05-Layer 3-IP Routing Configuration Guide

HomeSupportResource CenterH3C S5560S-EI&S5560S-SI&S5500V3-SI Switch Series Configuration Guides-R612x-6W10205-Layer 3-IP Routing Configuration Guide
04-OSPF configuration
Title Size Download
04-OSPF configuration 822.86 KB

Contents

Configuring OSPF· 1

About OSPF·· 1

OSPF features· 1

OSPF packets· 1

LSA types· 1

OSPF areas· 2

Router types· 4

Route types· 5

Router ID·· 6

Route calculation·· 6

OSPF network types· 6

DR and BDR·· 7

Protocols and standards· 8

Restrictions and guidelines: OSPF configuration·· 8

OSPF tasks at a glance· 8

Configuring basic OSPF functions· 10

Enabling an OSPF process· 10

Creating an OSPF area· 10

Enabling OSPF·· 11

Configuring OSPF stub and NSSA areas· 12

About OSPF stub and NSSA area configuration·· 12

Configuring a stub area· 12

Configuring an NSSA area· 13

Configuring a virtual link· 14

Configuring OSPF network types· 14

Restrictions and guidelines for configuring OSPF network types· 14

Configuring the broadcast network type for an interface· 15

Configuring the NBMA network type for an interface· 15

Configuring the P2MP network type for an interface· 16

Configuring the P2P network type for an interface· 16

Configuring OSPF route control 16

Configuring OSPF inter-area route summarization·· 16

Configuring redistributed route summarization·· 17

Configuring received OSPF route filtering· 17

Configuring Type-3 LSA filtering· 18

Setting an OSPF cost for an interface· 18

Setting the maximum number of ECMP routes· 19

Setting OSPF preference· 19

Configuring discard routes for summary networks· 20

Redistributing routes from another routing protocol 20

Redistributing a default route· 21

Advertising a host route· 21

Advertising OSPF link state information to BGP·· 22

Setting OSPF timers· 22

About setting OSPF timers· 22

Configuring OSPF packet timers· 22

Setting LSA transmission delay· 23

Setting SPF calculation interval 23

Setting the minimum LSA arrival interval 24

Setting the LSA generation interval 24

Setting OSPF exit overflow interval 25

Configuring OSPF packet parameters· 25

Disabling interfaces from receiving and sending OSPF packets· 25

Adding the interface MTU into DD packets· 26

Setting the DSCP value for outgoing OSPF packets· 26

Setting the maximum length of OSPF packets that can be sent by an interface· 26

Setting the LSU transmit rate· 27

Controlling LSA generation, advertisement, and reception·· 27

Setting the maximum number of external LSAs in LSDB·· 27

Filtering outbound LSAs on an interface· 28

Filtering LSAs for the specified neighbor 28

Accelerating OSPF convergence speed· 28

Enabling OSPF ISPF·· 28

Configuring prefix suppression·· 29

Configuring prefix prioritization·· 30

Configuring OSPF PIC·· 30

Configuring advanced OSPF features· 31

Configuring stub routers· 31

Enabling compatibility with RFC 1583· 32

Configuring OSPF GR·· 32

About OSPF GR·· 32

Restrictions and guidelines for OSPF GR·· 32

Configuring OSPF GR restarter 33

Configuring OSPF GR helper 33

Triggering OSPF GR·· 34

Configuring OSPF NSR·· 35

Configuring BFD for OSPF·· 35

About BFD for OSPF·· 35

Configuring bidirectional control detection·· 35

Configuring single-hop echo detection·· 36

Configuring OSPF FRR·· 36

About OSPF FRR·· 36

Restrictions and guidelines for OSPF FRR·· 36

Configuring OSPF FRR to use the LFA algorithm to calculate a backup next hop· 36

Configuring OSPF FRR to use a backup next hop specified in a routing policy· 37

Configuring BFD control packet mode for OSPF FRR·· 37

Configuring BFD echo packet mode for OSPF FRR·· 38

Configuring OSPF authentication·· 38

About OSPF area and interface authentication·· 38

Configuring OSPF area authentication·· 38

Configuring OSPF interface authentication·· 39

Configuring GTSM for OSPF·· 39

About GTSM·· 39

Restrictions and guidelines for GTSM·· 40

Configuring GTSM in OSPF area view·· 40

Configuring GTSM in interface view·· 40

Configuring OSPF logging and SNMP notifications· 40

Logging neighbor state changes· 40

Configuring the OSPF logging feature· 41

Configuring OSPF network management 41

Display and maintenance commands for OSPF·· 42

OSPF configuration examples· 44

Example: Configuring basic OSPF·· 44

Example: Configuring OSPF route redistribution·· 47

Example: Configuring OSPF route summarization·· 48

Example: Configuring OSPF stub area· 51

Example: Configuring OSPF NSSA area· 54

Example: Configuring OSPF DR election·· 55

Example: Configuring OSPF virtual link· 60

Example: Configuring OSPF GR·· 62

Example: Configuring OSPF NSR·· 64

Example: Configuring BFD for OSPF·· 66

Example: Configuring OSPF FRR·· 69

Troubleshooting OSPF configuration·· 72

No OSPF neighbor relationship established· 72

Incorrect routing information·· 72

 


Configuring OSPF

About OSPF

Open Shortest Path First (OSPF) is a link-state IGP developed by the OSPF working group of the IETF. OSPF version 2 is used for IPv4. OSPF refers to OSPFv2 throughout this chapter.

OSPF features

OSPF has the following features:

·          Wide scope—Supports multiple network sizes and several hundred routers in an OSPF routing domain.

·          Fast convergence—Advertises routing updates instantly upon network topology changes.

·          Loop free—Computes routes with the SPF algorithm to avoid routing loops.

·          Area-based network partition—Splits an AS into multiple areas to facilitate management. This feature reduces the LSDB size on routers to save memory and CPU resources, and reduces route updates transmitted between areas to save bandwidth.

·          ECMP routing—Supports multiple equal-cost routes to a destination.

·          Routing hierarchy—Supports a 4-level routing hierarchy that prioritizes routes into intra-area, inter-area, external Type-1, and external Type-2 routes.

·          Authentication—Supports area- and interface-based packet authentication to ensure secure packet exchange.

·          Support for multicasting—Multicasts protocol packets on some types of links to avoid impacting other devices.

OSPF packets

OSPF messages are carried directly over IP. The protocol number is 89.

OSPF uses the following packet types:

·          Hello—Periodically sent to find and maintain neighbors, containing timer values, information about the DR, BDR, and known neighbors.

·          Database description (DD)—Describes the digest of each LSA in the LSDB, exchanged between two routers for data synchronization.

·          Link state request (LSR)—Requests needed LSAs from a neighbor. After exchanging the DD packets, the two routers know which LSAs of the neighbor are missing from their LSDBs. They then exchange LSR packets requesting the missing LSAs. LSR packets contain the digest of the missing LSAs.

·          Link state update (LSU)—Transmits the requested LSAs to the neighbor.

·          Link state acknowledgment (LSAck)—Acknowledges received LSU packets. It contains the headers of received LSAs (an LSAck packet can acknowledge multiple LSAs).

LSA types

OSPF advertises routing information in Link State Advertisements (LSAs). The following LSAs are commonly used:

·          Router LSA—Type-1 LSA, originated by all routers and flooded throughout a single area only. This LSA describes the collected states of the router's interfaces to an area.

·          Network LSA—Type-2 LSA, originated for broadcast and NBMA networks by the designated router, and flooded throughout a single area only. This LSA contains the list of routers connected to the network.

·          Network Summary LSA—Type-3 LSA, originated by Area Border Routers (ABRs), and flooded throughout the LSA's associated area. Each summary-LSA describes a route to a destination outside the area, yet still inside the AS (an inter-area route).

·          ASBR Summary LSA—Type-4 LSA, originated by ABRs and flooded throughout the LSA's associated area. Type 4 summary-LSAs describe routes to Autonomous System Boundary Router (ASBR).

·          AS External LSA—Type-5 LSA, originated by ASBRs, and flooded throughout the AS (except stub and NSSA areas). Each AS-external-LSA describes a route to another AS.

·          NSSA LSA—Type-7 LSA, as defined in RFC 1587, originated by ASBRs in NSSAs and flooded throughout a single NSSA. NSSA LSAs describe routes to other ASs.

·          Opaque LSA—LSA for OSPF extensions. Its format consists of a standard LSA header and application specific information. The opaque LSA includes Type 9, Type 10, and Type 11. The Type 9 opaque LSA is flooded into the local subnet. Grace LSA, used by graceful restart, is Type 9 LSA. The Type 10 is flooded into the local area. The Type 11 is flooded throughout the AS.

OSPF areas

Area-based OSPF network partition

In large OSPF routing domains, SPF route computations consume too many storage and CPU resources, and enormous OSPF packets generated for route synchronization occupy excessive bandwidth.

To resolve these issues, OSPF splits an AS into multiple areas. Each area is identified by an area ID. The boundaries between areas are routers rather than links. A network segment (or a link) can only reside in one area as shown in Figure 1.

You can configure route summarization on ABRs to reduce the number of LSAs advertised to other areas and minimize the effect of topology changes.

Figure 1 Area-based OSPF network partition

 

Backbone area

Each AS has a backbone area that distributes routing information between non-backbone areas. Routing information between non-backbone areas must be forwarded by the backbone area. OSPF has the following requirements:

·          All non-backbone areas must maintain connectivity to the backbone area.

·          The backbone area must maintain connectivity within itself.

In practice, these requirements might not be met due to lack of physical links. OSPF virtual links can solve this issue.

Virtual links

A virtual link is established between two ABRs through a non-backbone area. It must be configured on both ABRs to take effect. The non-backbone area is called a transit area.

As shown in Figure 2, Area 2 has no direct physical link to the backbone Area 0. You can configure a virtual link between the two ABRs to connect Area 2 to the backbone area.

Figure 2 Virtual link application 1

 

Virtual links can also be used as redundant links. If a physical link failure breaks the internal connectivity of the backbone area, you can configure a virtual link to replace the failed physical link, as shown in Figure 3.

Figure 3 Virtual link application 2

 

The virtual link between the two ABRs acts as a point-to-point connection. You can configure interface parameters, such as hello interval, on the virtual link as they are configured on a physical interface.

The two ABRs on the virtual link unicast OSPF packets to each other, and the OSPF routers in between convey these OSPF packets as normal IP packets.

Stub area and totally stub area

A stub area does not distribute Type-5 LSAs to reduce the routing table size and LSAs advertised within the area. The ABR of the stub area advertises a default route in a Type-3 LSA so that the routers in the area can reach external networks through the default route.

To further reduce the routing table size and advertised LSAs, you can configure the stub area as a totally stub area. The ABR of a totally stub area does not advertise inter-area routes or external routes. It advertises a default route in a Type-3 LSA so that the routers in the area can reach external networks through the default route.

NSSA area and totally NSSA area

An NSSA area does not import AS external LSAs (Type-5 LSAs) but can import Type-7 LSAs generated by the NSSA ASBR. The NSSA ABR translates Type-7 LSAs into Type-5 LSAs and advertises the Type-5 LSAs to other areas.

As shown in Figure 4, the OSPF AS contains Area 1, Area 2, and Area 0. The other two ASs run RIP. Area 1 is an NSSA area where the ASBR redistributes RIP routes in Type-7 LSAs into Area 1. Upon receiving the Type-7 LSAs, the NSSA ABR translates them to Type-5 LSAs, and advertises the Type-5 LSAs to Area 0.

The ASBR of Area 2 redistributes RIP routes in Type-5 LSAs into the OSPF routing domain. However, Area 1 does not receive Type-5 LSAs because it is an NSSA area.

Figure 4 NSSA area

 

Router types

As shown in Figure 5, OSPF routers are classified into different types, including internal routers, ABRs, backbone routers, and ASBRs.

Figure 5 OSPF router types

 

Internal router

All interfaces on an internal router belong to one OSPF area.

ABR

An ABR belongs to more than two areas, one of which must be the backbone area. ABR connects the backbone area to a non-backbone area. An ABR and the backbone area can be connected through a physical or logical link.

Backbone router

No less than one interface of a backbone router must reside in the backbone area. All ABRs and internal routers in Area 0 are backbone routers.

ASBR

An ASBR exchanges routing information with another AS. An ASBR might not reside on the border of the AS. It can be an internal router or an ABR.

Route types

OSPF prioritizes routes into the following route levels:

·          Intra-area route.

·          Inter-area route.

·          Type-1 external route.

·          Type-2 external route.

The intra-area and inter-area routes describe the network topology of the AS. The external routes describe routes to external ASs.

A Type-1 external route has high credibility. The cost of a Type-1 external route = the cost from the router to the corresponding ASBR + the cost from the ASBR to the destination of the external route.

A Type-2 external route has low credibility. OSPF considers that the cost from the ASBR to the destination of a Type-2 external route is much greater than the cost from the ASBR to an OSPF internal router. The cost of a Type-2 external route = the cost from the ASBR to the destination of the Type-2 external route. If two Type-2 routes to the same destination have the same cost, OSPF takes the cost from the router to the ASBR into consideration to determine the best route.

Router ID

A router ID uniquely identifies a router in an AS. For a router to run OSPF, it must have a router ID. You can choose to manually specify a router ID or use the global router ID for an OSPF process.

Manual configuration

When you create an OSPF process, you can manually specify a router ID. To make sure the router ID is unique in the AS, you can specify the IP address of an interface on the router as the router ID.

Using the global router ID

If you do not specify a router ID when creating an OSPF process, the global router ID is used. As a best practice, manually specify a router ID or enable the OSPF process to automatically obtain a router ID when you create the OSPF process.

Route calculation

OSPF computes routes in an area as follows:

·          Each router generates LSAs based on the network topology around itself, and sends them to other routers in update packets.

·          Each OSPF router collects LSAs from other routers to compose an LSDB. An LSA describes the network topology around a router, and the LSDB describes the entire network topology of the area.

·          Each router transforms the LSDB to a weighted directed graph that shows the topology of the area. All the routers within the area have the same graph.

·          Each router uses the SPF algorithm to compute a shortest path tree that shows the routes to the nodes in the area. The router itself is the root of the tree.

OSPF network types

OSPF classifies networks into the following types, depending on different link layer protocols:

·          Broadcast—If the link layer protocol is Ethernet or FDDI, OSPF considers the network type as broadcast by default. On a broadcast network, hello, LSU, and LSAck packets are multicast to 224.0.0.5 that identifies all OSPF routers or to 224.0.0.6 that identifies the DR and BDR. DD packets and LSR packets are unicast.

·          NBMA—If the link layer protocol is Frame Relay, ATM, or X.25, OSPF considers the network type as NBMA by default. OSPF packets are unicast on an NBMA network.

·          P2MP—No link is P2MP type by default. P2MP must be a conversion from other network types such as NBMA. On a P2MP network, OSPF packets are multicast to 224.0.0.5.

·          P2P—If the link layer protocol is PPP or HDLC, OSPF considers the network type as P2P. On a P2P network, OSPF packets are multicast to 224.0.0.5.

The following are the differences between NBMA and P2MP networks:

·          NBMA networks are fully meshed. P2MP networks are not required to be fully meshed.

·          NBMA networks require DR and BDR election. P2MP networks do not have DR or BDR.

·          On an NBMA network, OSPF packets are unicast, and neighbors are manually configured. On a P2MP network, OSPF packets are multicast by default, and you can configure OSPF to unicast protocol packets.

DR and BDR

DR and BDR mechanism

On a broadcast or NBMA network, any two routers must establish an adjacency to exchange routing information with each other. If n routers are present on the network, n(n-1)/2 adjacencies are established. Any topology change on the network results in an increase in traffic for route synchronization, which consumes a large amount of system and bandwidth resources.

Using the DR and BDR mechanisms can solve this problem.

·          DR—Elected to advertise routing information among other routers. If the DR fails, routers on the network must elect another DR and synchronize information with the new DR. Using this mechanism without BDR is time-consuming and is prone to route calculation errors.

·          BDR—Elected along with the DR to establish adjacencies with all other routers. If the DR fails, the BDR immediately becomes the new DR, and other routers elect a new BDR.

Routers other than the DR and BDR are called DR Others. They do not establish adjacencies with one another, so the number of adjacencies is reduced.

The role of a router is subnet (or interface) specific. It might be a DR on one interface and a BDR or DR Other on another interface.

As shown in Figure 6, solid lines are Ethernet physical links, and dashed lines represent OSPF adjacencies. With the DR and BDR, only seven adjacencies are established.

Figure 6 DR and BDR in a network

 

 

NOTE:

In OSPF, neighbor and adjacency are different concepts. After startup, OSPF sends a hello packet on each OSPF interface. A receiving router checks parameters in the packet. If the parameters match its own, the receiving router considers the sending router an OSPF neighbor. Two OSPF neighbors establish an adjacency relationship after they synchronize their LSDBs through exchange of DD packets and LSAs.

