08-Layer 3—IP Routing Configuration Guide

HomeSupportConfigure & DeployConfiguration GuidesH3C MSR810[2600][3600] Routers Configuration Guides(V7)-R0809-6W40008-Layer 3—IP Routing Configuration Guide
02-Static routing configuration
Title Size Download
02-Static routing configuration 213.64 KB

Configuring static routing

About static routes

Static routes are manually configured. If a network's topology is simple, you only need to configure static routes for the network to work correctly.

Static routes cannot adapt to network topology changes. If a fault or a topological change occurs in the network, the network administrator must modify the static routes manually.

Configuring a static route

1.     Enter system view.

system-view

2.     Configure a static route.

Public network:

ip route-static dest-address { mask-length | mask } { interface-type interface-number [ next-hop-address ] | next-hop-address | vpn-instance d-vpn-instance-name next-hop-address } [ permanent | track track-entry-number ] [ preference preference ] [ tag tag-value ] [ description text ]

By default, no static route is configured.

You can associate Track with a static route to monitor the reachability of the next hops. For more information about Track, see High Availability Configuration Guide.

VPN:

ip route-static vpn-instance s-vpn-instance-name dest-address { mask-length | mask } { interface-type interface-number [ next-hop-address ] | next-hop-address [ public ] | vpn-instance d-vpn-instance-name next-hop-address } [ permanent | track track-entry-number ] [ preference preference ] [ tag tag-value ] [ description text ]

By default, no static route is configured.

You can associate Track with a static route to monitor the reachability of the next hops. For more information about Track, see High Availability Configuration Guide.

MTR:

ip route-static topology topo-name dest-address { mask-length | mask } { next-hop-address | interface-type interface-number [ next-hop-address ] } [ preference preference ] [ tag tag-value ] [ description text ]

By default, no static route is configured.

Support for this command depends on the device model. For more information, see the command reference.

3.     (Optional.) Configure the default preference for static routes.

ip route-static default-preference default-preference

The default setting is 60.

Configuring a static route group

About this task

This task allows you to batch create static routes with different prefixes but the same output interface and next hop.

You can create a static route group, and specify the static group in the ip route-static command. All prefixes in the static route group will be assigned the next hop and output interface specified in the ip route-static command.

Procedure

1.     Enter system view.

system-view

2.     Create a static route group and enter its view.

ip route-static-group group-name

By default, no static route group is configured.

3.     Add a static route prefix to the static route group.

prefix dest-address { mask-length | mask }

By default, no static route prefix is added to the static route group.

4.     Return to system view.

quit

5.     Configure a static route.

Public network:

ip route-static group group-name { interface-type interface-number [ next-hop-address ] | next-hop-address | vpn-instance d-vpn-instance-name next-hop-address } [ permanent | track track-entry-number ] [ preference preference ] [ tag tag-value ] [ description text ]

VPN:

ip route-static vpn-instance s-vpn-instance-name group group-name { interface-type interface-number [ next-hop-address ] | next-hop-address [ public ] | vpn-instance d-vpn-instance-name next-hop-address } [ permanent | track track-entry-number ] [ preference preference ] [ tag tag-value ] [ description text ]

MTR:

ip route-static topology topo-name group group-name { next-hop-address | interface-type interface-number [ next-hop-address ] } [ preference preference ] [ tag tag-value ] [ description text ]

By default, no static route is configured.

Support for the command that contains the topology topo-name option depends on the device model. For more information, see the command reference.

Deleting static routes

About this task

To delete a static route, use the undo ip route-static command. To delete all static routes including the default route, use the delete static-routes all command.

Procedure

1.     Enter system view.

system-view

2.     Delete all static routes.

Public network:

delete static-routes all

VPN:

delete vpn-instance vpn-instance-name static-routes all

MTR:

delete topology topo-name static-routes all

Support for the command that contains the topology topo-name option depends on the device model. For more information, see the command reference.

Configuring BFD for static routes

IMPORTANT

IMPORTANT:

Enabling BFD for a flapping route could worsen the situation.

 

About BFD

BFD provides a general-purpose, standard, medium-, and protocol-independent fast failure detection mechanism. It can uniformly and quickly detect the failures of the bidirectional forwarding paths between two routers for protocols, such as routing protocols and MPLS.

