The device will send VXLAN echo requests sourced from each UDP port in the UDP port range. You need to execute the ping vxlan command only once.

·     Specify load balancing parameters such as source and destination MAC addresses, source and destination IP addresses, and protocol for the VTEP to calculate a source UDP port number. You need to execute the ping vxlan command multiple times to test connectivity of all paths.

The load balancing parameters change only the source UDP port number of VXLAN echo requests. Other fields of the requests will not be changed.

Procedure

Execute the following command in any view.

tracert vxlan [ -a inner-src-address | -h ttl-value | -r reply-mode | -t timeout ] * vxlan-id vxlan-id  tunnel-source source-address tunnel-destination dest-address [ destination-udpport dest-port ] [ vxlan-source-address vxlan-source-address ] [ load-balance { vxlan-source-udpport vxlan-source-udpport | source-address lb-src-address destination-address lb-dest-address protocol { udp | lb-protocol-id } source-port lb-src-port destination-port lb-dest-port source-mac lb-source-mac destination-mac lb-destination-mac } ]

Verifying and maintaining VXLANs

Verifying VXLAN tunnel configuration and running status

Perform display tasks in any view.

·     Display information about tunnel interfaces.

display interface [ tunnel [ number ] ] [ brief [ description | down ] ]

For more information about this command, see tunnel interface commands in Interface Command Reference.

·     Display VXLAN tunnel information for VXLANs.

display vxlan tunnel [ vxlan vxlan-id ]

Displaying information about Ethernet service instances

To display information about Ethernet service instances, execute the following command in any view:

display l2vpn service-instance [ interface interface-type interface-number [ service-instance instance-id ] ] [ verbose ]

Verifying and maintaining VSIs

Verifying VSI configuration

Perform display tasks in any view.

·     Display information about VSIs.

display l2vpn vsi [ name vsi-name ] [ verbose ]

Displaying and clearing MAC address entries on VSIs

To display MAC address entries for VSIs, execute the following command in any view:

display l2vpn mac-address [ vsi vsi-name ] [ dynamic ] [ count | verbose ]

To clear dynamic MAC address entries on VSIs, execute the following command in user view:

reset l2vpn mac-address [ vsi vsi-name ]

Displaying and clearing ARP flood suppression entries on VSIs

To display ARP flood suppression entries on VSIs, execute the following command in any view:

display arp suppression vsi [ name vsi-name ] [ slot slot-number [ cpu cpu-number ] ] [ count ]

To clear ARP flood suppression entries on VSIs, execute the following command in user view:

reset arp suppression vsi [ name vsi-name ]

Clearing packet statistics on VSIs

To clear packet statistics on VSIs, execute the following command in user view:

reset l2vpn statistics vsi [ name vsi-name ]

Verifying and maintaining ACs

Displaying L2VPN AC forwarding information

To display L2VPN AC forwarding information, execute the following command in any view:

display l2vpn forwarding ac [ vsi vsi-name ] [ slot slot-number [ cpu cpu-number ] ] [ verbose ]

Clearing packet statistics on ACs

To clear packet statistics on ACs, execute the following command in user view:

reset l2vpn statistics ac [ interface interface-type interface-number service-instance instance-id ]

Displaying the current packet statistic collection mode

To display the current packet statistic collection mode, execute the following command in any view:

display statistic mode

VXLAN configuration examples

Example: Configuring a unicast-mode VXLAN

Network configuration

As shown in Figure 9:

·     Configure VXLAN 10 as a unicast-mode VXLAN on Switch A, Switch B, and Switch C to provide Layer 2 connectivity for the VMs across the network sites.

·     Manually establish VXLAN tunnels and assign the tunnels to VXLAN 10.

·     Enable remote-MAC address learning.

Figure 9 Network diagram

Prerequisites

IMPORTANT

IMPORTANT:

·     By default, interfaces on the device are disabled (in ADM or Administratively Down state). To have an interface operate, you must use the undo shutdown command to enable that interface.

·     By default, interfaces on the device are operating in Layer 3 mode. Before you configure Ethernet service instances on an interface, you must use the port link-mode command to configure the interface to operate in Layer 2 mode.

 

Procedure

 

1.     Configure IP addresses and unicast routing settings:

# Assign IP addresses to interfaces, as shown in Figure 9. (Details not shown.)

# Configure OSPF on all transport network switches (Switches A through D). (Details not shown.)

2.     Configure Switch A:

# Enable L2VPN.

<SwitchA> system-view

[SwitchA] l2vpn enable

# Enable Layer 2 forwarding for VXLANs.

[SwitchA] undo vxlan ip-forwarding

# Create VSI vpna and VXLAN 10.

[SwitchA] vsi vpna

[SwitchA-vsi-vpna] vxlan 10

[SwitchA-vsi-vpna-vxlan-10] quit

[SwitchA-vsi-vpna] quit

# Assign an IP address to Loopback 0. The IP address will be used as the source IP address of the VXLAN tunnels to Switch B and Switch C.