 

DR and BDR election

DR election is performed on broadcast or NBMA networks but not on P2P and P2MP networks.

Routers in a broadcast or NBMA network elect the DR and BDR by router priority and ID. Routers with a router priority value higher than 0 are candidates for DR and BDR election.

The election votes are hello packets. Each router sends the DR elected by itself in a hello packet to all the other routers. If two routers on the network declare themselves as the DR, the router with the higher router priority wins. If router priorities are the same, the router with the higher router ID wins.

If a router with a higher router priority becomes active after DR and BDR election, the router cannot replace the DR or BDR until a new election is performed. Therefore, the DR of a network might not be the router with the highest priority, and the BDR might not be the router with the second highest priority.

Protocols and standards

·          RFC 1245, OSPF protocol analysis

·          RFC 1246, Experience with the OSPF protocol

·          RFC 1370, Applicability Statement for OSPF

·          RFC 1403, BGP OSPF Interaction

·          RFC 1745, BGP4/IDRP for IP---OSPF Interaction

·          RFC 1765, OSPF Database Overflow

·          RFC 1793, Extending OSPF to Support Demand Circuits

·          RFC 2154, OSPF with Digital Signatures

·          RFC 2328, OSPF Version 2

·          RFC 3101, OSPF Not-So-Stubby Area (NSSA) Option

·          RFC 3166, Request to Move RFC 1403 to Historic Status

·          RFC 3509, Alternative Implementations of OSPF Area Border Routers

·          RFC 4167, Graceful OSPF Restart Implementation Report

·          RFC 4750, OSPF Version 2 Management Information Base

·          RFC 4811, OSPF Out-of-Band LSDB Resynchronization

·          RFC 4812, OSPF Restart Signaling

·          RFC 5088, OSPF Protocol Extensions for Path Computation Element (PCE) Discovery

·          RFC 5250, The OSPF Opaque LSA Option

·          RFC 5613, OSPF Link-Local Signaling

·          RFC 5642, Dynamic Hostname Exchange Mechanism for OSPF

·          RFC 5709, OSPFv2 HMAC-SHA Cryptographic Authentication

·          RFC 5786, Advertising a Router's Local Addresses in OSPF Traffic Engineering (TE) Extensions

·          RFC 6571, Loop-Free Alternate (LFA) Applicability in Service Provider (SP) Networks

·          RFC 6860, Hiding Transit-Only Networks in OSPF

·          RFC 6987, OSPF Stub Router Advertisement

Restrictions and guidelines: OSPF configuration

To run OSPF, you must first enable OSPF on the router. Make a proper configuration plan to avoid incorrect settings that can result in route blocking and routing loops.

OSPF tasks at a glance

To configure OSPF, perform the following tasks:

1.        Configuring basic OSPF functions

¡  Enabling an OSPF process

¡  Creating an OSPF area

¡  Enabling OSPF

2.        (Optional.) Configuring OSPF stub and NSSA areas

¡  Configuring a stub area

¡  Configuring an NSSA area

¡  Configuring a virtual link

3.        (Optional.) Configuring OSPF network types

¡  Configuring the broadcast network type for an interface

¡  Configuring the NBMA network type for an interface

¡  Configuring the P2MP network type for an interface

¡  Configuring the P2P network type for an interface

4.        (Optional.) Configuring OSPF route control

¡  Configuring OSPF inter-area route summarization

¡  Configuring redistributed route summarization

¡  Configuring received OSPF route filtering

¡  Configuring Type-3 LSA filtering

¡  Setting an OSPF cost for an interface

¡  Setting the maximum number of ECMP routes

¡  Setting OSPF preference

¡  Configuring discard routes for summary networks

¡  Redistributing routes from another routing protocol

¡  Redistributing a default route

¡  Advertising a host route

¡  Advertising OSPF link state information to BGP

5.        (Optional.) Setting OSPF timers

¡  Configuring OSPF packet timers

¡  Setting LSA transmission delay

¡  Setting SPF calculation interval

¡  Setting the minimum LSA arrival interval

¡  Setting the LSA generation interval

¡  Setting OSPF exit overflow interval

6.        (Optional.) Configuring OSPF packet parameters

¡  Disabling interfaces from receiving and sending OSPF packets

¡  Adding the interface MTU into DD packets

¡  Setting the DSCP value for outgoing OSPF packets

¡  Setting the maximum length of OSPF packets that can be sent by an interface

¡  Setting the LSU transmit rate

7.        (Optional.) Controlling LSA generation, advertisement, and reception

¡  Setting the maximum number of external LSAs in LSDB

¡  Filtering outbound LSAs on an interface

¡  Filtering LSAs for the specified neighbor

8.        (Optional.) Accelerating OSPF convergence speed

¡  Enabling OSPF ISPF

¡  Configuring prefix suppression

¡  Configuring prefix prioritization

¡  Configuring OSPF PIC

9.        (Optional.) Configuring advanced OSPF features

¡  Configuring stub routers

¡  Enabling compatibility with RFC 1583

10.     (Optional.) Enhancing OSPF availability

¡  Configuring OSPF GR

¡  Configuring OSPF NSR

¡  Configuring BFD for OSPF

¡  Configuring OSPF FRR

11.     (Optional.) Configuring OSPF security features

¡  Configuring OSPF authentication

¡  Configuring GTSM for OSPF

12.     (Optional.) Configuring OSPF logging and SNMP notifications

¡  Logging neighbor state changes

¡  Configuring the OSPF logging feature

¡  Configuring OSPF network management

Configuring basic OSPF functions

Enabling an OSPF process

1.        Enter system view.

system-view

2.        (Optional.) Configure a global router ID.

router id router-id

By default, no global router ID is configured.

If no global router ID is configured, the highest loopback interface IP address, if any, is used as the router ID. If no loopback interface IP address is available, the highest physical interface IP address is used, regardless of the interface status (up or down).

3.        Enter OSPF view.

ospf [ process-id | router-id router-id | vpn-instance vpn-instance-name ] *

By default, OSPF is disabled.

4.        (Optional.) Configure a description for the OSPF process.

description text

By default, no description is configured for the OSPF process.

As a best practice, configure a description for each OSPF process.

Creating an OSPF area

1.        Enter system view.

system-view

2.        (Optional.) Configure a global router ID.

router id router-id

By default, no global router ID is configured.

3.        Enter OSPF view.

ospf [ process-id | router-id router-id | vpn-instance vpn-instance-name ] *

By default, OSPF is disabled.

4.        (Optional.) Configure a description for the OSPF process.

description text

By default, no description is configured for the OSPF process.

As a best practice, configure a description for each OSPF process.

5.        Create an OSPF area, and enter its view.

area area-id

6.        (Optional.) Configure a description for the area.

description text

By default, no description is configured for the area.

As a best practice, configure a description for each OSPF area.

7.        (Optional.) Exclude interfaces in the OSPF area from the base topology:

capability default-exclusion

By default, interfaces in an OSPF area belong to the base topology.

For correct neighbor relationship establishment, perform this task on both the local device and the neighbor device.

Enabling OSPF

About multiple processes and VPNs

To enable OSPF on a router, you must perform the following tasks:

1.        Create an OSPF process.

2.        Create an OSPF area for the process.

3.        Specify a network in the area.

The interface attached to the network will run the OSPF process in the area. OSPF advertises direct routes of the interface.

OSPF supports multiple processes. To run multiple OSPF processes, you must specify an ID for each process. The process IDs take effect locally and has no influence on packet exchange between routers. Two routers with different process IDs can exchange packets.

OSPF supports multiple VPNs. You can configure an OSPF process to run in a VPN instance. An OSPF process with no VPN instance specified runs on the public network. For more information about VPN, see MCE Configuration Guide.

Restrictions and guidelines for enabling OSPF

When you configure OSPF on an interface, follow these restrictions and guidelines:

·          You can enable OSPF on the network where the interface resides or directly enable OSPF on that interface. If you configure both, the latter takes precedence.

·          If the specified OSPF process and area do not exist, the operation creates an OSPF process and area for the interface. Disabling an OSPF process on an interface does not delete the OSPF process or the area.

Enabling OSPF on a network

1.        Enter system view.

system-view

2.        Enter OSPF view.

ospf [ process-id | router-id router-id | vpn-instance vpn-instance-name ] *

3.        Enter OSPF area view.

area area-id

4.        Specify a network to enable the interface attached to the network to run the OSPF process in the area.

network ip-address wildcard-mask

By default, no network is specified to enable OSPF on the interface attached to the network.

A network can be added to only one area.

Enabling OSPF on an interface

1.        Enter system view.

system-view

2.        Enter interface view.

interface interface-type interface-number

3.        Enable an OSPF process on the interface.

ospf process-id area area-id [ exclude-subip ]

By default, OSPF is disabled on an interface.

Configuring OSPF stub and NSSA areas

About OSPF stub and NSSA area configuration

This task allows you to configure an OSPF area as a stub area or NSSA area. It also allows you to create a virtual link if no connectivity can be achieved between a non-backbone area and backbone area, or in the backbone area.

Configuring a stub area

About stub area configuration

You can configure a non-backbone area at an AS edge as a stub area. To do so, execute the stub command on all routers attached to the area. The routing table size is reduced because Type-5 LSAs will not be flooded within the stub area. The ABR generates a default route into the stub area so all packets destined outside of the AS are sent through the default route.

To further reduce the routing table size and routing information exchanged in the stub area, configure a totally stub area by using the stub no-summary command on the ABR. AS external routes and inter-area routes will not be distributed into the area. All the packets destined for outside of the AS or area will be sent to the ABR for forwarding.

A stub or totally stub area cannot have an ASBR because external routes cannot be distributed into the area.

Restrictions and guidelines

Do not configure the backbone area as a stub area or totally stub area.

To configure an area as a stub area, execute the stub command on all routers attached to the area.

To configure an area as a totally stub area, execute the stub command on all routers attached to the area, and execute the stub no-summary command on the ABR.

Procedure

1.        Enter system view.

system-view

2.        Enter OSPF view.

ospf [ process-id | router-id router-id | vpn-instance vpn-instance-name ] *

3.        Enter area view.

area area-id

4.        Configure the area as a stub area.

stub [ default-route-advertise-always | no-summary ] *

By default, no stub area is configured.

5.        (Optional.) Set a cost for the default route advertised to the stub area.

default-cost cost-value

By default, the cost for the default route advertised to the stub area is 1.

This command takes effect only on the ABR of a stub area or totally stub area.

Configuring an NSSA area

About NSSA area configuration

A stub area cannot import external routes, but an NSSA area can import external routes into the OSPF routing domain while retaining other stub area characteristics.

To configure an area as a totally NSSA area, use the nssa no-summary command. The ABR of the area does not advertise inter-area routes into the area.

Restrictions and guidelines

Do not configure the backbone area as an NSSA area or totally NSSA area.

To configure an NSSA area, configure the nssa command on all the routers attached to the area.

To configure a totally NSSA area, configure the nssa command on all the routers attached to the area and configure the nssa no-summary command on the ABR.

Procedure

1.        Enter system view.

system-view

2.        Enter OSPF view.

ospf [ process-id | router-id router-id | vpn-instance vpn-instance-name ] *

3.        Enter area view.

area area-id

4.        Configure the area as an NSSA area.

nssa [ default-route-advertise [ cost cost-value | nssa-only | route-policy route-policy-name | type type ] * | no-import-route | no-summary | suppress-fa | [ [ [ translate-always ] [ translate-ignore-checking-backbone ] ] | translate-never ] | translator-stability-interval value ] *

By default, no area is configured as an NSSA area.

5.        (Optional.) Set a cost for the default route advertised to the NSSA area.

default-cost cost-value

By default, the cost for the default route advertised to the NSSA area is 1.

This command takes effect only on the ABR/ASBR on an NSSA area or totally NSSA area.

Configuring a virtual link

About virtual link configuration

You can configure a virtual link to maintain connectivity between a non-backbone area and the backbone, or in the backbone itself.

Restrictions and guidelines

A virtual link cannot traverse a stub area, totally stub area, NSSA area, or totally NSSA area.

Procedure

1.        Enter system view.

system-view

2.        Enter OSPF view.

ospf [ process-id | router-id router-id | vpn-instance vpn-instance-name ] *

3.        Enter OSPF area view.

area area-id

4.        Configure a virtual link.

vlink-peer router-id [ dead seconds | hello seconds | { { hmac-md5 | md5 } key-id { cipher | plain } string  | simple { cipher | plain } string } | retransmit seconds | trans-delay seconds ] *

Configure this command on both ends of a virtual link. The hello and dead intervals must be identical on both ends of the virtual link.

Configuring OSPF network types

Based on the link layer protocol, OSPF classifies networks into different types, including broadcast, NBMA, P2MP, and P2P.

Restrictions and guidelines for configuring OSPF network types

If any routers in a broadcast network do not support multicasting, change the network type to NBMA.

If only two routers running OSPF exist on a network segment, you can change the network type to P2P to save costs.

Two broadcast-, NBMA-, and P2MP-interfaces can establish a neighbor relationship only when they are on the same network segment.

Configuring the broadcast network type for an interface

1.        Enter system view.

system-view

2.        Enter interface view.

interface interface-type interface-number

3.        Configure the OSPF network type for the interface as broadcast.

ospf network-type broadcast

By default, the network type of an interface is broadcast.

4.        (Optional.) Set a router priority for the interface.

ospf dr-priority priority

The default router priority is 1.

Configuring the NBMA network type for an interface

Restrictions and guidelines

After you configure the network type as NBMA, you must specify neighbors and their router priorities because NBMA interfaces cannot find neighbors by broadcasting hello packets.

Procedure

1.        Enter system view.

system-view

2.        Enter interface view.

interface interface-type interface-number

3.        Configure the OSPF network type for the interface as NBMA.

ospf network-type nbma

By default, the network type of an interface is broadcast.

4.        (Optional.) Set a router priority for the interface.

ospf dr-priority priority

The default router priority for an interface is 1.

The router priority configured with this command is for DR election.

5.        Return to system view.

quit

6.        Enter OSPF view.

ospf [ process-id | router-id router-id | vpn-instance vpn-instance-name ] *

7.        Specify an NBMA neighbor.

peer ip-address [ dr-priority priority ]

By default, no neighbor is specified.

The priority configured with this command indicates whether a neighbor has the election right or not. If you configure the router priority for a neighbor as 0, the local router determines the neighbor has no election right. It does not send hello packets to this neighbor. However, if the local router is the DR or BDR, it still sends hello packets to the neighbor for neighbor relationship establishment.

Configuring the P2MP network type for an interface

1.        Enter system view.

system-view

2.        Enter interface view.

interface interface-type interface-number

3.        Configure the OSPF network type for the interface as P2MP.

ospf network-type p2mp [ unicast ]

By default, the network type of an interface is broadcast.

4.        Return to system view.

quit

5.        Enter OSPF view.

ospf [ process-id | router-id router-id | vpn-instance vpn-instance-name ] *

6.        Specify a P2MP neighbor.

peer ip-address [ cost cost-value ]

By default, no neighbor is specified

This step is required if the interface network type is P2MP unicast.

Configuring the P2P network type for an interface

1.        Enter system view.

system-view

2.        Enter interface view.

interface interface-type interface-number

3.        Configure the OSPF network type for the interface as P2P.

ospf network-type p2p [ peer-address-check ]

By default, the network type of an interface is broadcast.

Configuring OSPF route control

This section describes how to control the advertisement and reception of OSPF routing information, as well as route redistribution from other protocols.

Configuring OSPF inter-area route summarization

About OSPF inter-area route summarization

OSPF inter-area route summarization reduces the routing information exchanged between areas and the size of routing tables, and improves routing performance.

OSPF inter-area route summarization enables an ABR to summarize contiguous networks into a single network and advertise the network to other areas. For example, three internal networks 19.1.1.0/24, 19.1.2.0/24, and 19.1.3.0/24 are available within an area. You can configure the ABR to summarize the three networks into network 19.1.0.0/16, and advertise the summary network to other areas in a Type-3 LSA. This configuration reduces the scale of LSDBs on routers in other areas and the influence of topology changes.

Procedure

1.        Enter system view.

system-view

2.        Enter OSPF view.

ospf [ process-id | router-id router-id | vpn-instance vpn-instance-name ] *

3.        Enter OSPF area view.

area area-id

4.        Configure ABR route summarization.

abr-summary ip-address { mask-length | mask } [ advertise | not-advertise ] [ cost cost-value ]

By default, route summarization is not configured on an ABR.

Configuring redistributed route summarization

About redistributed route summarization

Perform this task to enable an ASBR to summarize external routes within the specified address range into a single route. The ASBR advertises only Type-5 LSAs to reduce the number of LSAs in the LSDB.

An ASBR can summarize routes in the following LSAs:

·          Type-5 LSAs.