For more information about BFD, see High Availability Configuration Guide.

Configuring bidirectional control mode

About this task

To use BFD bidirectional control detection between two devices, enable BFD control mode for each device's static route destined to the peer.

To configure a static route and enable BFD control mode, use one of the following methods:

·     Specify an output interface and a direct next hop.

·     Specify an indirect next hop and a specific BFD packet source address for the static route.

Configuring BFD control mode for a static route (direct next hop)

1.     Enter system view.

system-view

2.     Configure BFD control mode for a static route.

Public network:

ip route-static dest-address { mask-length | mask } interface-type interface-number next-hop-address bfd control-packet [ preference preference ] [ tag tag-value ] [ description text ]

VPN:

ip route-static vpn-instance s-vpn-instance-name dest-address { mask-length | mask } interface-type interface-number next-hop-address bfd control-packet [ preference preference ] [ tag tag-value ] [ description text ]

By default, BFD control mode for a static route is not configured.

Configuring BFD control mode for a static route (indirect next hop)

1.     Enter system view.

system-view

2.     Configure BFD control mode for a static route.

Public network:

ip route-static dest-address { mask-length | mask } { next-hop-address bfd control-packet bfd-source ip-address | vpn-instance d-vpn-instance-name next-hop-address bfd control-packet bfd-source ip-address } [ preference preference ] [ tag tag-value ] [ description text ]

VPN:

ip route-static vpn-instance s-vpn-instance-name dest-address { mask-length | mask } { next-hop-address bfd control-packet bfd-source ip-address | vpn-instance d-vpn-instance-name next-hop-address bfd control-packet bfd-source ip-address } [ preference preference ] [ tag tag-value ] [ description text ]

By default, BFD control mode for a static route is not configured.

Configuring single-hop echo mode

About this task

With BFD echo mode enabled for a static route, the output interface sends BFD echo packets to the destination device, which loops the packets back to test the link reachability.

 

IMPORTANT

IMPORTANT:

Do not use BFD for a static route with the output interface in spoofing state.

 

Procedure

1.     Enter system view.

system-view

2.     Configure the source address of echo packets.

bfd echo-source-ip ip-address

By default, the source address of echo packets is not configured.

For more information about this command, see High Availability Command Reference.

3.     Configure BFD echo mode for a static route.

Public network:

ip route-static dest-address { mask-length | mask } interface-type interface-number next-hop-address bfd echo-packet [ preference preference ] [ tag tag-value ] [ description text ]

VPN:

ip route-static vpn-instance s-vpn-instance-name dest-address { mask-length | mask } interface-type interface-number next-hop-address bfd echo-packet [ preference preference ] [ tag tag-value ] [ description text ]

Configuring static route FRR

About static route FRR

A link or router failure on a path can cause packet loss. Static route fast reroute (FRR) enables fast rerouting to minimize the impact of link or node failures.

Figure 1 Network diagram

 

As shown in Figure 1, upon a link failure, packets are directed to the backup next hop to avoid traffic interruption. You can either specify a backup next hop for FRR or enable FRR to automatically select a backup next hop (which must be configured in advance).

Restrictions and guidelines for static route FRR

Do not use static route FRR and BFD (for a static route) at the same time.

Equal-cost routes do not support static route FRR.

Besides the configured static route for FRR, the device must have another route to reach the destination. When the state of the primary link (with Layer 3 interfaces staying up) changes from bidirectional to unidirectional or down, static route FRR quickly redirects traffic to the backup next hop. When the Layer 3 interfaces of the primary link are down, static route FRR temporarily redirects traffic to the backup next hop. In addition, the device searches for another route to reach the destination and redirects traffic to the new path if a route is found. If no route is found, traffic interruption occurs.

Configuring static route FRR by specifying a backup next hop

Restrictions and guidelines

A static route does not take effect when the backup output interface is unavailable.

To change the backup output interface or next hop, you must first remove the current setting. The backup output interface and next hop must be different from the primary output interface and next hop.