[SwitchA] interface loopback 0

[SwitchA-Loopback0] ip address 1.1.1.1 255.255.255.255

[SwitchA-Loopback0] quit

# Create a VXLAN tunnel to Switch B. The tunnel interface name is Tunnel 1.

[SwitchA] interface tunnel 1 mode vxlan

[SwitchA-Tunnel1] source 1.1.1.1

[SwitchA-Tunnel1] destination 2.2.2.2

[SwitchA-Tunnel1] quit

# Create a VXLAN tunnel to Switch C. The tunnel interface name is Tunnel 2.

[SwitchA] interface tunnel 2 mode vxlan

[SwitchA-Tunnel2] source 1.1.1.1

[SwitchA-Tunnel2] destination 3.3.3.3

[SwitchA-Tunnel2] quit

# Assign Tunnel 1 and Tunnel 2 to VXLAN 10.

[SwitchA] vsi vpna

[SwitchA-vsi-vpna] vxlan 10

[SwitchA-vsi-vpna-vxlan-10] tunnel 1

[SwitchA-vsi-vpna-vxlan-10] tunnel 2

[SwitchA-vsi-vpna-vxlan-10] quit

[SwitchA-vsi-vpna] quit

# On HundredGigE 1/0/1, create Ethernet service instance 1000 to match VLAN 2.

[SwitchA] interface hundredgige 1/0/1

[SwitchA-HundredGigE1/0/1] service-instance 1000

[SwitchA-HundredGigE1/0/1-srv1000] encapsulation s-vid 2

# Map Ethernet service instance 1000 to VSI vpna.

[SwitchA-HundredGigE1/0/1-srv1000] xconnect vsi vpna

[SwitchA-HundredGigE1/0/1-srv1000] quit

[SwitchA-HundredGigE1/0/1] quit

3.     Configure Switch B:

# Enable L2VPN.

<SwitchB> system-view

[SwitchB] l2vpn enable

# Enable Layer 2 forwarding for VXLANs.

[SwitchB] undo vxlan ip-forwarding

# Create VSI vpna and VXLAN 10.

[SwitchB] vsi vpna

[SwitchB-vsi-vpna] vxlan 10

[SwitchB-vsi-vpna-vxlan-10] quit

[SwitchB-vsi-vpna] quit

# Assign an IP address to Loopback 0. The IP address will be used as the source IP address of the VXLAN tunnels to Switch A and Switch C.

[SwitchB] interface loopback 0

[SwitchB-Loopback0] ip address 2.2.2.2 255.255.255.255

[SwitchB-Loopback0] quit

# Create a VXLAN tunnel to Switch A. The tunnel interface name is Tunnel 2.

[SwitchB] interface tunnel 2 mode vxlan

[SwitchB-Tunnel2] source 2.2.2.2

[SwitchB-Tunnel2] destination 1.1.1.1

[SwitchB-Tunnel2] quit

# Create a VXLAN tunnel to Switch C. The tunnel interface name is Tunnel 3.

[SwitchB] interface tunnel 3 mode vxlan

[SwitchB-Tunnel3] source 2.2.2.2

[SwitchB-Tunnel3] destination 3.3.3.3

[SwitchB-Tunnel3] quit

# Assign Tunnel 2 and Tunnel 3 to VXLAN 10.

[SwitchB] vsi vpna

[SwitchB-vsi-vpna] vxlan 10

[SwitchB-vsi-vpna-vxlan-10] tunnel 2

[SwitchB-vsi-vpna-vxlan-10] tunnel 3

[SwitchB-vsi-vpna-vxlan-10] quit

[SwitchB-vsi-vpna] quit

# On HundredGigE 1/0/1, create Ethernet service instance 1000 to match VLAN 2.

[SwitchB] interface hundredgige 1/0/1

[SwitchB-HundredGigE1/0/1] service-instance 1000

[SwitchB-HundredGigE1/0/1-srv1000] encapsulation s-vid 2

# Map Ethernet service instance 1000 to VSI vpna.

[SwitchB-HundredGigE1/0/1-srv1000] xconnect vsi vpna

[SwitchB-HundredGigE1/0/1-srv1000] quit

[SwitchB-HundredGigE1/0/1] quit

4.     Configure Switch C:

# Enable L2VPN.

<SwitchC> system-view

[SwitchC] l2vpn enable

# Enable Layer 2 forwarding for VXLANs.

[SwitchC] undo vxlan ip-forwarding

# Create VSI vpna and VXLAN 10.

[SwitchC] vsi vpna

[SwitchC-vsi-vpna] vxlan 10

[SwitchC-vsi-vpna-vxlan-10] quit

[SwitchC-vsi-vpna] quit

# Assign an IP address to Loopback 0. The IP address will be used as the source IP address of the VXLAN tunnels to Switch A and Switch B.