·          Type-7 LSAs in an NSSA area.

Restrictions and guidelines

If an ASBR (also an ABR) is a translator in an NSSA area, it summarizes routes in Type-5 LSAs translated from Type-7 LSAs. If it is not a translator, it does not summarize routes in in Type-5 LSAs translated from Type-7 LSAs.

Procedure

1.        Enter system view.

system-view

2.        Enter OSPF view.

ospf [ process-id | router-id router-id | vpn-instance vpn-instance-name ] *

3.        Configure ASBR route summarization.

asbr-summary ip-address { mask-length | mask } [ cost cost-value | not-advertise | nssa-only | tag tag ] *

By default, route summarization is not configured on an ASBR.

Configuring received OSPF route filtering

About filtering methods

Perform this task to filter routes calculated using received LSAs.

The following filtering methods are available:

·          Use an ACL or IP prefix list to filter routing information by destination address.

·          Use the gateway prefix-list-name option to filter routing information by next hop.

·          Use an ACL or IP prefix list to filter routing information by destination address. At the same time use the gateway prefix-list-name option to filter routing information by next hop.

·          Use the route-policy route-policy-name option to filter routing information.

Procedure

1.        Enter system view.

system-view

2.        Enter OSPF view.

ospf [ process-id | router-id router-id | vpn-instance vpn-instance-name ] *

3.        Configure OSPF to filter routes calculated using received LSAs.

filter-policy { ipv4-acl-number [ gateway prefix-list-name ] | gateway prefix-list-name | prefix-list prefix-list-name [ gateway prefix-list-name ] | route-policy route-policy-name } import

By default, OSPF accepts all routes calculated by using received LSAs.

Configuring Type-3 LSA filtering

About Type-3 LSA filtering

Perform this task to filter Type-3 LSAs advertised into the local area or other areas on an ABR.

Procedure

1.        Enter system view.

system-view

2.        Enter OSPF view.

ospf [ process-id | router-id router-id | vpn-instance vpn-instance-name ] *

3.        Enter OSPF area view.

area area-id

4.        Configure Type-3 LSA filtering.

filter { ipv4-acl-number | prefix-list prefix-list-name | route-policy route-policy-name } { export | import }

By default, the ABR does not filter Type-3 LSAs.

Setting an OSPF cost for an interface

About setting an OSPF cost for an interface

Set an OSPF cost for an interface by using either of the following methods:

·          Set the cost value in interface view.

·          Set a bandwidth reference value for the interface. OSPF computes the cost with this formula: Interface OSPF cost = Bandwidth reference value (100 Mbps) / Expected interface bandwidth (Mbps). The expected bandwidth of an interface is configured with the bandwidth command (see Interface Command Reference).

¡  If the calculated cost is greater than 65535, the value of 65535 is used. If the calculated cost is less than 1, the value of 1 is used.

¡  If no cost or bandwidth reference value is configured for an interface, OSPF computes the interface cost based on the interface bandwidth and default bandwidth reference value.

Setting an OSPF cost for an interface

1.        Enter system view.

system-view

2.        Enter interface view.

interface interface-type interface-number

3.        Set an OSPF cost for the interface.

ospf cost cost-value

By default, the OSPF cost is calculated according to the interface bandwidth. For a loopback interface, the OSPF cost is 0 by default.

Setting a bandwidth reference value

1.        Enter system view.

system-view

2.        Enter OSPF view.

ospf [ process-id | router-id router-id | vpn-instance vpn-instance-name ] *

3.        Set a bandwidth reference value.

bandwidth-reference value

The default setting is 100 Mbps.

Setting the maximum number of ECMP routes

About setting the maximum number of ECMP routes

OSPF might find multiple optimal equal-cost routes to the same destination, which can be used to share the traffic load. This task allows you to set the maximum number of ECMP routes for OSPF.

Procedure

1.        Enter system view.

system-view

2.        Enter OSPF view.

ospf [ process-id | router-id router-id | vpn-instance vpn-instance-name ] *

3.        Set the maximum number of ECMP routes.

maximum load-balancing number

By default, the maximum number of ECMP routes equals the maximum number of ECMP routes supported by the system.

Setting OSPF preference

About OSPF preference

A router can run multiple routing protocols, and each protocol is assigned a preference. If multiple routes are available to the same destination, the one with the highest protocol preference is selected as the best route.

Procedure

1.        Enter system view.

system-view

2.        Enter OSPF view.

ospf [ process-id | router-id router-id | vpn-instance vpn-instance-name ] *

3.        Set a preference for OSPF.

preference [ ase ] { preference | route-policy route-policy-name } *

By default, the preference of OSPF internal routes is 10 and the preference of OSPF external routes is 150.

Configuring discard routes for summary networks

About discarding routes for summary networks

Perform this task on an ABR or ASBR to specify whether to generate discard routes for summary networks. You can also specify a preference for the discard routes.

Procedure

1.        Enter system view.

system-view

2.        Enter OSPF view.

ospf [ process-id | router-id router-id | vpn-instance vpn-instance-name ] *

3.        Configure discard routes for summary networks.

discard-route { external { preference | suppression } | internal { preference | suppression } } *

By default, the ABR or ASBR generates discard routes for summary networks and the default preference of discard routes is 255.

Redistributing routes from another routing protocol

About redistributing routes from another routing protocol

On a router running OSPF and other routing protocols, you can configure OSPF to redistribute routes from other protocols. OSPF advertises the routes in Type-5 LSAs or Type-7 LSAs. In addition, you can configure OSPF to filter redistributed routes so that OSPF advertises only permitted routes.

Restrictions and guidelines

OSPF redistributes only active routes. To view route status information, use the display ip routing-table protocol command.

Procedure

1.        Enter system view.

system-view

2.        Enter OSPF view.

ospf [ process-id | router-id router-id | vpn-instance vpn-instance-name ] *

3.        Configure OSPF to redistribute routes from another routing protocol.

import-route bgp [ as-number ] [ allow-ibgp ] [ cost cost-value | nssa-only | route-policy route-policy-name | tag tag | type type ] *

import-route { direct | static } [ cost cost-value | nssa-only | route-policy route-policy-name | tag tag | type type ] *

import-route { isis | ospf | rip } [ process-id | all-processes ] [ allow-direct | cost cost-value | nssa-only | route-policy route-policy-name | tag tag | type type ] *

By default, no route redistribution is configured.

The import-route bgp command redistributes only EBGP routes. The import-route bgp allow-ibgp command redistributes both EBGP and IBGP routes, which might cause routing loops. Therefore, use it with caution.

4.        (Optional.) Configure OSPF to filter redistributed routes.

filter-policy { ipv4-acl-number | prefix-list prefix-list-name } export [ protocol [ process-id ] ]

By default, OSPF accepts all redistributed routes.

5.        Configure the default parameters for redistributed routes (cost, tag, and type).

default { cost cost-value | tag tag | type type } *

By default, the cost is 1, the tag is 1, and the route type is 2

Redistributing a default route

About default route redistribution

The import-route command cannot redistribute a default external route. Perform this task to redistribute a default route.

Procedure

1.        Enter system view.

system-view

2.        Enter OSPF view.

ospf [ process-id | router-id router-id | vpn-instance vpn-instance-name ] *

3.        Redistribute a default route.

default-route-advertise [ [ always | permit-calculate-other ] | cost cost-value | route-policy route-policy-name | type type ] *

default-route-advertise [ summary cost cost-value ]

By default, no default route is redistributed.

This command is applicable only to VPNs. The PE router advertises a default route in a Type-3 LSA to a CE router.

4.        Configure the default parameters for redistributed routes (cost, tag, and type).

default { cost cost-value | tag tag | type type } *

By default, the cost is 1, the tag is 1, and the route type is 2

Advertising a host route

1.        Enter system view.

system-view

2.        Enter OSPF view.

ospf [ process-id | router-id router-id | vpn-instance vpn-instance-name ] *

3.        Enter area view.

area area-id

4.        Advertise a host route.

host-advertise ip-address cost

By default, OSPF does not advertise host routes that are not in the area.

Advertising OSPF link state information to BGP

About advertising OSPF link state information to BGP

After the device advertises OSPF link state information to BGP, BGP can advertise the information for intended applications. For more information about BGP LS, see "Configuring BGP."

Procedure

1.        Enter system view.

system-view

2.        Enter OSPF view.

ospf [ process-id | router-id router-id | vpn-instance vpn-instance-name ] *

3.        Advertise OSPF link state information to BGP.

distribute bgp-ls [ strict-link-checking ]

By default, the device does not advertise OSPF link state information to BGP.

Setting OSPF timers

About setting OSPF timers

This task allows you to change OSPF packet timers to adjust the convergence speed and network load and tune the delay time for sending LSAs on low-speed links.

Configuring OSPF packet timers

About OSPF packet timers

An OSPF interface includes the following timers:

·          Hello timerInterval for sending hello packets. It must be identical on OSPF neighbors.

·          Poll timerInterval for sending hello packets to a neighbor that is down on the NBMA network.

·          Dead timerInterval within which if the interface does not receive any hello packet from the neighbor, it declares the neighbor is down.

·          LSA retransmission timerInterval within which if the interface does not receive any acknowledgment packets after sending an LSA to the neighbor, it retransmits the LSA.

Restrictions and guidelines

The default value for the hello interval and neighbor dead interval depends on the network type. When the network type for an interface is changed, the default hello interval and neighbor dead interval are restored. Make sure two neighboring interfaces are configured with the same hello interval and neighbor dead interval. Inconsistent settings will affect the OSPF neighbor relationship establishment.

Procedure

1.        Enter system view.

system-view

2.        Enter interface view.

interface interface-type interface-number

3.        Set the hello interval.

ospf timer hello seconds

The default hello interval on P2P and broadcast interfaces is 10 seconds. The default hello interval on P2MP and NBMA interfaces is 30 seconds.

4.        Set the poll interval.

ospf timer poll seconds

The default setting is 120 seconds.

The poll interval is a minimum of four times the hello interval.

5.        Set the dead interval.

ospf timer dead seconds

The default dead interval on P2P and broadcast interfaces is 40 seconds. The default dead interval on P2MP and NBMA interfaces is 120 seconds.

The dead interval must be a minimum of four times the hello interval on an interface.

6.        Set the retransmission interval.

ospf timer retransmit interval

The default retransmission interval is 5 seconds.

A retransmission interval setting that is too small can cause unnecessary LSA retransmissions. Typically set a bigger interval than the round-trip time of a packet between two neighbors.

Setting LSA transmission delay

About setting LSA transmission delay

To avoid LSAs from aging out during transmission, set an LSA retransmission delay especially for low speed links.

Procedure

1.        Enter system view.

system-view

2.        Enter interface view.

interface interface-type interface-number

3.        Set the LSA transmission delay.

ospf trans-delay seconds

The default LSA transmission delay is 1 second.

Setting SPF calculation interval

About setting SPF calculation interval

LSDB changes result in SPF calculations. When the topology changes frequently, a large amount of network and router resources are occupied by SPF calculation. You can adjust the SPF calculation interval to reduce the impact.

For a stable network, the minimum interval is used. If network changes become frequent, the SPF calculation interval increases by the incremental interval × 2n-2 for each calculation until the maximum interval is reached. The value n is the number of calculation times.

Procedure

1.        Enter system view.

system-view

2.        Enter OSPF view.

ospf [ process-id | router-id router-id | vpn-instance vpn-instance-name ] *

3.        Set the SPF calculation interval.

spf-schedule-interval maximum-interval [ minimum-interval [ incremental-interval ] ]

By default, the maximum interval is 5 seconds, the minimum interval is 50 milliseconds, and the incremental interval is 200 milliseconds.

Setting the minimum LSA arrival interval

About setting the minimum LSA arrival interval

OSPF drops any duplicate LSAs (with the same LSA type, LS ID, and router ID) within the minimum LSA arrival interval. This helps avoid overuse of bandwidth and router resources due to frequent network changes.

Procedure

1.        Enter system view.

system-view

2.        Enter OSPF view.

ospf [ process-id | router-id router-id | vpn-instance vpn-instance-name ] *

3.        Set the minimum LSA arrival interval.

lsa-arrival-interval interval

By default, the minimum LSA arrival interval is 1000 milliseconds.

Setting the LSA generation interval

About setting the LSA generation interval

Adjust the LSA generation interval to protect network resources and routers from being overwhelmed by LSAs at the time of frequent network changes.

For a stable network, the minimum interval is used. If network changes become frequent, the LSA generation interval is incremented by the incremental interval × 2n-2 for each generation until the maximum interval is reached. The value n is the number of generation times.

Procedure

1.        Enter system view.

system-view

2.        Enter OSPF view.

ospf [ process-id | router-id router-id | vpn-instance vpn-instance-name ] *

3.        Set the LSA generation interval.

lsa-generation-interval maximum-interval [ minimum-interval [ incremental-interval ] ]

By default, the maximum interval is 5 seconds, the minimum interval is 50 milliseconds, and the incremental interval is 200 milliseconds.

Setting OSPF exit overflow interval

About setting OSPF exit overflow interval

When the number of LSAs in the LSDB exceeds the upper limit, the LSDB is in an overflow state. In this state, OSPF does not receive any external LSAs and deletes the external LSAs generated by itself to save system resources.

This task allows you to configure the interval that OSPF exits overflow state.

Procedure

1.        Enter system view.

system-view

2.        Enter OSPF view.

ospf [ process-id | router-id router-id | vpn-instance vpn-instance-name ] *

3.        Set the interval that OSPF exits overflow state.

lsdb-overflow-interval interval

By default, the OSPF exit overflow interval is 300 seconds. An interval of 0 means that OSPF does not exit overflow state.

Configuring OSPF packet parameters

Disabling interfaces from receiving and sending OSPF packets

About disabling interfaces from receiving and sending OSPF packets

To enhance OSPF adaptability and reduce resource consumption, you can set an OSPF interface to "silent." A silent OSPF interface blocks OSPF packets and cannot establish any OSPF neighbor relationship. However, other interfaces on the router can still advertise direct routes of the interface in Router LSAs.

Procedure

1.        Enter system view.

system-view

2.        Enter OSPF view.

ospf [ process-id | router-id router-id | vpn-instance vpn-instance-name ] *

3.        Disable interfaces from receiving and sending OSPF packets.

silent-interface { interface-type interface-number | all }

By default, an OSPF interface can receive and send OSPF packets.

This command disables only the interfaces associated with the current process rather than other processes. Multiple OSPF processes can disable the same interface from receiving and sending OSPF packets.

Adding the interface MTU into DD packets

About adding the interface MTU into DD packets

By default, an OSPF interface adds a value of 0 into the interface MTU field of a DD packet rather than the actual interface MTU. You can enable an interface to add its MTU into DD packets.

Procedure

1.        Enter system view.

system-view

2.        Enter interface view.

interface interface-type interface-number

3.        Enable the interface to add its MTU into DD packets.

ospf mtu-enable

By default, the interface adds an MTU value of 0 into DD packets.

Setting the DSCP value for outgoing OSPF packets

About DSCP value

The DSCP value specifies the precedence of outgoing packets.

Procedure

1.        Enter system view.

system-view

2.        Enter OSPF view.

ospf [ process-id | router-id router-id | vpn-instance vpn-instance-name ] *

3.        Set the DSCP value for outgoing OSPF packets.

dscp dscp-value

By default, the DSCP value for outgoing OSPF packets is 48.

Setting the maximum length of OSPF packets that can be sent by an interface

About setting the maximum length of OSPF packets that can be sent by an interface

This task allows you to limit the length of OSPF packets sent over an interface.

Procedure

1.        Enter system view.

system-view

2.        Enter interface view.

interface interface-type interface-number

3.        Set the maximum length of OSPF packets that can be sent by an interface.

ospf packet-size value

By default, the maximum length of OSPF packets that an interface can send equals the interface's MTU.

Setting the LSU transmit rate

About LSU transmit rate configuration

During LSDB synchronization, if the local router has multiple neighbors, it must send many LSUs to each neighbor. When a neighbor receives excessive LSUs within a short time period, the following events might occur:

·          The performance of the neighbor is degraded because too much system resources are used to process the received LSU packets.

·          The neighbor drops hello packets used for maintaining the neighbor relationship because it is busy dealing with the LSUs. As a result, the neighbor relationship is torn down. To reestablish a relationship to the neighbor, the local router must send more LSUs to the neighbor. This exacerbates the performance degradation.

This task allows you to limit the LSU transmit rate by setting the LSU transmit interval and the maximum number of LSUs that can be sent at each interval.

Procedure

1.        Enter system view.

system-view

2.        Enable OSPF to limit the LSU transmit rate.

ospf lsu-flood-control [ interval count ]

By default, OSPF does not limit the LSU transmit rate.

Inappropriate use of this command might cause abnormal routing. As a best practice, execute this command with the default values.