Procedure

1.     Enter system view.

system-view

2.     Configure static route FRR.

Public network:

ip route-static dest-address { mask-length | mask } interface-type interface-number [ next-hop-address [ backup-interface interface-type interface-number [ backup-nexthop backup-nexthop-address ] ] ] [ permanent ] [ preference preference ] [ tag tag-value ] [ description text ]

VPN:

ip route-static vpn-instance s-vpn-instance-name dest-address { mask-length | mask } interface-type interface-number [ next-hop-address [ backup-interface interface-type interface-number [ backup-nexthop backup-nexthop-address ] ] ] [ permanent ] [ preference preference ] [ tag tag-value ] [ description text ]

MTR:

ip route-static topology topo-name dest-address { mask-length | mask } { next-hop-address | interface-type interface-number [ next-hop-address [ backup-interface interface-type interface-number backup-nexthop backup-nexthop-address ] ] } [ preference preference ] [ tag tag-value ] [ description text ]

By default, static route FRR is disabled.

Support for the command that contains the topology topo-name option depends on the device model. For more information, see the command reference.

Configuring static route FRR to automatically select a backup next hop

1.     Enter system view.

system-view

2.     Configure static route FRR to automatically select a backup next hop.

ip route-static fast-reroute auto

By default, static route FRR is disabled from automatically selecting a backup next hop.

Enabling BFD echo packet mode for static route FRR

About this task

By default, static route FRR uses ARP to detect primary link failures. Perform this task to enable static route FRR to use BFD echo packet mode for fast failure detection on the primary link.

Procedure

1.     Enter system view.

system-view

2.     Configure the source IP address of BFD echo packets.

bfd echo-source-ip ip-address

By default, the source IP address of BFD echo packets is not configured.

The source IP address cannot be on the same network segment as any local interface's IP address.

For more information about this command, see High Availability Command Reference.

3.     Enable BFD echo packet mode for static route FRR.

ip route-static primary-path-detect bfd echo

By default, BFD echo mode for static route FRR is disabled.

Display and maintenance commands for static routing

 

IMPORTANT

IMPORTANT:

Support for the topology topo-name option depends on the device model. For more information, see the command reference.

Execute display commands in any view.

 

Task

Command

Display static route information.

display ip routing-table protocol static [ inactive | verbose ]

Display static route next hop information.

display route-static nib [ nib-id ] [ verbose ]

Display static routing table information.

display route-static routing-table [ topology topo-name ] [ ip-address { mask-length | mask } ]

display route-static routing-table [ vpn-instance vpn-instance-name ] [ ip-address { mask-length | mask } ]

 

For more information about the display ip routing-table protocol static [ inactive | verbose ] command, see basic IP routing in Layer 3—IP Routing Command Reference.

Static route configuration examples

Example: Configuring basic static routes

Network configuration

As shown in Figure 2, configure static routes on the routers for interconnections between any two hosts.

Figure 2 Network diagram

Procedure

1.     Configure IP addresses for interfaces. (Details not shown.)

2.     Configure static routes:

# Configure a default route on Router A.

<RouterA> system-view

[RouterA] ip route-static 0.0.0.0 0.0.0.0 1.1.4.2

# Configure two static routes on Router B.

<RouterB> system-view

[RouterB] ip route-static 1.1.2.0 255.255.255.0 1.1.4.1

[RouterB] ip route-static 1.1.3.0 255.255.255.0 1.1.5.6

# Configure a default route on Router C.

<RouterC> system-view

[RouterC] ip route-static 0.0.0.0 0.0.0.0 1.1.5.5

3.     Configure the default gateways of Host A, Host B, and Host C as 1.1.2.3, 1.1.6.1, and 1.1.3.1. (Details not shown.)

Verifying the configuration

# Display the static route information on Router A.

[RouterA] display ip routing-table protocol static

 

Summary Count : 1

 

Static Routing table Status : <Active>

Summary Count : 1

 

Destination/Mask    Proto  Pre  Cost         NextHop         Interface

0.0.0.0/0           Static 60   0            1.1.4.2         GE1/0/2

 

Static Routing table Status : <Inactive>

Summary Count : 0

# Display the static route information on Router B.

[RouterB] display ip routing-table protocol static

 

Summary Count : 2

 

Static Routing table Status : <Active>

Summary Count : 2

 