[SwitchC] interface loopback 0

[SwitchC-Loopback0] ip address 3.3.3.3 255.255.255.255

[SwitchC-Loopback0] quit

# Create a VXLAN tunnel to Switch A. The tunnel interface name is Tunnel 1.

[SwitchC] interface tunnel 1 mode vxlan

[SwitchC-Tunnel1] source 3.3.3.3

[SwitchC-Tunnel1] destination 1.1.1.1

[SwitchC-Tunnel1] quit

# Create a VXLAN tunnel to Switch B. The tunnel interface name is Tunnel 3.

[SwitchC] interface tunnel 3 mode vxlan

[SwitchC-Tunnel3] source 3.3.3.3

[SwitchC-Tunnel3] destination 2.2.2.2

[SwitchC-Tunnel3] quit

# Assign Tunnel 1 and Tunnel 3 to VXLAN 10.

[SwitchC] vsi vpna

[SwitchC-vsi-vpna] vxlan 10

[SwitchC-vsi-vpna-vxlan-10] tunnel 1

[SwitchC-vsi-vpna-vxlan-10] tunnel 3

[SwitchC-vsi-vpna-vxlan-10] quit

[SwitchC-vsi-vpna] quit

# On HundredGigE 1/0/1, create Ethernet service instance 1000 to match VLAN 2.

[SwitchC] interface hundredgige 1/0/1

[SwitchC-HundredGigE1/0/1] service-instance 1000

[SwitchC-HundredGigE1/0/1-srv1000] encapsulation s-vid 2

# Map Ethernet service instance 1000 to VSI vpna.

[SwitchC-HundredGigE1/0/1-srv1000] xconnect vsi vpna

[SwitchC-HundredGigE1/0/1-srv1000] quit

[SwitchC-HundredGigE1/0/1] quit

Verifying the configuration

1.     Verify the VXLAN settings on the VTEPs. This example uses Switch A.

# Verify that the VXLAN tunnel interfaces on the VTEP are up.

[SwitchA] display interface tunnel 1

Tunnel1

Current state: UP

Line protocol state: UP

Description: Tunnel1 Interface

Bandwidth: 64 kbps

Maximum transmission unit: 1464

Internet protocol processing: Disabled

Last clearing of counters: Never

Tunnel source 1.1.1.1, destination 2.2.2.2

Tunnel protocol/transport UDP_VXLAN/IP

Last 300 seconds input rate: 0 bytes/sec, 0 bits/sec, 0 packets/sec

Last 300 seconds output rate: 0 bytes/sec, 0 bits/sec, 0 packets/sec

Input: 0 packets, 0 bytes, 0 drops

Output: 0 packets, 0 bytes, 0 drops

# Verify that the VXLAN tunnels have been assigned to the VXLAN.

[SwitchA] display l2vpn vsi verbose

VSI Name: vpna

  VSI Index               : 0

  VSI State               : Up

  MTU                     : -

  Bandwidth               : -

  Broadcast Restrain      : -

  Multicast Restrain      : -

  Unknown Unicast Restrain: -

  MAC Learning            : -

  MAC Table Limit         : -

  MAC Learning rate       : -

  Drop Unknown            : -

  Flooding                : Enabled

  Statistics              : Disabled

  VXLAN ID                : 10

  Tunnels:

    Tunnel Name          Link ID    State  Type        Flood proxy

    Tunnel1              0x5000001  Up     Manual      Disabled

    Tunnel2              0x5000002  Up     Manual      Disabled

  ACs:

    AC                               Link ID    State    Type

    HGE1/0/1 srv1000                 0          Up       Manual

# Verify that the VTEP has learned the MAC addresses of remote VMs.

<SwitchA> display l2vpn mac-address

MAC Address      State    VSI Name                        Link ID/Name  Aging

cc3e-5f9c-6cdb   Dynamic  vpna                            Tunnel1       Aging

cc3e-5f9c-23dc   Dynamic  vpna                            Tunnel2       Aging

--- 2 mac address(es) found  ---

2.     Verify that VM 1, VM 2, and VM 3 can ping each other. (Details not shown.)

 

  • Cloud & AI
  • InterConnect
  • Intelligent Computing
  • Security
  • SMB Products
  • Intelligent Terminal Products
  • Product Support Services
  • Technical Service Solutions
All Services
  • Resource Center
  • Policy
  • Online Help
All Support
  • Become a Partner
  • Partner Resources
  • Partner Business Management
All Partners
  • Profile
  • News & Events
  • Online Exhibition Center
  • Contact Us
All About Us
新华三官网