3.        Enter OSPF view.

ospf [ process-id | router-id router-id | vpn-instance vpn-instance-name ] *

4.        (Optional.) Set the LSU transmit interval and the maximum number of LSUs that can be sent at each interval.

transmit-pacing interval interval count count

By default, an OSPF interface sends a maximum of three LSU packets every 20 milliseconds.

Controlling LSA generation, advertisement, and reception

Setting the maximum number of external LSAs in LSDB

1.        Enter system view.

system-view

2.        Enter OSPF view.

ospf [ process-id | router-id router-id | vpn-instance vpn-instance-name ] *

3.        Set the maximum number of external LSAs in the LSDB.

lsdb-overflow-limit number

By default, the maximum number of external LSAs in the LSDB is not limited.

Filtering outbound LSAs on an interface

About filtering outbound LSAs on an interface

To reduce the LSDB size for the neighbor and save bandwidth, you can perform this task on an interface to filter LSAs to be sent to the neighbor.

Procedure

1.        Enter system view.

system-view

2.        Enter interface view.

interface interface-type interface-number

3.        Filter outbound LSAs on the interface.

ospf database-filter { all | { ase [ acl ipv4-acl-number ] | nssa [ acl ipv4-acl-number ] | summary [ acl ipv4-acl-number ] } * }

By default, the outbound LSAs are not filtered on the interface.

Filtering LSAs for the specified neighbor

About filtering LSAs for the specified neighbor

On a P2MP network, a router might have multiple P2MP type OSPF neighbors. Perform this task to prevent the router from sending LSAs to the specified P2MP neighbor.

Procedure

1.        Enter system view.

system-view

2.        Enter OSPF view.

ospf [ process-id | router-id router-id | vpn-instance vpn-instance-name ] *

3.        Filter LSAs for the specified P2MP neighbor.

database-filter peer ip-address { all | { ase [ acl ipv4-acl-number ] | nssa [ acl ipv4-acl-number ] | summary [ acl ipv4-acl-number ] } * }

By default, the LSAs for the specified P2MP neighbor are not filtered.

Accelerating OSPF convergence speed

Enabling OSPF ISPF

About ISPF

When the topology changes, Incremental Shortest Path First (ISPF) computes only the affected part of the SPT, instead of the entire SPT.

Procedure

1.        Enter system view.

system-view

2.        Enter OSPF view.

ospf [ process-id | router-id router-id | vpn-instance vpn-instance-name ] *

3.        Enable OSPF ISPF.

ispf enable

By default, OSPF ISPF is enabled.

Configuring prefix suppression

About prefix suppression

By default, an OSPF interface advertises all of its prefixes in LSAs. To speed up OSPF convergence, you can suppress interfaces from advertising all of their prefixes. This feature helps improve network security by preventing IP routing to the suppressed networks.

When prefix suppression is enabled:

·          On P2P and P2MP networks, OSPF does not advertise Type-3 links in Type-1 LSAs. Other routing information can still be advertised to ensure traffic forwarding.

·          On broadcast and NBMA networks, the DR generates Type-2 LSAs with a mask length of 32 to suppress network routes. Other routing information can still be advertised to ensure traffic forwarding. If no neighbors exist, the DR does not advertise Type-3 links in Type-1 LSAs.

Restrictions and guidelines for prefix suppression

As a best practice, configure prefix suppression on all OSPF routers if you want to use prefix suppression.

Configuring prefix suppression for an OSPF process

1.        Enter system view.

system-view

2.        Enter OSPF view.

ospf [ process-id | router-id router-id | vpn-instance vpn-instance-name ] *

3.        Enable prefix suppression for the OSPF process.

prefix-suppression

By default, prefix suppression is disabled for an OSPF process.

This feature does not suppress the prefixes of secondary IP addresses, loopback interfaces, and passive interfaces.

Configuring prefix suppression for an interface

1.        Enter system view.

system-view

2.        Enter interface view.

interface interface-type interface-number

3.        Enable prefix suppression for the interface.

ospf prefix-suppression [ disable ]

By default, prefix suppression is disabled on an interface.

This feature does not suppress prefixes of secondary IP addresses.

Configuring prefix prioritization

About prefix prioritization

This feature enables the device to install prefixes in descending priority order: critical, high, medium, and low. The prefix priorities are assigned through routing policies. When a route is assigned multiple prefix priorities, the route uses the highest priority.

By default, the 32-bit OSPF host routes have a medium priority and other routes have a low priority.

Procedure

1.        Enter system view.

system-view

2.        Enter OSPF view.

ospf [ process-id | router-id router-id | vpn-instance vpn-instance-name ] *

3.        Enable prefix prioritization.

prefix-priority route-policy route-policy-name

By default, prefix prioritization is disabled.

Configuring OSPF PIC

About PIC

Prefix Independent Convergence (PIC) enables the device to speed up network convergence by ignoring the number of prefixes.

Restrictions and guidelines for OSPF PIC

When both OSPF PIC and OSPF FRR are configured, OSPF FRR takes effect.

OSPF PIC applies only to inter-area routes and external routes.

Enabling OSPF PIC

1.        Enter system view.

system-view

2.        Enter OSPF view.

ospf [ process-id | router-id router-id | vpn-instance vpn-instance-name ] *

3.        Enable PIC for OSPF.

pic [ additional-path-always ]

By default, OSPF PIC is enabled.

Configuring BFD control packet mode for OSPF PIC

1.        Enter system view.

system-view

2.        Enter interface view.

interface interface-type interface-number

3.        Enable BFD control packet mode for OSPF PIC.

ospf primary-path-detect bfd ctrl

By default, BFD control packet mode is disabled for OSPF PIC.

This mode requires BFD configuration on both OSPF routers on the link.

Configuring BFD echo packet mode for OSPF PIC

1.        Enter system view.

system-view

2.        Configure the source IP address of BFD echo packets.

bfd echo-source-ip ip-address

By default, the source IP address of BFD echo packets is not configured.

The source IP address cannot be on the same network segment as any local interface's IP address.

For more information about this command, see High Availability Command Reference.

3.        Enter interface view.

interface interface-type interface-number

4.        Enable BFD echo packet mode for OSPF PIC.

ospf primary-path-detect bfd echo

By default, BFD echo packet mode is disabled for OSPF PIC.

This mode requires BFD configuration on one OSPF router on the link.

Configuring advanced OSPF features

Configuring stub routers

About stub routers

A stub router is used for traffic control. It reports its status as a stub router to neighboring OSPF routers. The neighboring routers can have a route to the stub router, but they do not use the stub router to forward data.

Router LSAs from the stub router might contain different link type values. A value of 3 means a link to a stub network, and the cost of the link will not be changed by default. To set the cost of the link to 65535, specify the include-stub keyword in the stub-router command. A value of 1, 2 or 4 means a point-to-point link, a link to a transit network, or a virtual link. On such links, a maximum cost value of 65535 is used. Neighbors do not send packets to the stub router as long as they have a route with a smaller cost.

Procedure

1.        Enter system view.

system-view

2.        Enter OSPF view.

ospf [ process-id | router-id router-id | vpn-instance vpn-instance-name ] *

3.        Configure the router as a stub router.

stub-router [ external-lsa [ max-metric-value ] | include-stub | on-startup { seconds | wait-for-bgp [ seconds ] } | summary-lsa [ max-metric-value ] ] *

By default, the router is not configured as a stub router.

A stub router is not related to a stub area.

Enabling compatibility with RFC 1583

About compatibility with RFC 1583

RFC 1583 specifies a different method than RFC 2328 for selecting the optimal route to a destination in another AS. When multiple routes are available to the ASBR, OSPF selects the optimal route by using the following procedure:

1.        Selects the route with the highest preference.

¡  If RFC 2328 is compatible with RFC 1583, all these routes have equal preference.

¡  If RFC 2328 is not compatible with RFC 1583, the intra-area route in a non-backbone area is preferred to reduce the burden of the backbone area. The inter-area route and intra-area route in the backbone area have equal preference.

2.        Selects the route with the lower cost if two routes have equal preference.

3.        Selects the route with the larger originating area ID if two routes have equal cost.

Restrictions and guidelines

To avoid routing loops, set identical RFC 1583-compatibility on all routers in a routing domain.

Procedure

1.        Enter system view.

system-view

2.        Enter OSPF view.

ospf [ process-id | router-id router-id | vpn-instance vpn-instance-name ] *

3.        Enable compatibility with RFC 1583.

rfc1583 compatible

By default, compatibility with RFC 1583 is enabled.

Configuring OSPF GR

About OSPF GR

GR ensures forwarding continuity when a routing protocol restarts or an active/standby switchover occurs.

Two routers are required to complete a GR process. The following are router roles in a GR process:

·          GR restarter—Graceful restarting router. It must have GR capability.

·          GR helper—A neighbor of the GR restarter. It helps the GR restarter to complete the GR process.

OSPF GR has the following types:

·          IETF GR—Uses Opaque LSAs to implement GR.

·          Non-IETF GR—Uses link local signaling (LLS) to advertise GR capability and uses out of band synchronization to synchronize the LSDB.

A device can act as a GR restarter and GR helper at the same time.

Restrictions and guidelines for OSPF GR

You cannot enable OSPF NSR on a device that acts as GR restarter.

Configuring OSPF GR restarter

Configuring the IETF OSPF GR restarter

1.        Enter system view.

system-view

2.        Enable OSPF and enter its view.

ospf [ process-id | router-id router-id | vpn-instance vpn-instance-name ] *

3.        Enable opaque LSA reception and advertisement capability.

opaque-capability enable

By default, opaque LSA reception and advertisement capability is enabled.

4.        Enable the IETF GR.

graceful-restart ietf [ global | planned-only ] *

By default, the IETF GR capability is disabled.

5.        (Optional.) Set the GR interval.

graceful-restart interval interval

By default, the GR interval is 120 seconds.

Configuring the non-IETF OSPF GR restarter

1.        Enter system view.

system-view

2.        Enable OSPF and enter its view.

ospf [ process-id | router-id router-id | vpn-instance vpn-instance-name ] *

3.        Enable the link-local signaling capability.

enable link-local-signaling

By default, the link-local signaling capability is disabled.

4.        Enable the out-of-band re-synchronization capability.

enable out-of-band-resynchronization

By default, the out-of-band re-synchronization capability is disabled.

5.        Enable non-IETF GR.

graceful-restart [ nonstandard ] [ global | planned-only ] *

By default, non-IETF GR capability is disabled.

6.        (Optional.) Set the GR interval.

graceful-restart interval interval

By default, the GR interval is 120 seconds.

Configuring OSPF GR helper

Configuring the IETF OSPF GR helper

1.        Enter system view.

system-view

2.        Enable OSPF and enter its view.

ospf [ process-id | router-id router-id | vpn-instance vpn-instance-name ] *

3.        Enable opaque LSA reception and advertisement capability.

opaque-capability enable

By default, opaque LSA reception and advertisement capability is enabled.

4.        Enable GR helper capability.

graceful-restart helper enable [ planned-only ]

By default, GR helper capability is enabled.

5.        (Optional.) Enable strict LSA checking for the GR helper.

graceful-restart helper strict-lsa-checking

By default, strict LSA checking for the GR helper is disabled.

When an LSA change on the GR helper is detected, the GR helper device exits the GR helper mode.

Configuring the non-IETF OSPF GR helper

1.        Enter system view.

system-view

2.        Enable OSPF and enter its view.

ospf [ process-id | router-id router-id | vpn-instance vpn-instance-name ] *

3.        Enable the link-local signaling capability.

enable link-local-signaling

By default, the link-local signaling capability is disabled.

4.        Enable the out-of-band re-synchronization capability.

enable out-of-band-resynchronization

By default, the out-of-band re-synchronization capability is disabled.

5.        Enable GR helper.

graceful-restart helper enable

By default, GR helper is enabled.

6.        (Optional.) Enable strict LSA checking for the GR helper.

graceful-restart helper strict-lsa-checking

By default, strict LSA checking for the GR helper is disabled.

When an LSA change on the GR helper is detected, the GR helper device exits the GR helper mode.

Triggering OSPF GR

About triggering OSPF GR

You can trigger OSPF GR by performing an active/standby switchover or using the reset ospf process command.

Procedure

To trigger OSPF GR, execute the reset ospf [ process-id ] process graceful-restart command in user view.

Configuring OSPF NSR

About OSPF NSR

Nonstop routing (NSR) backs up OSPF link state information from the active process to the standby process. After an active/standby switchover, NSR can complete link state recovery and route regeneration without tearing down adjacencies or impacting forwarding services.

NSR does not require the cooperation of neighboring devices to recover routing information, and it is typically used more often than GR.

Restrictions and guidelines

A device that has OSPF NSR enabled cannot act as GR restarter.

Procedure

1.        Enter system view.

system-view

2.        Enter OSPF view.

ospf [ process-id | router-id router-id | vpn-instance vpn-instance-name ] *

3.        Enable OSPF NSR.

non-stop-routing

By default, OSPF NSR is disabled.

This command takes effect only for the current process. As a best practice, enable OSPF NSR for each process if multiple OSPF processes exist.

Configuring BFD for OSPF

About BFD for OSPF

BFD provides a single mechanism to quickly detect and monitor the connectivity of links between OSPF neighbors, which improves the network convergence speed. For more information about BFD, see High Availability Configuration Guide.

OSPF supports the following BFD detection modes:

·          Bidirectional control detection—Requires BFD configuration to be made on both OSPF routers on the link.

·          Single-hop echo detection—Requires BFD configuration to be made on one OSPF router on the link.

Configuring bidirectional control detection

1.        Enter system view.

system-view

2.        Enter interface view.

interface interface-type interface-number

3.        Enable BFD bidirectional control detection.

ospf bfd enable

By default, BFD bidirectional control detection is disabled.

Both ends of a BFD session must be on the same network segment and in the same area.

Configuring single-hop echo detection

1.        Enter system view.

system-view

2.        Configure the source address of echo packets.

bfd echo-source-ip ip-address

By default, the source address of echo packets is not configured.

3.        Enter interface view.

interface interface-type interface-number

4.        Enable BFD single-hop echo detection.

ospf bfd enable echo

By default, BFD single-hop echo detection is disabled.

Configuring OSPF FRR

About OSPF FRR

A link or router failure on a path can cause packet loss and even routing loop until OSPF completes routing convergence based on the new network topology. FRR enables fast rerouting to minimize the impact of link or node failures.

Figure 7 Network diagram for OSPF FRR

 

As shown in Figure 7, configure FRR on Router B by using a routing policy to specify a backup next hop. When the primary link fails, OSPF directs packets to the backup next hop. At the same time, OSPF calculates the shortest path based on the new network topology. It forwards packets over the path after network convergence.

You can configure OSPF FRR to calculate a backup next hop by using the loop free alternate (LFA) algorithm, or specify a backup next hop by using a routing policy.

Restrictions and guidelines for OSPF FRR

When both OSPF PIC and OSPF FRR are configured, OSPF FRR takes effect.

Configuring OSPF FRR to use the LFA algorithm to calculate a backup next hop

Restrictions and guidelines

Do not use the fast-reroute lfa command together with the vlink-peer command.

Procedure

1.        Enter system view.

system-view

2.        Enter interface view.

interface interface-type interface-number

3.        (Optional.) Enable LFA on an interface.

ospf fast-reroute lfa-backup

By default, the interface is enabled with LFA and it can be selected as a backup interface.

4.        Return to system view.

quit

5.        Enter OSPF view.

ospf [ process-id | router-id router-id | vpn-instance vpn-instance-name ] *

6.        Enable OSPF FRR to use the LFA algorithm to calculate a backup next hop.

fast-reroute lfa [ abr-only ]

By default, OSPF FRR is disabled.

If abr-only is specified, the route to the ABR is selected as the backup path.

Configuring OSPF FRR to use a backup next hop specified in a routing policy

About specifying a backup next hop in a routing policy

Before you perform this task, use the apply fast-reroute backup-interface command to specify a backup next hop in a routing policy for OSPF FRR. For more information about the apply fast-reroute backup-interface command and routing policy configuration, see "Configuring routing policies."

Procedure

1.        Enter system view.

system-view

2.        Enter OSPF view.

ospf [ process-id | router-id router-id | vpn-instance vpn-instance-name ] *

3.        Enable OSPF FRR to use a backup next hop specified in a routing policy.

fast-reroute route-policy route-policy-name

By default, OSPF FRR is disabled.

Configuring BFD control packet mode for OSPF FRR

About BFD control packet mode for OSPF FRR

By default, OSPF FRR does not use BFD to detect primary link failures. To speed up OSPF convergence, enable BFD control packet mode for OSPF FRR to detect primary link failures. This mode requires BFD configuration on both OSPF routers on the link.

Procedure

1.        Enter system view.

system-view

2.        Enter interface view.

interface interface-type interface-number

3.        Enable BFD control packet mode for OSPF FRR.

ospf primary-path-detect bfd ctrl

By default, BFD control packet mode is disabled for OSPF FRR.