Destination/Mask    Proto  Pre  Cost         NextHop         Interface

1.1.2.0/24          Static 60   0            1.1.4.1         GE1/0/1

1.1.3.0/24          Static 60   0            1.1.5.6         GE1/0/2

 

Static Routing table Status : <Inactive>

Summary Count : 0

# Use the ping command on Host B to test the reachability of Host A (Windows XP runs on the two hosts).

C:\Documents and Settings\Administrator>ping 1.1.2.2

 

Pinging 1.1.2.2 with 32 bytes of data:

 

Reply from 1.1.2.2: bytes=32 time=1ms TTL=126

Reply from 1.1.2.2: bytes=32 time=1ms TTL=126

Reply from 1.1.2.2: bytes=32 time=1ms TTL=126

Reply from 1.1.2.2: bytes=32 time=1ms TTL=126

 

Ping statistics for 1.1.2.2:

    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),

Approximate round trip times in milli-seconds:

    Minimum = 1ms, Maximum = 1ms, Average = 1ms

# Use the tracert command on Host B to test the reachability of Host A.

C:\Documents and Settings\Administrator>tracert 1.1.2.2

 

Tracing route to 1.1.2.2 over a maximum of 30 hops

 

  1    <1 ms    <1 ms    <1 ms  1.1.6.1

  2    <1 ms    <1 ms    <1 ms  1.1.4.1

  3     1 ms    <1 ms    <1 ms  1.1.2.2

 

Trace complete.

Example: Configuring BFD for static routes (direct next hop)

Network configuration

Configure the following, as shown in Figure 3:

·     Configure a static route to subnet 120.1.1.0/24 on Router A.

·     Configure a static route to subnet 121.1.1.0/24 on Router B.

·     Enable BFD for both routes.

·     Configure a static route to subnet 120.1.1.0/24 and a static route to subnet 121.1.1.0/24 on Router C.

When the link between Router A and Router B through the Layer 2 switch fails, BFD can detect the failure immediately. Router A then communicates with Router B through Router C.

Figure 3 Network diagram

Table 1 Interface and IP address assignment

Device

Interface

IP address

Router A

GE1/0/1

12.1.1.1/24

Router A

GE1/0/2

10.1.1.102/24

Router B

GE1/0/1

12.1.1.2/24

Router B

GE1/0/2

13.1.1.1/24

Router C

GE1/0/1

10.1.1.100/24

Router C

GE1/0/2

13.1.1.2/24

 

Procedure

1.     Configure IP addresses for interfaces. (Details not shown.)

2.     Configure static routes and BFD:

# Configure static routes on Route A and enable BFD control mode for the static route that traverses the Layer 2 switch.

<RouterA> system-view

[RouterA] interface gigabitethernet 1/0/1

[RouterA-GigabitEthernet1/0/1] bfd min-transmit-interval 500

[RouterA-GigabitEthernet1/0/1] bfd min-receive-interval 500

[RouterA-GigabitEthernet1/0/1] bfd detect-multiplier 9

[RouterA-GigabitEthernet1/0/1] quit

[RouterA] ip route-static 120.1.1.0 24 gigabitethernet 1/0/1 12.1.1.2 bfd control-packet

[RouterA] ip route-static 120.1.1.0 24 gigabitethernet 1/0/2 10.1.1.100 preference 65

[RouterA] quit

# Configure static routes on Router B and enable BFD control mode for the static route that traverses the Layer 2 switch.

<RouterB> system-view

[RouterB] interface gigabitethernet 1/0/1

[RouterB-GigabitEthernet1/0/1] bfd min-transmit-interval 500

[RouterB-GigabitEthernet1/0/1] bfd min-receive-interval 500

[RouterB-GigabitEthernet1/0/1] bfd detect-multiplier 9

[RouterB-GigabitEthernet1/0/1] quit

[RouterB] ip route-static 121.1.1.0 24 gigabitethernet 1/0/1 12.1.1.1 bfd control-packet

[RouterB] ip route-static 121.1.1.0 24 gigabitethernet 1/0/2 13.1.1.2 preference 65

[RouterB] quit

# Configure static routes on Router C.

<RouterC> system-view

[RouterC] ip route-static 120.1.1.0 24 13.1.1.1

[RouterC] ip route-static 121.1.1.0 24 10.1.1.102

Verifying the configuration

# Display BFD sessions on Router A.

<RouterA> display bfd session

 Total sessions: 1        Up sessions: 1        Init mode: Active

 

 IPv4 session working in control packet mode:

 

 LD/RD           SourceIP        DestinationIP   State   Holdtime    Interface

 4/7             12.1.1.1        12.1.1.2        Up      2000ms      GE1/0/1

The output shows that the BFD session has been created.