Configuring BFD echo packet mode for OSPF FRR

About BFD echo packet mode for OSPF FRR

By default, OSPF FRR does not use BFD to detect primary link failures. To speed up OSPF convergence, enable BFD echo packet mode for OSPF FRR to detect primary link failures. This mode requires BFD configuration on one OSPF router on the link.

Procedure

1.        Enter system view.

system-view

2.        Configure the source IP address of BFD echo packets.

bfd echo-source-ip ip-address

By default, the source IP address of BFD echo packets is not configured.

The source IP address cannot be on the same network segment as any local interface's IP address.

For more information about this command, see High Availability Command Reference.

3.        Enter interface view.

interface interface-type interface-number

4.        Enable BFD echo packet mode for OSPF FRR.

ospf primary-path-detect bfd echo

By default, BFD echo packet mode is disabled for OSPF FRR.

Configuring OSPF authentication

About OSPF area and interface authentication

Perform this task to configure OSPF area and interface authentication.

OSPF adds the configured key into sent packets, and uses the key to authenticate received packets. Only packets that pass the authentication can be received. If a packet fails the authentication, the OSPF neighbor relationship cannot be established.

If you configure OSPF authentication for both an area and an interface in that area, the interface uses the OSPF authentication configured on it.

Configuring OSPF area authentication

1.        Enter system view.

system-view

2.        Enter OSPF view.

ospf [ process-id | router-id router-id | vpn-instance vpn-instance-name ] *

3.        Enter area view.

area area-id

4.        Configure area authentication mode.

¡  Configure HMAC-MD5/MD5 authentication.

authentication-mode { hmac-md5 | md5 } key-id { cipher | plain } string

¡  Configure simple authentication.

authentication-mode simple { cipher | plain } string

By default, no authentication is configured.

You must configure the same authentication mode and key on all the routers in an area.

Configuring OSPF interface authentication

1.        Enter system view.

system-view

2.        Enter interface view.

interface interface-type interface-number

3.        Configure interface authentication mode.

¡  Configure simple authentication.

ospf authentication-mode simple { cipher | plain } string

¡  Configure HMAC-MD5/MD5 authentication.

ospf authentication-mode { hmac-md5 | md5 } key-id { cipher | plain } string

By default, no authentication is configured.

You must configure the same authentication mode and key on both the local interface and its peer interface.

Configuring GTSM for OSPF

About GTSM

The Generalized TTL Security Mechanism (GTSM) protects the device by comparing the TTL value in the IP header of incoming OSPF packets against a valid TTL range. If the TTL value is within the valid TTL range, the packet is accepted. If not, the packet is discarded.

The valid TTL range is from 255 – the configured hop count + 1 to 255.

When GTSM is configured, the OSPF packets sent by the device have a TTL of 255.

GTSM checks OSPF packets from common neighbors and virtual link neighbors.

You can configure GTSM in OSPF area view or interface view.

·          The configuration in OSPF area view applies to all OSPF interfaces in the area.

·          The configuration in interface view takes precedence over OSPF area view.

Restrictions and guidelines for GTSM

To use GTSM, you must configure GTSM on both the local and peer devices. You can specify different hop-count values for them.

Configuring GTSM in OSPF area view

Restrictions and guidelines

GTSM in OSPF area view applies to all OSPF interfaces in the area. GTSM checks OSPF packets from common neighbors and virtual link neighbors.

Procedure

1.        Enter system view.

system-view

2.        Enter OSPF view.

ospf [ process-id | router-id router-id | vpn-instance vpn-instance-name ] *

3.        Enter OSPF area view.

area area-id

4.        Enable GTSM for the OSPF area.

ttl-security [ hops hop-count ]

By default, GTSM is disabled for the OSPF area.

Configuring GTSM in interface view

Restrictions and guidelines

GTSM in interface view applies only to the current interface. GTSM checks OSPF packets from common neighbors and virtual link neighbors.

Procedure

1.        Enter system view.

system-view

2.        Enter interface view.

interface interface-type interface-number

3.        Enable GTSM for the interface.

ospf ttl-security [ hops hop-count | disable ]

By default, GTSM is disabled for the interface.

Configuring OSPF logging and SNMP notifications

Logging neighbor state changes

About logging neighbor state changes

Perform this task to enable output of neighbor state change logs to the information center. The information center processes the logs according to user-defined output rules (whether and where to output logs). For more information about the information center, see Network Management and Monitoring Configuration Guide.

Procedure

1.        Enter system view.

system-view

2.        Enter OSPF view.

ospf [ process-id | router-id router-id | vpn-instance vpn-instance-name ] *

3.        Enable the logging of neighbor state changes.

log-peer-change

By default, this feature of logging neighbor state changes is enabled.

Configuring the OSPF logging feature

About OSPF logs

OSPF logs include LSA aging logs, route calculation logs, neighbor logs, OSPF route logs, and self-originated and received LSA logs.

Procedure

1.        Enter system view.

system-view

2.        Enter OSPF view.

ospf [ process-id | router-id router-id | vpn-instance vpn-instance-name ] *

3.        Set the number of OSPF logs.

event-log { lsa-flush | peer | spf } size count

By default, the device can generate a maximum of 10 OSPF logs for each type, including LSA aging logs, neighbor logs, and route calculation logs.

Configuring OSPF network management

About OSPF network management

This task involves the following configurations:

·          Bind an OSPF process to MIB so that you can use network management software to manage the specified OSPF process.

·          Enable SNMP notifications for OSPF to report important events.

·          Configure the SNMP notification output interval and the maximum number of SNMP notifications that can be output at each interval.

To report critical OSPF events to an NMS, enable SNMP notifications for OSPF. For SNMP notifications to be sent correctly, you must also configure SNMP on the device. For more information about SNMP configuration, see the network management and monitoring configuration guide for the device.

Procedure

1.        Enter system view.

system-view

2.        Bind MIB to an OSPF process.

ospf mib-binding process-id

By default, MIB is bound to the process with the smallest process ID.

3.        Enable SNMP notifications for OSPF.

snmp-agent trap enable ospf [ authentication-failure | bad-packet | config-error | grhelper-status-change | grrestarter-status-change | if-state-change | lsa-maxage | lsa-originate | lsdb-approaching-overflow | lsdb-overflow | neighbor-state-change | nssatranslator-status-change | retransmit | virt-authentication-failure | virt-bad-packet | virt-config-error | virt-retransmit | virtgrhelper-status-change | virtif-state-change | virtneighbor-state-change ] *

By default, SNMP notifications for OSPF are enabled.

4.        Enter OSPF view.

ospf [ process-id | router-id router-id | vpn-instance vpn-instance-name ] *

5.        Configure the SNMP notification output interval and the maximum number of SNMP notifications that can be output at each interval.

snmp trap rate-limit interval trap-interval count trap-number

By default, OSPF outputs a maximum of seven SNMP notifications within 10 seconds.

Display and maintenance commands for OSPF

Execute display commands in any view and reset commands in user view.

 

Task

Command

Display summary route information on the OSPF ABR.

display ospf [ process-id ] [ area area-id ] abr-summary [ ip-address { mask-length | mask } ] [ verbose ]

Display OSPF FRR backup next hop information.

display ospf [ process-id ] [ area area-id ] fast-reroute lfa-candidate

Display OSPF topology information.

display ospf [ process-id ] [ area area-id ] spf-tree [ verbose ]

Display OSPF process information.

display ospf [ process-id ] [ verbose ]

Display OSPF ABR and ASBR information.

display ospf [ process-id ] abr-asbr [ verbose ]

Display OSPF ASBR route summarization information.

display ospf [ process-id ] asbr-summary [ ip-address { mask-length | mask } ]

Display OSPF log information.

display ospf [ process-id ] event-log { lsa-flush | peer | spf }

Display OSPF GR information.

display ospf [ process-id ] graceful-restart [ verbose ]

Display OSPF interface information.

display ospf [ process-id ] interface [ interface-type interface-number | verbose ]

Display OSPF LSDB information.

display ospf [ process-id ] [ area area-id ] lsdb { asbr | network | nssa | opaque-area | opaque-link | router | summary } [ link-state-id ] [ originate-router advertising-router-id | self-originate ]

display ospf [ process-id ] lsdb [ brief | originate-router advertising-router-id | self-originate ]

display ospf [ process-id ] lsdb { ase | opaque-as ase } [ link-state-id ] [ originate-router advertising-router-id | self-originate ]

Display OSPF next hop information.

display ospf [ process-id ] nexthop

Display OSPF NSR information.

display ospf [ process-id ] non-stop-routing status

Display OSPF neighbor information.

display ospf [ process-id ] peer [ verbose ] [ interface-type interface-number ] [ neighbor-id ]

Display neighbor statistics for OSPF areas.

display ospf [ process-id ] peer statistics

Display OSPF request queue information.

display ospf [ process-id ] request-queue [ interface-type interface-number ] [ neighbor-id ]

Display OSPF retransmission queue information.

display ospf [ process-id ] retrans-queue [ interface-type interface-number ] [ neighbor-id ]

Display OSPF routing table information.

display ospf [ process-id ] routing [ ip-address { mask-length | mask } ] [ interface interface-type interface-number ] [ nexthop nexthop-address ] [ verbose ]

Display OSPF statistics.

display ospf [ process-id ] statistics [ error | packet [ interface-type interface-number ] ]

Display OSPF virtual link information.

display ospf [ process-id ] vlink

Display the global route ID.

display router id

Clear OSPF log information.

reset ospf [ process-id ] event-log [ lsa-flush | peer | spf ]

Restart an OSPF process.

reset ospf [ process-id ] process [ graceful-restart ]

Re-enable OSPF route redistribution.

reset ospf [ process-id ] redistribution

Clear OSPF statistics.

reset ospf [ process-id ] statistics

 

OSPF configuration examples

Example: Configuring basic OSPF

Network configuration

As shown in Figure 8:

·          Enable OSPF on all switches, and split the AS into three areas.

·          Configure Switch A and Switch B as ABRs.

Figure 8 Network diagram

 

Procedure

1.        Configure IP addresses for interfaces. (Details not shown.)

2.        Enable OSPF:

# Configure Switch A.

<SwitchA> system-view

[SwitchA] router id 10.2.1.1

[SwitchA] ospf

[SwitchA-ospf-1] area 0

[SwitchA-ospf-1-area-0.0.0.0] network 10.1.1.0 0.0.0.255

[SwitchA-ospf-1-area-0.0.0.0] quit

[SwitchA-ospf-1] area 1

[SwitchA-ospf-1-area-0.0.0.1] network 10.2.1.0 0.0.0.255

[SwitchA-ospf-1-area-0.0.0.1] quit

[SwitchA-ospf-1] quit

# Configure Switch B.

<SwitchB> system-view

[SwitchB] router id 10.3.1.1

[SwitchB] ospf

[SwitchB-ospf-1] area 0

[SwitchB-ospf-1-area-0.0.0.0] network 10.1.1.0 0.0.0.255

[SwitchB-ospf-1-area-0.0.0.0] quit

[SwitchB-ospf-1] area 2

[SwitchB-ospf-1-area-0.0.0.2] network 10.3.1.0 0.0.0.255

[SwitchB-ospf-1-area-0.0.0.2] quit

[SwitchB-ospf-1] quit

# Configure Switch C.

<SwitchC> system-view

[SwitchC] router id 10.4.1.1

[SwitchC] ospf

[SwitchC-ospf-1] area 1

[SwitchC-ospf-1-area-0.0.0.1] network 10.2.1.0 0.0.0.255

[SwitchC-ospf-1-area-0.0.0.1] network 10.4.1.0 0.0.0.255

[SwitchC-ospf-1-area-0.0.0.1] quit

[SwitchC-ospf-1] quit

# Configure Switch D.

<SwitchD> system-view

[SwitchD] router id 10.5.1.1

[SwitchD] ospf

[SwitchD-ospf-1] area 2

[SwitchD-ospf-1-area-0.0.0.2] network 10.3.1.0 0.0.0.255

[SwitchD-ospf-1-area-0.0.0.2] network 10.5.1.0 0.0.0.255

[SwitchD-ospf-1-area-0.0.0.2] quit

[SwitchD-ospf-1] quit

Verifying the configuration

# Display information about neighbors on Switch A.

[SwitchA] display ospf peer verbose

 

          OSPF Process 1 with Router ID 10.2.1.1

                  Neighbors

 

 Area 0.0.0.0 interface 10.1.1.1(Vlan-interface100)'s neighbors

 Router ID: 10.3.1.1         Address: 10.1.1.2         GR State: Normal

   State: Full  Mode: Nbr is master  Priority: 1

   DR: 10.1.1.1  BDR: 10.1.1.2  MTU: 0

   Options is 0x02 (-|-|-|-|-|-|E|-)

   Dead timer due in 37  sec

   Neighbor is up for 06:03:59

   Authentication Sequence: [ 0 ]

   Neighbor state change count: 5

 

 Area 0.0.0.1 interface 10.2.1.1(Vlan-interface200)'s neighbors

 Router ID: 10.4.1.1         Address: 10.2.1.2         GR State: Normal

   State: Full  Mode: Nbr is master  Priority: 1

   DR: 10.2.1.1  BDR: 10.2.1.2  MTU: 0

   Options is 0x02 (-|-|-|-|-|-|E|-)

   Dead timer due in 32  sec

   Neighbor is up for 06:03:12

   Authentication Sequence: [ 0 ]

   Neighbor state change count: 5

# Display OSPF routing information on Switch A.

[SwitchA] display ospf routing

 

          OSPF Process 1 with Router ID 10.2.1.1

                   Routing Table

 

                Topology base (MTID 0)

 

 Routing for network

 Destination        Cost     Type    NextHop         AdvRouter       Area

 10.2.1.0/24        1        Transit 10.2.1.1        10.2.1.1        0.0.0.1

 10.3.1.0/24        2        Inter   10.1.1.2        10.3.1.1        0.0.0.0

 10.4.1.0/24        2        Stub    10.2.1.2        10.4.1.1        0.0.0.1

 10.5.1.0/24        3        Inter   10.1.1.2        10.3.1.1        0.0.0.0

 10.1.1.0/24        1        Transit 10.1.1.1        10.2.1.1        0.0.0.0

 

 Total nets: 5

 Intra area: 3  Inter area: 2  ASE: 0  NSSA: 0

# Display OSPF routing information on Switch D.

[SwitchD] display ospf routing

 

          OSPF Process 1 with Router ID 10.5.1.1

                   Routing Table

 

                Topology base (MTID 0)

 

 Routing for network

 Destination        Cost     Type    NextHop         AdvRouter       Area

 10.2.1.0/24        3        Inter   10.3.1.1        10.3.1.1        0.0.0.2

 10.3.1.0/24        1        Transit 10.3.1.2        10.3.1.1        0.0.0.2

 10.4.1.0/24        4        Inter   10.3.1.1        10.3.1.1        0.0.0.2

 10.5.1.0/24        1        Stub    10.5.1.1        10.5.1.1        0.0.0.2

 10.1.1.0/24        2        Inter   10.3.1.1        10.3.1.1        0.0.0.2

 

 Total nets: 5

 Intra area: 2  Inter area: 3  ASE: 0  NSSA: 0

# On Switch D, ping the IP address 10.4.1.1 to test reachability.

[SwitchD] ping 10.4.1.1

Ping 10.4.1.1 (10.4.1.1): 56 data bytes, press CTRL_C to break

56 bytes from 10.4.1.1: icmp_seq=0 ttl=253 time=1.549 ms

56 bytes from 10.4.1.1: icmp_seq=1 ttl=253 time=1.539 ms

56 bytes from 10.4.1.1: icmp_seq=2 ttl=253 time=0.779 ms

56 bytes from 10.4.1.1: icmp_seq=3 ttl=253 time=1.702 ms

56 bytes from 10.4.1.1: icmp_seq=4 ttl=253 time=1.471 ms

 

--- Ping statistics for 10.4.1.1 ---

5 packet(s) transmitted, 5 packet(s) received, 0.0% packet loss

round-trip min/avg/max/std-dev = 0.779/1.408/1.702/0.323 ms

Example: Configuring OSPF route redistribution

Network configuration

As shown in Figure 9:

·          Enable OSPF on all the switches.

·          Split the AS into three areas.

·          Configure Switch A and Switch B as ABRs.

·          Configure Switch C as an ASBR to redistribute external routes (static routes).

Figure 9 Network diagram

 

Procedure

1.        Configure IP addresses for interfaces. (Details not shown.)

2.        Enable OSPF (see "Example: Configuring basic OSPF").

3.        Configure OSPF to redistribute routes:

# On Switch C, configure a static route destined for network 3.1.2.0/24.

<SwitchC> system-view

[SwitchC] ip route-static 3.1.2.1 24 10.4.1.2

# On Switch C, configure OSPF to redistribute static routes.

[SwitchC] ospf 1

[SwitchC-ospf-1] import-route static

Verifying the configuration

# Display the ABR/ASBR information on Switch D.

<SwitchD> display ospf abr-asbr

 

          OSPF Process 1 with Router ID 10.5.1.1

                  Routing Table to ABR and ASBR

 

 

                Topology base (MTID 0)

 Type        Destination     Area            Cost  Nexthop         RtType

 Intra       10.3.1.1        0.0.0.2         10    10.3.1.1        ABR

 Inter       10.4.1.1        0.0.0.2         22    10.3.1.1        ASBR

# Display the OSPF routing table on Switch D.

<SwitchD> display ospf routing

 

          OSPF Process 1 with Router ID 10.5.1.1

                   Routing Table

 

                Topology base (MTID 0)

 

 Routing for network

 Destination        Cost     Type    NextHop         AdvRouter       Area

 10.2.1.0/24        22       Inter   10.3.1.1        10.3.1.1        0.0.0.2

 10.3.1.0/24        10       Transit 10.3.1.2        10.3.1.1        0.0.0.2

 10.4.1.0/24        25       Inter   10.3.1.1        10.3.1.1        0.0.0.2

 10.5.1.0/24        10       Stub    10.5.1.1        10.5.1.1        0.0.0.2

 10.1.1.0/24        12       Inter   10.3.1.1        10.3.1.1        0.0.0.2

 

 Routing for ASEs

 Destination        Cost     Type    Tag         NextHop         AdvRouter

 3.1.2.0/24         1        Type2   1           10.3.1.1        10.4.1.1

 

 Total nets: 6

 Intra area: 2  Inter area: 3  ASE: 1  NSSA: 0

Example: Configuring OSPF route summarization

Network configuration

As shown in Figure 10:

·          Configure OSPF on Switch A and Switch B in AS 200.

·          Configure OSPF on Switch C, Switch D, and Switch E in AS 100.

·          Configure an EBGP connection between Switch B and Switch C. Configure Switch B and Switch C to redistribute OSPF routes and direct routes into BGP and BGP routes into OSPF.

·          Configure Switch B to advertise only summary route 10.0.0.0/8 to Switch A.

Figure 10 Network diagram

 

Procedure

1.        Configure IP addresses for interfaces. (Details not shown.)

2.        Enable OSPF:

# Configure Switch A.

<SwitchA> system-view

[SwitchA] router id 11.2.1.2

[SwitchA] ospf

[SwitchA-ospf-1] area 0

[SwitchA-ospf-1-area-0.0.0.0] network 11.2.1.0 0.0.0.255

[SwitchA-ospf-1-area-0.0.0.0] quit

[SwitchA-ospf-1] quit

# Configure Switch B.

<SwitchB> system-view

[SwitchB] router id 11.2.1.1

[SwitchB] ospf

[SwitchB-ospf-1] area 0

[SwitchB-ospf-1-area-0.0.0.0] network 11.2.1.0 0.0.0.255

[SwitchB-ospf-1-area-0.0.0.0] quit

[SwitchB-ospf-1] quit

# Configure Switch C.

<SwitchC> system-view

[SwitchC] router id 11.1.1.2

[SwitchC] ospf

[SwitchC-ospf-1] area 0

[SwitchC-ospf-1-area-0.0.0.0] network 10.1.1.0 0.0.0.255

[SwitchC-ospf-1-area-0.0.0.0] network 10.2.1.0 0.0.0.255

[SwitchC-ospf-1-area-0.0.0.0] quit

[SwitchC-ospf-1] quit

# Configure Switch D.

<SwitchD> system-view

[SwitchD] router id 10.3.1.1

[SwitchD] ospf

[SwitchD-ospf-1] area 0

[SwitchD-ospf-1-area-0.0.0.0] network 10.1.1.0 0.0.0.255

[SwitchD-ospf-1-area-0.0.0.0] network 10.3.1.0 0.0.0.255

[SwitchD-ospf-1-area-0.0.0.0] quit

[SwitchD-ospf-1] quit

# Configure Switch E.

<SwitchE> system-view

[SwitchE] router id 10.4.1.1

[SwitchE] ospf

[SwitchE-ospf-1] area 0

[SwitchE-ospf-1-area-0.0.0.0] network 10.2.1.0 0.0.0.255

[SwitchE-ospf-1-area-0.0.0.0] network 10.4.1.0 0.0.0.255

[SwitchE-ospf-1-area-0.0.0.0] quit

[SwitchE-ospf-1] quit

3.        Configure BGP to redistribute OSPF routes and direct routes:

# Configure Switch B.

[SwitchB] bgp 200

[SwitchB-bgp] peer 11.1.1.2 as 100

[SwitchB-bgp] address-family ipv4 unicast

[SwitchB-bgp-ipv4] import-route ospf

[SwitchB-bgp-ipv4] import-route direct

[SwitchB-bgp ipv4] quit

[SwitchB-bgp] quit

# Configure Switch C.

[SwitchC] bgp 100

[SwitchC-bgp] peer 11.1.1.1 as 200

[SwitchC-bgp] address-family ipv4 unicast

[SwitchC-bgp-ipv4] import-route ospf

[SwitchC-bgp-ipv4]import-route direct

[SwitchC-bgp-ipv4] quit

[SwitchC-bgp] quit

4.        Configure Switch B and Switch C to redistribute BGP routes into OSPF:

# Configure OSPF to redistribute routes from BGP on Switch B.

[SwitchB] ospf

[SwitchB-ospf-1] import-route bgp

# Configure OSPF to redistribute routes from BGP on Switch C.

[SwitchC] ospf

[SwitchC-ospf-1] import-route bgp

# Display the OSPF routing table on Switch A.

[SwitchA] display ip routing-table

 

         Destinations : 16        Routes : 16

 

Destination/Mask    Proto  Pre  Cost         NextHop         Interface

 

0.0.0.0/32          Direct 0    0            127.0.0.1       InLoop0

10.1.1.0/24         O_ASE2 150  1            11.2.1.1        Vlan100

10.2.1.0/24         O_ASE2 150  1            11.2.1.1        Vlan100

10.3.1.0/24         O_ASE2 150  1            11.2.1.1        Vlan100

10.4.1.0/24         O_ASE2 150  1            11.2.1.1        Vlan100

11.2.1.0/24         Direct 0    0            11.2.1.2        Vlan100

11.2.1.0/32         Direct 0    0            11.2.1.2        Vlan100

11.2.1.2/32         Direct 0    0            127.0.0.1       InLoop0

11.2.1.255/32       Direct 0    0            11.2.1.2        Vlan100

127.0.0.0/8         Direct 0    0            127.0.0.1       InLoop0

127.0.0.0/32        Direct 0    0            127.0.0.1       InLoop0

127.0.0.1/32        Direct 0    0            127.0.0.1       InLoop0

127.255.255.255/32  Direct 0    0            127.0.0.1       InLoop0

224.0.0.0/4         Direct 0    0            0.0.0.0         NULL0

224.0.0.0/24        Direct 0    0            0.0.0.0         NULL0

255.255.255.255/32  Direct 0    0            127.0.0.1       InLoop0

5.        Configure route summarization:

# Configure route summarization on Switch B to advertise a summary route 10.0.0.0/8.

[SwitchB-ospf-1] asbr-summary 10.0.0.0 8

# Display the IP routing table on Switch A.

[SwitchA] display ip routing-table

 

         Destinations : 13        Routes : 13

 

Destination/Mask    Proto  Pre  Cost         NextHop         Interface

0.0.0.0/32          Direct 0    0            127.0.0.1       InLoop0

10.0.0.0/8          O_ASE2 150  2            11.2.1.1        Vlan100

11.2.1.0/24         Direct 0    0            11.2.1.2        Vlan100

11.2.1.0/32         Direct 0    0            11.2.1.2        Vlan100

11.2.1.2/32         Direct 0    0            127.0.0.1       InLoop0

11.2.1.255/32       Direct 0    0            11.2.1.2        Vlan100

127.0.0.0/8         Direct 0    0            127.0.0.1       InLoop0

127.0.0.0/32        Direct 0    0            127.0.0.1       InLoop0

127.0.0.1/32        Direct 0    0            127.0.0.1       InLoop0

127.255.255.255/32  Direct 0    0            127.0.0.1       InLoop0

224.0.0.0/4         Direct 0    0            0.0.0.0         NULL0

224.0.0.0/24        Direct 0    0            0.0.0.0         NULL0

255.255.255.255/32  Direct 0    0            127.0.0.1       InLoop0

The output shows that routes 10.1.1.0/24, 10.2.1.0/24, 10.3.1.0/24 and 10.4.1.0/24 are summarized into a single route 10.0.0.0/8.

Example: Configuring OSPF stub area

Network configuration

As shown in Figure 11:

·          Enable OSPF on all switches, and split the AS into three areas.

·          Configure Switch A and Switch B as ABRs to forward routing information between areas.

·          Configure Switch D as the ASBR to redistribute static routes.

·          Configure Area 1 as a stub area to reduce advertised LSAs without influencing reachability.

Figure 11 Network diagram

 

Procedure

1.        Configure IP addresses for interfaces. (Details not shown.)

2.        Enable OSPF (see "Example: Configuring basic OSPF").

3.        Configure route redistribution:

# Configure Switch D to redistribute static routes.

<SwitchD> system-view

[SwitchD] ip route-static 3.1.2.1 24 10.5.1.2

[SwitchD] ospf

[SwitchD-ospf-1] import-route static

[SwitchD-ospf-1] quit

# Display ABR/ASBR information on Switch C.

<SwitchC> display ospf abr-asbr

 

          OSPF Process 1 with Router ID 10.4.1.1

                  Routing Table to ABR and ASBR

 

                Topology base (MTID 0)

 Type        Destination     Area            Cost  Nexthop         RtType

 Intra       10.2.1.1        0.0.0.1         3     10.2.1.1        ABR

 Inter       10.5.1.1        0.0.0.1         7     10.2.1.1        ASBR

# Display OSPF routing table on Switch C.

<SwitchC> display ospf routing

 

          OSPF Process 1 with Router ID 10.4.1.1

                   Routing Table

 

                Topology base (MTID 0)

 

 Routing for network

 Destination        Cost     Type    NextHop         AdvRouter       Area

 10.2.1.0/24        3        Transit 0.0.0.0         10.2.1.1        0.0.0.1

 10.3.1.0/24        7        Inter   10.2.1.1        10.2.1.1        0.0.0.1

 10.4.1.0/24        3        Stub    10.4.1.1        10.4.1.1        0.0.0.1

 10.5.1.0/24        17       Inter   10.2.1.1        10.2.1.1        0.0.0.1

 10.1.1.0/24        5        Inter   10.2.1.1        10.2.1.1        0.0.0.1

 

 Routing for ASEs

 Destination        Cost     Type    Tag         NextHop         AdvRouter

 3.1.2.0/24         1        Type2   1           10.2.1.1        10.5.1.1

 

 Total nets: 6

 Intra area: 2  Inter area: 3  ASE: 1  NSSA: 0

The output shows that Switch C's routing table contains an AS external route.

4.        Configure Area 1 as a stub area:

# Configure Switch A.

<SwitchA> system-view

[SwitchA] ospf

[SwitchA-ospf-1] area 1

[SwitchA-ospf-1-area-0.0.0.1] stub

[SwitchA-ospf-1-area-0.0.0.1] quit

[SwitchA-ospf-1] quit

# Configure Switch C.

<SwitchC> system-view

[SwitchC] ospf

[SwitchC-ospf-1] area 1

[SwitchC-ospf-1-area-0.0.0.1] stub

[SwitchC-ospf-1-area-0.0.0.1] quit

[SwitchC-ospf-1] quit

# Display OSPF routing information on Switch C

[SwitchC] display ospf routing

 

          OSPF Process 1 with Router ID 10.4.1.1

                   Routing Table

 

                Topology base (MTID 0)

 

 Routing for network

 Destination        Cost     Type    NextHop         AdvRouter       Area

 0.0.0.0/0          4        Inter   10.2.1.1        10.2.1.1        0.0.0.1

 10.2.1.0/24        3        Transit 0.0.0.0         10.2.1.1        0.0.0.1

 10.3.1.0/24        7        Inter   10.2.1.1        10.2.1.1        0.0.0.1

 10.4.1.0/24        3        Stub    10.4.1.1        10.4.1.1        0.0.0.1

 10.5.1.0/24        17       Inter   10.2.1.1        10.2.1.1        0.0.0.1

 10.1.1.0/24        5        Inter   10.2.1.1        10.2.1.1        0.0.0.1

 

 Total nets: 6

 Intra area: 2  Inter area: 4  ASE: 0  NSSA: 0

The output shows that a default route replaces the AS external route.

# Configure Area 1 as a totally stub area.

[SwitchA] ospf

[SwitchA-ospf-1] area 1

[SwitchA-ospf-1-area-0.0.0.1] stub no-summary

[SwitchA-ospf-1-area-0.0.0.1] quit

[SwitchA-ospf-1] quit

# Display OSPF routing information on Switch C.

[SwitchC] display ospf routing

 

          OSPF Process 1 with Router ID 10.4.1.1

                   Routing Table

 

                Topology base (MTID 0)

 

 Routing for network

 Destination        Cost     Type    NextHop         AdvRouter       Area

 0.0.0.0/0          4        Inter   10.2.1.1        10.2.1.1        0.0.0.1

 10.2.1.0/24        3        Transit 0.0.0.0         10.4.1.1        0.0.0.1

 10.4.1.0/24        3        Stub    10.4.1.1        10.4.1.1        0.0.0.1

 

 Total nets: 3

 Intra area: 2  Inter area: 1  ASE: 0  NSSA: 0

The output shows that inter-area routes are removed, and only one external route (a default route) exists on Switch C.

Example: Configuring OSPF NSSA area

Network configuration

As shown in Figure 12:

·          Configure OSPF on all switches and split AS into three areas.

·          Configure Switch A and Switch B as ABRs to forward routing information between areas.

·          Configure Area 1 as an NSSA area and configure Switch C as an ASBR to redistribute static routes into the AS.

Figure 12 Network diagram

 

Procedure

1.        Configure IP addresses for interfaces.

2.        Enable OSPF (see "Example: Configuring basic OSPF").

3.        Configure Area 1 as an NSSA area:

# Configure Switch A.

<SwitchA> system-view

[SwitchA] ospf

[SwitchA-ospf-1] area 1

[SwitchA-ospf-1-area-0.0.0.1] nssa

[SwitchA-ospf-1-area-0.0.0.1] quit

[SwitchA-ospf-1] quit

# Configure Switch C.

<SwitchC> system-view

[SwitchC] ospf

[SwitchC-ospf-1] area 1

[SwitchC-ospf-1-area-0.0.0.1] nssa

[SwitchC-ospf-1-area-0.0.0.1] quit

[SwitchC-ospf-1] quit

# Display OSPF routing information on Switch C.

[SwitchC] display ospf routing

 

          OSPF Process 1 with Router ID 10.4.1.1

                   Routing Table

 

                Topology base (MTID 0)

 

 Routing for network

 Destination        Cost     Type    NextHop         AdvRouter       Area

 10.2.1.0/24        3        Transit 10.2.1.2        10.4.1.1        0.0.0.1

 10.3.1.0/24        7        Inter   10.2.1.1        10.2.1.1        0.0.0.1

 10.4.1.0/24        3        Stub    10.4.1.1        10.4.1.1        0.0.0.1

 10.5.1.0/24        17       Inter   10.2.1.1        10.2.1.1        0.0.0.1

 10.1.1.0/24        5        Inter   10.2.1.1        10.2.1.1        0.0.0.1

 

 Total nets: 5

 Intra area: 2  Inter area: 3  ASE: 0  NSSA: 0

4.        Configure route redistribution:

# Configure Switch C to redistribute static routes.

[SwitchC] ip route-static 3.1.3.1 24 10.4.1.2

[SwitchC] ospf

[SwitchC-ospf-1] import-route static

[SwitchC-ospf-1] quit

# Display OSPF routing information on Switch D.

<SwitchD> display ospf routing

 

                Topology base (MTID 0)

 

          OSPF Process 1 with Router ID 10.5.1.1

                   Routing Table

 

 Routing for network

 Destination        Cost     Type    NextHop         AdvRouter       Area

 10.2.1.0/24        22       Inter   10.3.1.1        10.3.1.1        0.0.0.2

 10.3.1.0/24        10       Transit 10.3.1.2        10.3.1.1        0.0.0.2

 10.4.1.0/24        25       Inter   10.3.1.1        10.3.1.1        0.0.0.2

 10.5.1.0/24        10       Stub    10.5.1.1        10.5.1.1        0.0.0.2

 10.1.1.0/24        12       Inter   10.3.1.1        10.3.1.1        0.0.0.2

 

 Routing for ASEs

 Destination        Cost     Type    Tag         NextHop         AdvRouter

 3.1.3.0/24         1        Type2   1           10.3.1.1        10.2.1.1

 

 Total nets: 6

 Intra area: 2  Inter area: 3  ASE: 1  NSSA: 0

The output shows that an external route imported from the NSSA area exists on Switch D.