# Display static routes on Router A.

<RouterA> display ip routing-table protocol static

 

Summary Count : 1

 

Static Routing table Status : <Active>

Summary Count : 1

 

Destination/Mask    Proto  Pre  Cost         NextHop         Interface

120.1.1.0/24        Static 60   0            12.1.1.2        GE1/0/1

 

Static Routing table Status : <Inactive>

Summary Count : 0

The output shows that Router A communicates with Router B through GigabitEthernet 1/0/1. Then the link over GigabitEthernet 1/0/1 fails.

# Display static routes on Router A.

<RouterA> display ip routing-table protocol static

 

Summary Count : 1

 

Static Routing table Status : <Active>

Summary Count : 1

 

Destination/Mask    Proto  Pre  Cost         NextHop         Interface

120.1.1.0/24        Static 65   0            10.1.1.100      GE1/0/2

 

Static Routing table Status : <Inactive>

Summary Count : 0

The output shows that Router A communicates with Router B through GigabitEthernet 1/0/2.

Example: Configuring BFD for static routes (indirect next hop)

Network configuration

Figure 4 shows the network topology as follows:

·     Router A has a route to interface Loopback 1 (2.2.2.9/32) on Router B, with the output interface GigabitEthernet 1/0/1.

·     Router B has a route to interface Loopback 1 (1.1.1.9/32) on Router A, with the output interface GigabitEthernet 1/0/1.

·     Router D has a route to 1.1.1.9/32, with the output interface GigabitEthernet 1/0/1, and a route to 2.2.2.9/32, with the output interface GigabitEthernet 1/0/2.

Configure the following:

·     Configure a static route to subnet 120.1.1.0/24 on Router A.

·     Configure a static route to subnet 121.1.1.0/24 on Router B.

·     Enable BFD for both routes.

·     Configure a static route to subnet 120.1.1.0/24 and a static route to subnet 121.1.1.0/24 on both Router C and Router D.

When the link between Router A and Router B through Router D fails, BFD can detect the failure immediately. Router A then communicates with Router B through Router C.

Figure 4 Network diagram

Table 2 Interface and IP address assignment

Device

Interface

IP address

Router A

GE1/0/1

12.1.1.1/24

Router A

GE1/0/2

10.1.1.102/24

Router A

Loopback 1

1.1.1.9/32

Router B

GE1/0/1

11.1.1.2/24

Router B

GE1/0/2

13.1.1.1/24

Router B

Loopback 1

2.2.2.9/32

Router C

GE1/0/1

10.1.1.100/24

Router C

GE1/0/2

13.1.1.2/24

Router D

GE1/0/1

12.1.1.2/24

Router D

GE1/0/2

11.1.1.2/24

 

Procedure

1.     Configure IP addresses for interfaces. (Details not shown.)

2.     Configure static routes and BFD:

# Configure static routes on Router A and enable BFD control mode for the static route that traverses Router D.

<RouterA> system-view

[RouterA] bfd multi-hop min-transmit-interval 500

[RouterA] bfd multi-hop min-receive-interval 500

[RouterA] bfd multi-hop detect-multiplier 9

[RouterA] ip route-static 120.1.1.0 24 2.2.2.9 bfd control-packet bfd-source 1.1.1.9

[RouterA] ip route-static 120.1.1.0 24 gigabitethernet 1/0/2 10.1.1.100 preference 65

[RouterA] quit

# Configure static routes on Router B and enable BFD control mode for the static route that traverses Router D.

<RouterB> system-view

[RouterB] bfd multi-hop min-transmit-interval 500

[RouterB] bfd multi-hop min-receive-interval 500

[RouterB] bfd multi-hop detect-multiplier 9

[RouterB] ip route-static 121.1.1.0 24 1.1.1.9 bfd control-packet bfd-source 2.2.2.9

[RouterB] ip route-static 121.1.1.0 24 gigabitethernet 1/0/2 13.1.1.2 preference 65

[RouterB] quit

# Configure static routes on Router C.

<RouterC> system-view

[RouterC] ip route-static 120.1.1.0 24 13.1.1.1

[RouterC] ip route-static 121.1.1.0 24 10.1.1.102

# Configure static routes on Router D.

<RouterD> system-view

[RouterD] ip route-static 120.1.1.0 24 11.1.1.2

[RouterD] ip route-static 121.1.1.0 24 12.1.1.1

Verifying the configuration

# Display the BFD session information on Router A.

<RouterA> display bfd session

 Total sessions: 1        Up sessions: 1        Init mode: Active

 

 IPv4 session working in control packet mode:

 

 LD/RD           SourceIP        DestinationIP   State   Holdtime    Interface

 4/7             1.1.1.9         2.2.2.9         Up      2000ms      N/A

The output shows that the BFD session has been created.

# Display static routes on Router A.

<RouterA> display ip routing-table protocol static

 

Summary Count : 1

 

Static Routing table Status : <Active>

Summary Count : 1

 

Destination/Mask    Proto  Pre  Cost         NextHop         Interface

120.1.1.0/24        Static 60   0            12.1.1.2        GE1/0/1

 

Static Routing table Status : <Inactive>

Summary Count : 0

The output shows that Router A communicates with Router B through GigabitEthernet 1/0/1. Then the link over GigabitEthernet 1/0/1 fails.

# Display static routes on Router A.

<RouterA> display ip routing-table protocol static

 

Summary Count : 1

 

Static Routing table Status : <Active>

Summary Count : 1

 

Destination/Mask    Proto  Pre  Cost         NextHop         Interface

120.1.1.0/24        Static 65   0            10.1.1.100      GE1/0/2

 

Static Routing table Status : <Inactive>

Summary Count : 0

The output shows that Router A communicates with Router B through GigabitEthernet 1/0/2.

Example: Configuring static route FRR

Network configuration

As shown in Figure 5, configure static routes on Router A, Router B, and Router C, and configure static route FRR. When Link A becomes unidirectional, traffic can be switched to Link B immediately.

Figure 5 Network diagram

Table 3 Interface and IP address assignment

Device

Interface

IP address

Router A

GE1/0/1

12.12.12.1/24

Router A

GE1/0/2

13.13.13.1/24

Router A

Loopback 0

1.1.1.1/32

Router B

GE1/0/1

24.24.24.4/24

Router B

GE1/0/2

13.13.13.2/24

Router B

Loopback 0

4.4.4.4/32

Router C

GE1/0/1

12.12.12.2/24

Router C

GE1/0/2

24.24.24.2/24

 

Procedure

1.     Configure IP addresses for interfaces. (Details not shown.)

2.     Configure static route FRR on link A by using one of the following methods:

¡     (Method 1.) Specify a backup next hop for static route FRR:

# Configure a static route on Router A, and specify GigabitEthernet 1/0/1 as the backup output interface and 12.12.12.2 as the backup next hop.

<RouterA> system-view

[RouterA] ip route-static 4.4.4.4 32 gigabitethernet 1/0/2 13.13.13.2 backup-interface gigabitethernet 1/0/1 backup-nexthop 12.12.12.2

# Configure a static route on Router B, and specify GigabitEthernet 1/0/1 as the backup output interface and 24.24.24.2 as the backup next hop.

<RouterB> system-view

[RouterB] ip route-static 1.1.1.1 32 gigabitethernet 1/0/2 13.13.13.1 backup-interface gigabitethernet 1/0/1 backup-nexthop 24.24.24.2

¡     (Method 2.) Configure static route FRR to automatically select a backup next hop:

# Configure static routes on Router A, and enable static route FRR.

<RouterA> system-view

[RouterA] ip route-static 4.4.4.4 32 gigabitethernet 1/0/2 13.13.13.2

[RouterA] ip route-static 4.4.4.4 32 gigabitethernet 1/0/1 12.12.12.2 preference 70