Example: Configuring OSPF DR election

Network configuration

As shown in Figure 13:

·          Enable OSPF on Switches A, B, C, and D on the same network.

·          Configure Switch A as the DR, and configure Switch C as the BDR.

Figure 13 Network diagram

 

Procedure

1.        Configure IP addresses for interfaces. (Details not shown.)

2.        Enable OSPF:

# Configure Switch A.

<SwitchA> system-view

[SwitchA] router id 1.1.1.1

[SwitchA] ospf

[SwitchA-ospf-1] area 0

[SwitchA-ospf-1-area-0.0.0.0] network 192.168.1.0 0.0.0.255

[SwitchA-ospf-1-area-0.0.0.0] quit

[SwitchA-ospf-1] quit

# Configure Switch B.

<SwitchB> system-view

[SwitchB] router id 2.2.2.2

[SwitchB] ospf

[SwitchB-ospf-1] area 0

[SwitchB-ospf-1-area-0.0.0.0] network 192.168.1.0 0.0.0.255

[SwitchB-ospf-1-area-0.0.0.0] quit

[SwitchB-ospf-1] quit

# Configure Switch C.

<SwitchC> system-view

[SwitchC] router id 3.3.3.3

[SwitchC] ospf

[SwitchC-ospf-1] area 0

[SwitchC-ospf-1-area-0.0.0.0] network 192.168.1.0 0.0.0.255

[SwitchC-ospf-1-area-0.0.0.0] quit

[SwitchC-ospf-1] quit

# Configure Switch D.

<SwitchD> system-view

[SwitchD] router id 4.4.4.4

[SwitchD] ospf

[SwitchD-ospf-1] area 0

[SwitchD-ospf-1-area-0.0.0.0] network 192.168.1.0 0.0.0.255

[SwitchD-ospf-1-area-0.0.0.0] quit

[SwitchD-ospf-1] quit

# Display OSPF neighbor information on Switch A.

[SwitchA] display ospf peer verbose

 

          OSPF Process 1 with Router ID 1.1.1.1

                  Neighbors

 

 Area 0.0.0.0 interface 192.168.1.1(Vlan-interface1)'s neighbors

 Router ID: 2.2.2.2          Address: 192.168.1.2      GR State: Normal

   State: 2-Way  Mode: None  Priority: 1

   DR: 192.168.1.4  BDR: 192.168.1.3  MTU: 0

   Options is 0x02 (-|-|-|-|-|-|E|-)

   Dead timer due in 38  sec

   Neighbor is up for 00:01:31

   Authentication Sequence: [ 0 ]

   Neighbor state change count: 6

   BFD status: Disabled

 

 Router ID: 3.3.3.3          Address: 192.168.1.3      GR State: Normal

   State: Full  Mode: Nbr is master  Priority: 1

   DR: 192.168.1.4  BDR: 192.168.1.3  MTU: 0

   Options is 0x02 (-|-|-|-|-|-|E|-)

   Dead timer due in 31  sec

   Neighbor is up for 00:01:28

   Authentication Sequence: [ 0 ]

   Neighbor state change count: 6

   BFD status: Disabled

 

 Router ID: 4.4.4.4          Address: 192.168.1.4      GR State: Normal

   State: Full  Mode: Nbr is master  Priority: 1

   DR: 192.168.1.4  BDR: 192.168.1.3  MTU: 0

   Options is 0x02 (-|-|-|-|-|-|E|-)

   Dead timer due in 31  sec

   Neighbor is up for 00:01:28

   Authentication Sequence: [ 0 ]

   Neighbor state change count: 6

   BFD status: Disabled

The output shows that Switch D is the DR and Switch C is the BDR.

3.        Configure router priorities on interfaces:

# Configure Switch A.

[SwitchA] interface vlan-interface 1

[SwitchA-Vlan-interface1] ospf dr-priority 100

[SwitchA-Vlan-interface1] quit

# Configure Switch B.

[SwitchB] interface vlan-interface 1

[SwitchB-Vlan-interface1] ospf dr-priority 0

[SwitchB-Vlan-interface1] quit

# Configure Switch C.

[SwitchC] interface vlan-interface 1

[SwitchC-Vlan-interface1] ospf dr-priority 2

[SwitchC-Vlan-interface1] quit

# Display neighbor information on Switch D.

<SwitchD> display ospf peer verbose

 

          OSPF Process 1 with Router ID 4.4.4.4

                  Neighbors

 

 Area 0.0.0.0 interface 192.168.1.4(Vlan-interface1)'s neighbors

 Router ID: 1.1.1.1      Address: 192.168.1.1      GR State: Normal

   State: Full  Mode:Nbr is  slave  Priority: 100

   DR: 192.168.1.4  BDR: 192.168.1.3  MTU: 0

   Options is 0x02 (-|-|-|-|-|-|E|-)

   Dead timer due in 31  sec

   Neighbor is up for 00:11:17

   Authentication Sequence: [ 0 ]

   Neighbor state change count: 6

   BFD status: Disabled

 

 Router ID: 2.2.2.2      Address: 192.168.1.2      GR State: Normal

   State: Full  Mode:Nbr is  slave  Priority: 0

   DR: 192.168.1.4  BDR: 192.168.1.3  MTU: 0

   Options is 0x02 (-|-|-|-|-|-|E|-)

   Dead timer due in 35  sec

   Neighbor is up for 00:11:19

   Authentication Sequence: [ 0 ]

   Neighbor state change count: 6

   BFD status: Disabled

 

 Router ID: 3.3.3.3      Address: 192.168.1.3      GR State: Normal

   State: Full  Mode:Nbr is  slave  Priority: 2

   DR: 192.168.1.4  BDR: 192.168.1.3  MTU: 0

   Options is 0x02 (-|-|-|-|-|-|E|-)

   Dead timer due in 33  sec

   Neighbor is up for 00:11:15

   Authentication Sequence: [ 0 ]

   Neighbor state change count: 6

   BFD status: Disabled

The output shows that the DR and BDR are not changed, because the priority settings do not take effect immediately.

4.        Restart OSPF process:

# Restart the OSPF process of Switch D.

<SwitchD> reset ospf 1 process

Warning : Reset OSPF process? [Y/N]:y

# Display neighbor information on Switch D.

<SwitchD> display ospf peer verbose

 

          OSPF Process 1 with Router ID 4.4.4.4

                  Neighbors

 

 Area 0.0.0.0 interface 192.168.1.4(Vlan-interface1)'s neighbors

 Router ID: 1.1.1.1          Address: 192.168.1.1      GR State: Normal

   State: Full  Mode: Nbr is slave  Priority: 100

   DR: 192.168.1.1  BDR: 192.168.1.3  MTU: 0

   Options is 0x02 (-|-|-|-|-|-|E|-)

   Dead timer due in 39  sec

   Neighbor is up for 00:01:40

   Authentication Sequence: [ 0 ]

   Neighbor state change count: 6

   BFD status: Disabled

 

 Router ID: 2.2.2.2          Address: 192.168.1.2      GR State: Normal

   State: 2-Way  Mode: None  Priority: 0

   DR: 192.168.1.1  BDR: 192.168.1.3  MTU: 0

   Options is 0x02 (-|-|-|-|-|-|E|-)

   Dead timer due in 35  sec

   Neighbor is up for 00:01:44

   Authentication Sequence: [ 0 ]

   Neighbor state change count: 6

   BFD status: Disabled

 

 Router ID: 3.3.3.3          Address: 192.168.1.3      GR State: Normal

   State: Full  Mode: Nbr is slave  Priority: 2

   DR: 192.168.1.1  BDR: 192.168.1.3  MTU: 0

   Options is 0x02 (-|-|-|-|-|-|E|-)

   Dead timer due in 39  sec

   Neighbor is up for 00:01:41

   Authentication Sequence: [ 0 ]

   Neighbor state change count: 6

   BFD status: Disabled

The output shows that Switch A becomes the DR and Switch C becomes the BDR.

If the neighbor state is full, Switch D has established an adjacency with the neighbor. If the neighbor state is 2-way, the two switches are not the DR or the BDR, and they do not exchange LSAs.

# Display OSPF interface information.

[SwitchA] display ospf interface

 

          OSPF Process 1 with Router ID 1.1.1.1

                  Interfaces

 

 Area: 0.0.0.0

 IP Address      Type      State   Cost  Pri   DR             BDR

 192.168.1.1     Broadcast DR      1     100   192.168.1.1    192.168.1.3

 

[SwitchB] display ospf interface

 

          OSPF Process 1 with Router ID 2.2.2.2

                  Interfaces

 

 Area: 0.0.0.0

 IP Address      Type      State    Cost  Pri   DR            BDR

 192.168.1.2     Broadcast DROther  1     0     192.168.1.1   192.168.1.3

The interface state DROther means the interface is not the DR or BDR.

Example: Configuring OSPF virtual link

Network configuration

As shown in Figure 14, configure a virtual link between Switch B and Switch C to connect Area 2 to the backbone area. After configuration, Switch B can learn routes to Area 2.

Figure 14 Network diagram

 

Procedure

1.        Configure IP addresses for interfaces. (Details not shown.)

2.        Enable OSPF:

# Configure Switch A.

<SwitchA> system-view

[SwitchA] ospf 1 router-id 1.1.1.1

[SwitchA-ospf-1] area 0

[SwitchA-ospf-1-area-0.0.0.0] network 10.1.1.0 0.0.0.255

[SwitchA-ospf-1-area-0.0.0.0] quit

[SwitchA-ospf-1] quit

# Configure Switch B.

<SwitchB> system-view

[SwitchB] ospf 1 router-id 2.2.2.2

[SwitchB-ospf-1] area 0

[SwitchB-ospf-1-area-0.0.0.0] network 10.1.1.0 0.0.0.255

[SwitchB-ospf-1-area-0.0.0.0] quit

[SwitchB-ospf-1] area 1

[SwitchB–ospf-1-area-0.0.0.1] network 10.2.1.0 0.0.0.255

[SwitchB–ospf-1-area-0.0.0.1] quit

[SwitchB-ospf-1] quit

# Configure Switch C.

<SwitchC> system-view

[SwitchC] ospf 1 router-id 3.3.3.3

[SwitchC-ospf-1] area 1

[SwitchC-ospf-1-area-0.0.0.1] network 10.2.1.0 0.0.0.255

[SwitchC-ospf-1-area-0.0.0.1] quit

[SwitchC-ospf-1] area 2

[SwitchC–ospf-1-area-0.0.0.2] network 10.3.1.0 0.0.0.255

[SwitchC–ospf-1-area-0.0.0.2] quit

[SwitchC-ospf-1] quit

# Configure Switch D.

<SwitchD> system-view

[SwitchD] ospf 1 router-id 4.4.4.4

[SwitchD-ospf-1] area 2

[SwitchD-ospf-1-area-0.0.0.2] network 10.3.1.0 0.0.0.255

[SwitchD-ospf-1-area-0.0.0.2] quit

[SwitchD-ospf-1] quit

# Display the OSPF routing table on Switch B.

[SwitchB] display ospf routing

 

          OSPF Process 1 with Router ID 2.2.2.2

                   Routing Table

 

                Topology base (MTID 0)

 

 Routing for network

 Destination        Cost     Type    NextHop         AdvRouter       Area

 10.2.1.0/24        2        Transit 10.2.1.1        3.3.3.3         0.0.0.1

 10.1.1.0/24        2        Transit 10.1.1.2        2.2.2.2         0.0.0.0

 Total nets: 2

 Intra area: 2  Inter area: 0  ASE: 0  NSSA: 0

The output shows that Switch B does not have routes to Area 2 because Area 0 is not directly connected to Area 2.

3.        Configure a virtual link:

# Configure Switch B.

[SwitchB] ospf

[SwitchB-ospf-1] area 1

[SwitchB-ospf-1-area-0.0.0.1] vlink-peer 3.3.3.3

[SwitchB-ospf-1-area-0.0.0.1] quit

[SwitchB-ospf-1] quit

# Configure Switch C.

[SwitchC] ospf 1

[SwitchC-ospf-1] area 1

[SwitchC-ospf-1-area-0.0.0.1] vlink-peer 2.2.2.2

[SwitchC-ospf-1-area-0.0.0.1] quit

[SwitchC-ospf-1] quit

# Display the OSPF routing table on Switch B.

[SwitchB] display ospf routing

 

          OSPF Process 1 with Router ID 2.2.2.2

                   Routing Table

 

                Topology base (MTID 0)

 

 Routing for network

 Destination        Cost     Type    NextHop         AdvRouter       Area

 10.2.1.0/24        2        Transit 10.2.1.1        3.3.3.3         0.0.0.1

 10.3.1.0/24        5        Inter   10.2.1.2        3.3.3.3         0.0.0.0

 10.1.1.0/24        2        Transit 10.1.1.2        2.2.2.2         0.0.0.0

 

 Total nets: 3

 Intra area: 2  Inter area: 1  ASE: 0  NSSA: 0

The output shows that Switch B has learned the route 10.3.1.0/24 to Area 2.

Example: Configuring OSPF GR

Network configuration

As shown in Figure 15:

·          Switch A, Switch B, and Switch C that belong to the same AS and the same OSPF routing domain are GR capable.

·          Switch A acts as the non-IETF GR restarter. Switch B and Switch C are the GR helpers, and synchronize their LSDBs with Switch A through OOB communication of GR.

Figure 15 Network diagram

 

Procedure

1.        Configure IP addresses for interfaces. (Details not shown.)

2.        Enable OSPF:

# Configure Switch A.

SwitchA> system-view

[SwitchA] router id 1.1.1.1

[SwitchA] ospf 100

[SwitchA-ospf-100] area 0

[SwitchA-ospf-100-area-0.0.0.0] network 192.1.1.0 0.0.0.255

[SwitchA-ospf-100-area-0.0.0.0] quit

[SwitchA-ospf-1] quit

# Configure Switch B.

<SwitchB> system-view

[SwitchB] router id 2.2.2.2

[SwitchB] ospf 100

[SwitchB-ospf-100] area 0

[SwitchB-ospf-100-area-0.0.0.0] network 192.1.1.0 0.0.0.255

[SwitchB-ospf-100-area-0.0.0.0] quit

[SwitchB-ospf-1] quit

# Configure Switch C.

<SwitchC> system-view

[SwitchC] router id 3.3.3.3

[SwitchC] ospf 100

[SwitchC-ospf-100] area 0

[SwitchC-ospf-100-area-0.0.0.0] network 192.1.1.0 0.0.0.255

[SwitchC-ospf-100-area-0.0.0.0] quit

[SwitchC-ospf-1] quit

3.        Configure OSPF GR:

# Configure Switch A as the non-IETF OSPF GR restarter: enable the link-local signaling capability, the out-of-band re-synchronization capability, and non-IETF GR capability for OSPF process 100.

[SwitchA-ospf-100] enable link-local-signaling

[SwitchA-ospf-100] enable out-of-band-resynchronization

[SwitchA-ospf-100] graceful-restart

[SwitchA-ospf-100] quit

# Configure Switch B as the GR helper: enable the link-local signaling capability and the out-of-band re-synchronization capability for OSPF process 100.

[SwitchB-ospf-100] enable link-local-signaling

[SwitchB-ospf-100] enable out-of-band-resynchronization

# Configure Switch C as the GR helper: enable the link-local signaling capability and the out-of-band re-synchronization capability for OSPF process 100.

[SwitchC-ospf-100] enable link-local-signaling

[SwitchC-ospf-100] enable out-of-band-resynchronization

Verifying the configuration

# Enable OSPF GR event debugging and restart the OSPF process by using GR on Switch A.

<SwitchA> debugging ospf event graceful-restart

<SwitchA> terminal monitor

<SwitchA> terminal logging level 7

<SwitchA> reset ospf 100 process graceful-restart

Reset OSPF process? [Y/N]:y

%Oct 21 15:29:28:727 2011 SwitchA OSPF/5/OSPF_NBR_CHG: OSPF 100 Neighbor 192.1.1.2(Vlan-interface100) from Full to Down.

%Oct 21 15:29:28:729 2011 SwitchA OSPF/5/OSPF_NBR_CHG: OSPF 100 Neighbor 192.1.1.3(Vlan-interface100) from Full to Down.

*Oct 21 15:29:28:735 2011 SwitchA OSPF/7/DEBUG:

OSPF 100 nonstandard GR Started for OSPF Router

*Oct 21 15:29:28:735 2011 SwitchA OSPF/7/DEBUG:

OSPF 100 created GR wait timer,timeout interval is 40(s).