[RouterA] ip route-static fast-reroute auto

# Configure static routes on Router B, and enable static route FRR.

<RouterB> system-view

[RouterB] ip route-static 1.1.1.1 32 gigabitethernet 1/0/2 13.13.13.1

[RouterB] ip route-static 1.1.1.1 32 gigabitethernet 1/0/1 24.24.24.2 preference 70

[RouterB] ip route-static fast-reroute auto

3.     Configure static routes on Router C.

<RouterC> system-view

[RouterC] ip route-static 4.4.4.4 32 gigabitethernet 1/0/2 24.24.24.4

[RouterC] ip route-static 1.1.1.1 32 gigabitethernet 1/0/1 12.12.12.1

Verifying the configuration

# Display route 4.4.4.4/32 on Router A to view the backup next hop information.

[RouterA] display ip routing-table 4.4.4.4 verbose

 

Summary Count : 1

 

Destination: 4.4.4.4/32

   Protocol: Static          

 Process ID: 0

  SubProtID: 0x0                    Age: 04h20m37s

       Cost: 0               Preference: 60

      IpPre: N/A             QosLocalID: N/A

        Tag: 0                    State: Active Adv

  OrigTblID: 0x0                OrigVrf: default-vrf

    TableID: 0x2                 OrigAs: 0

      NibID: 0x26000002          LastAs: 0

     AttrID: 0xffffffff        Neighbor: 0.0.0.0

      Flags: 0x1008c        OrigNextHop: 13.13.13.2

      Label: NULL           RealNextHop: 13.13.13.2

    BkLabel: NULL             BkNextHop: 12.12.12.2

    SRLabel: NULL             BkSRLabel: NULL

  Tunnel ID: Invalid          Interface: GigabitEthernet1/0/2

BkTunnel ID: Invalid        BkInterface: GigabitEthernet1/0/1

   FtnIndex: 0x0           TrafficIndex: N/A

  Connector: N/A

# Display route 1.1.1.1/32 on Router B to view the backup next hop information.

[RouterB] display ip routing-table 1.1.1.1 verbose

 

Summary Count : 1

 

Destination: 1.1.1.1/32

   Protocol: Static          

 Process ID: 0

  SubProtID: 0x0                    Age: 04h20m37s

       Cost: 0               Preference: 10

      IpPre: N/A             QosLocalID: N/A

        Tag: 0                    State: Active Adv

  OrigTblID: 0x0                OrigVrf: default-vrf

    TableID: 0x2                 OrigAs: 0

      NibID: 0x26000002          LastAs: 0

     AttrID: 0xffffffff        Neighbor: 0.0.0.0

      Flags: 0x1008c        OrigNextHop: 13.13.13.1

      Label: NULL           RealNextHop: 13.13.13.1

    BkLabel: NULL             BkNextHop: 24.24.24.2

    SRLabel: NULL             BkSRLabel: NULL

  Tunnel ID: Invalid          Interface: GigabitEthernet1/0/2

BkTunnel ID: Invalid        BkInterface: GigabitEthernet1/0/1

   FtnIndex: 0x0           TrafficIndex: N/A

  Connector: N/A


Configuring a default route

A default route is used to forward packets that do not match any specific routing entry in the routing table. Without a default route, packets that do not match any routing entries are discarded and an ICMP destination-unreachable packet is sent to the source.

A default route can be configured in either of the following ways:

·     The network administrator can configure a default route with both destination and mask being 0.0.0.0. For more information, see "Configuring static routing."

·     Some dynamic routing protocols (such as OSPF, IS-IS, and RIP) can generate a default route. For example, an upstream router running OSPF can generate a default route and advertise it to other routers. These routers install the default route with the next hop being the upstream router. For more information, see the respective chapters on these routing protocols in this configuration guide.

 

  • Cloud & AI
  • InterConnect
  • Intelligent Computing
  • Security
  • SMB Products
  • Intelligent Terminal Products
  • Product Support Services
  • Technical Service Solutions
All Services
  • Resource Center
  • Policy
  • Online Help
All Support
  • Become a Partner
  • Partner Resources
  • Partner Business Management
All Partners
  • Profile
  • News & Events
  • Online Exhibition Center
  • Contact Us
All About Us
新华三官网