*Oct 21 15:29:28:735 2011 SwitchA OSPF/7/DEBUG:

OSPF 100 created GR Interval timer,timeout interval is 120(s).

*Oct 21 15:29:28:758 2011 SwitchA OSPF/7/DEBUG:

OSPF 100 created OOB Progress timer for neighbor 192.1.1.3.

*Oct 21 15:29:28:766 2011 SwitchA OSPF/7/DEBUG:

OSPF 100 created OOB Progress timer for neighbor 192.1.1.2.

%Oct 21 15:29:29:902 2011 SwitchA OSPF/5/OSPF_NBR_CHG: OSPF 100 Neighbor 192.1.1.2(Vlan-interface100) from Loading to Full.

*Oct 21 15:29:29:902 2011 SwitchA OSPF/7/DEBUG:

OSPF 100 deleted OOB Progress timer for neighbor 192.1.1.2.

%Oct 21 15:29:30:897 2011 SwitchA OSPF/5/OSPF_NBR_CHG: OSPF 100 Neighbor 192.1.1.3(Vlan-interface100) from Loading to Full.

*Oct 21 15:29:30:897 2011 SwitchA OSPF/7/DEBUG:

OSPF 100 deleted OOB Progress timer for neighbor 192.1.1.3.

*Oct 21 15:29:30:911 2011 SwitchA OSPF/7/DEBUG:

OSPF GR: Process 100 Exit Restart,Reason : DR or BDR change,for neighbor : 192.1.1.3.

*Oct 21 15:29:30:911 2011 SwitchA OSPF/7/DEBUG:

OSPF 100 deleted GR Interval timer.

*Oct 21 15:29:30:912 2011 SwitchA OSPF/7/DEBUG:

OSPF 100 deleted GR wait timer.

%Oct 21 15:29:30:920 2011 SwitchA OSPF/5/OSPF_NBR_CHG: OSPF 100 Neighbor 192.1.1.2(Vlan-interface100) from Full to Down.

%Oct 21 15:29:30:921 2011 SwitchA OSPF/5/OSPF_NBR_CHG: OSPF 100 Neighbor 192.1.1.3(Vlan-interface100) from Full to Down.

%Oct 21 15:29:33:815 2011 SwitchA OSPF/5/OSPF_NBR_CHG: OSPF 100 Neighbor 192.1.1.3(Vlan-interface100) from Loading to Full.

%Oct 21 15:29:35:578 2011 SwitchA OSPF/5/OSPF_NBR_CHG: OSPF 100 Neighbor 192.1.1.2(Vlan-interface100) from Loading to Full.

The output shows that Switch A completes GR.

Example: Configuring OSPF NSR

Network configuration

As shown in Figure 16, Switch S, Switch A, and Switch B belong to the same OSPF routing domain. Enable OSPF NSR on Switch S to ensure correct routing when an active/standby switchover occurs on Switch S.

Figure 16 Network diagram

 

Procedure

1.        Configure IP addresses and subnet masks for interfaces on the switches. (Details not shown.)

2.        Configure OSPF on the switches to ensure the following: (Details not shown.)

¡  Switch S, Switch A, and Switch B can communicate with each other at Layer 3.

¡  Dynamic route update can be implemented among them with OSPF.

3.        Enable OSPF NSR on Switch S.

<SwitchS> system-view

[SwitchS] ospf 100

[SwitchS-ospf-100] non-stop-routing

[SwitchS-ospf-100] quit

Verifying the configuration

# Perform an active/standby switchover on Switch S.

[SwitchS] placement reoptimize

Predicted changes to the placement

Program                           Current location       New location

---------------------------------------------------------------------

rib                               0/0                    0/0

staticroute                       0/0                    0/0

ospf                              0/0                    0/0

Continue? [y/n]:y

Re-optimization of the placement start. You will be notified on completion

Re-optimization of the placement complete. Use 'display placement' to view the new placement

# During the switchover period, display OSPF neighbors on Switch A to verify the neighbor relationship between Switch A and Switch S.

<SwitchA> display ospf peer

 

          OSPF Process 1 with Router ID 2.2.2.1

               Neighbor Brief Information

 

 Area: 0.0.0.0

 Router ID       Address         Pri Dead-Time  State             Interface

 3.3.3.1         12.12.12.2      1   37         Full/BDR          Vlan100

# Display OSPF routes on Switch A to verify if Switch A has a route to the loopback interface on Switch B.

<SwitchA> display ospf routing

 

          OSPF Process 1 with Router ID 2.2.2.1

                   Routing Table

 

                Topology base (MTID 0)

 

 Routing for network

 Destination        Cost     Type    NextHop         AdvRouter       Area

 44.44.44.44/32     2        Stub    12.12.12.2      4.4.4.1         0.0.0.0

 14.14.14.0/24      2        Transit 12.12.12.2      4.4.4.1         0.0.0.0

 22.22.22.22/32     0        Stub    22.22.22.22     2.2.2.1         0.0.0.0

 12.12.12.0/24      1        Transit 12.12.12.1      2.2.2.1         0.0.0.0

 

 Total nets: 4

 Intra area: 4  Inter area: 0  ASE: 0  NSSA: 0

# Display OSPF neighbors on Switch B to verify the neighbor relationship between Switch B and Switch S.

<SwitchB> display ospf peer

 

          OSPF Process 1 with Router ID 4.4.4.1

               Neighbor Brief Information

 

 Area: 0.0.0.0

 Router ID       Address         Pri Dead-Time  State             Interface

 3.3.3.1         14.14.14.2      1   39         Full/BDR          Vlan200

# Display OSPF routes on Switch B to verify if Switch B has a route to the loopback interface on Switch A.

<SwitchB> display ospf routing

 

          OSPF Process 1 with Router ID 4.4.4.1

                   Routing Table

 

                Topology base (MTID 0)

 

 Routing for network

 Destination        Cost     Type    NextHop         AdvRouter       Area

 44.44.44.44/32     0        Stub    44.44.44.44     4.4.4.1         0.0.0.0

 14.14.14.0/24      1        Transit 14.14.14.1      4.4.4.1         0.0.0.0

 22.22.22.22/32     2        Stub    14.14.14.2      2.2.2.1         0.0.0.0

 12.12.12.0/24      2        Transit 14.14.14.2      2.2.2.1         0.0.0.0

 

 Total nets: 4

 Intra area: 4  Inter area: 0  ASE: 0  NSSA: 0

The output shows the following when an active/standby switchover occurs on Switch S:

·          The neighbor relationships and routing information on Switch A and Switch B have not changed.

·          The traffic from Switch A to Switch B has not been impacted.

Example: Configuring BFD for OSPF

Network configuration

As shown in Figure 17, run OSPF on Switch A, Switch B, and Switch C so that they are reachable to each other at the network layer.

·          When the link over which Switch A and Switch B communicate through a Layer 2 switch fails, BFD can quickly detect the failure and notify OSPF of the failure.

·          Switch A and Switch B then communicate through Switch C.

Figure 17 Network diagram

 

Table 1 Interface and IP address assignment

Device

Interface

IP address

Switch A

Vlan-int10

192.168.0.102/24

Switch A

Vlan-int11

10.1.1.102/24

Switch A

Loop0

121.1.1.1/32

Switch B

Vlan-int10

192.168.0.100/24

Switch B

Vlan-int13

13.1.1.1/24

Switch B

Loop0

120.1.1.1/32

Switch C

Vlan-int11

10.1.1.100/24

Switch C

Vlan-int13

13.1.1.2/24

 

Procedure

1.        Configure IP addresses for interfaces. (Details not shown.)

2.        Enable OSPF:

# Configure Switch A.

<SwitchA> system-view

[SwitchA] ospf

[SwitchA-ospf-1] area 0

[SwitchA-ospf-1-area-0.0.0.0] network 192.168.0.0 0.0.0.255

[SwitchA-ospf-1-area-0.0.0.0] network 10.1.1.0 0.0.0.255

[SwitchA-ospf-1-area-0.0.0.0] network 121.1.1.1 0.0.0.0

[SwitchA-ospf-1-area-0.0.0.0] quit

[SwitchA-ospf-1] quit

# Configure Switch B.

<SwitchB> system-view

[SwitchB] ospf

[SwitchB-ospf-1] area 0

[SwitchB-ospf-1-area-0.0.0.0] network 192.168.0.0 0.0.0.255

[SwitchB-ospf-1-area-0.0.0.0] network 13.1.1.0 0.0.0.255

[SwitchB-ospf-1-area-0.0.0.0] network 120.1.1.1 0.0.0.0

[SwitchB-ospf-1-area-0.0.0.0] quit

[SwitchB-ospf-1] quit

# Configure Switch C.

<SwitchC> system-view

[SwitchC] ospf

[SwitchC-ospf-1] area 0

[SwitchC-ospf-1-area-0.0.0.0] network 10.1.1.0 0.0.0.255

[SwitchC-ospf-1-area-0.0.0.0] network 13.1.1.0 0.0.0.255

[SwitchC-ospf-1-area-0.0.0.0] quit

[SwitchC-ospf-1] quit

3.        Configure BFD:

# Enable BFD on Switch A and configure BFD parameters.

[SwitchA] bfd session init-mode active

[SwitchA] interface vlan-interface 10

[SwitchA-Vlan-interface10] ospf bfd enable

[SwitchA-Vlan-interface10] bfd min-transmit-interval 500

[SwitchA-Vlan-interface10] bfd min-receive-interval 500

[SwitchA-Vlan-interface10] bfd detect-multiplier 7

[SwitchA-Vlan-interface10] quit

# Enable BFD on Switch B and configure BFD parameters.

[SwitchB] bfd session init-mode active

[SwitchB] interface vlan-interface 10

[SwitchB-Vlan-interface10] ospf bfd enable

[SwitchB-Vlan-interface10] bfd min-transmit-interval 500

[SwitchB-Vlan-interface10] bfd min-receive-interval 500

[SwitchB-Vlan-interface10] bfd detect-multiplier 6

[SwitchB-Vlan-interface10] quit

Verifying the configuration

# Display the BFD information on Switch A.

<SwitchA> display bfd session

 

 Total Session Num: 1     Up Session Num: 1     Init Mode: Active

 

 IPv4 Session Working Under Ctrl Mode:

 

 LD/RD          SourceAddr      DestAddr        State    Holdtime    Interface

 3/1            192.168.0.102   192.168.0.100   Up       1700ms      Vlan10

# Display routes destined for 120.1.1.1/32 on Switch A.

<SwitchA> display ip routing-table 120.1.1.1 verbose

 

Summary Count : 1

 

Destination: 120.1.1.1/32

   Protocol: O_INTRA            

 Process ID: 1

  SubProtID: 0x1                   Age: 04h20m37s

       Cost: 1              Preference: 10

      IpPre: N/A             QosLocalID: N/A

        Tag: 0                   State: Active Adv

  OrigTblID: 0x0               OrigVrf: default-vrf

    TableID: 0x2                OrigAs: 0

      NibID: 0x26000002         LastAs: 0

     AttrID: 0xffffffff       Neighbor: 0.0.0.0

      Flags: 0x1008c       OrigNextHop: 192.168.0.100

      Label: NULL          RealNextHop: 192.168.0.100

    BkLabel: NULL            BkNextHop: N/A

  Tunnel ID: Invalid         Interface: Vlan-interface10

BkTunnel ID: Invalid       BkInterface: N/A

   FtnIndex: 0x0           TrafficIndex: N/A

  Connector: N/A                 PathID: 0x0

The output shows that Switch A communicates with Switch B through VLAN-interface 10. Then the link over VLAN-interface 10 fails.

# Display routes destined for 120.1.1.1/32 on Switch A.

<SwitchA> display ip routing-table 120.1.1.1 verbose

 

Summary Count : 1

 

Destination: 120.1.1.1/32

   Protocol: O_INTRA            

 Process ID: 1

  SubProtID: 0x1                   Age: 04h20m37s

       Cost: 2              Preference: 10

      IpPre: N/A             QosLocalID: N/A

        Tag: 0                   State: Active Adv

  OrigTblID: 0x0               OrigVrf: default-vrf

    TableID: 0x2                OrigAs: 0

      NibID: 0x26000002         LastAs: 0

     AttrID: 0xffffffff       Neighbor: 0.0.0.0

      Flags: 0x1008c       OrigNextHop: 10.1.1.100

      Label: NULL          RealNextHop: 10.1.1.100

    BkLabel: NULL            BkNextHop: N/A

  Tunnel ID: Invalid         Interface: Vlan-interface11

BkTunnel ID: Invalid       BkInterface: N/A

   FtnIndex: 0x0           TrafficIndex: N/A

  Connector: N/A                 PathID: 0x0

The output shows that Switch A communicates with Switch B through VLAN-interface 11.

Example: Configuring OSPF FRR

Network configuration

As shown in Figure 18, Switch A, Switch B, and Switch C reside in the same OSPF domain. Configure OSPF FRR so that when the link between Switch A and Switch B fails, traffic is immediately switched to Link B.

Figure 18 Network diagram

 

Table 2 Interface and IP address assignment

Device

Interface

IP address

Switch A

Vlan-int100

12.12.12.1/24

Switch A

Vlan-int200

13.13.13.1/24

Switch A

Loop0

1.1.1.1/32

Switch B

Vlan-int101

24.24.24.4/24

Switch B

Vlan-int200

13.13.13.2/24

Switch B

Loop0

4.4.4.4/32

Switch C

Vlan-int100

12.12.12.2/24

Switch C

Vlan-int101

24.24.24.2/24

 

Procedure

1.        Configure IP addresses and subnet masks for interfaces on the switches. (Details not shown.)

2.        Configure OSPF on the switches to ensure that Switch A, Switch B, and Switch C can communicate with each other at the network layer. (Details not shown.)

3.        Configure OSPF FRR to automatically calculate the backup next hop:

You can enable OSPF FRR to either calculate a backup next hop by using the LFA algorithm, or specify a backup next hop by using a routing policy.

¡  (Method 1.) Enable OSPF FRR to calculate the backup next hop by using the LFA algorithm:

# Configure Switch A.

<SwitchA> system-view

[SwitchA] ospf 1

[SwitchA-ospf-1] fast-reroute lfa

[SwitchA-ospf-1] quit

# Configure Switch B.

<SwitchB> system-view

[SwitchB] ospf 1

[SwitchB-ospf-1] fast-reroute lfa

[SwitchB-ospf-1] quit

¡  (Method 2.) Enable OSPF FRR to designate a backup next hop by using a routing policy.

# Configure Switch A.

<SwitchA> system-view

[SwitchA] ip prefix-list abc index 10 permit 4.4.4.4 32

[SwitchA] route-policy frr permit node 10

[SwitchA-route-policy-frr-10] if-match ip address prefix-list abc

[SwitchA-route-policy-frr-10] apply fast-reroute backup-interface vlan-interface 100 backup-nexthop 12.12.12.2

[SwitchA-route-policy-frr-10] quit

[SwitchA] ospf 1

[SwitchA-ospf-1] fast-reroute route-policy frr

[SwitchA-ospf-1] quit

# Configure Switch B.

<SwitchB> system-view

[SwitchB] ip prefix-list abc index 10 permit 1.1.1.1 32

[SwitchB] route-policy frr permit node 10

[SwitchB-route-policy-frr-10] if-match ip address prefix-list abc

[SwitchB-route-policy-frr-10] apply fast-reroute backup-interface vlan-interface 101 backup-nexthop 24.24.24.2

[SwitchB-route-policy-frr-10] quit

[SwitchB] ospf 1

[SwitchB-ospf-1] fast-reroute route-policy frr

[SwitchB-ospf-1] quit

Verifying the configuration

# Display route 4.4.4.4/32 on Switch A to view the backup next hop information.

[SwitchA] display ip routing-table 4.4.4.4 verbose

 

Summary Count : 1

 

Destination: 4.4.4.4/32

   Protocol: O_INTRA            

 Process ID: 1

  SubProtID: 0x1                    Age: 04h20m37s

       Cost: 1               Preference: 10

      IpPre: N/A             QosLocalID: N/A

        Tag: 0                    State: Active Adv

  OrigTblID: 0x0                OrigVrf: default-vrf

    TableID: 0x2                 OrigAs: 0

      NibID: 0x26000002          LastAs: 0

     AttrID: 0xffffffff        Neighbor: 0.0.0.0

      Flags: 0x1008c        OrigNextHop: 13.13.13.2

      Label: NULL           RealNextHop: 13.13.13.2

    BkLabel: NULL             BkNextHop: 12.12.12.2

  Tunnel ID: Invalid          Interface: Vlan-interface200

BkTunnel ID: Invalid        BkInterface: Vlan-interface100

   FtnIndex: 0x0           TrafficIndex: N/A

  Connector: N/A                 PathID: 0x0

# Display route 1.1.1.1/32 on Switch B to view the backup next hop information.

[SwitchB] display ip routing-table 1.1.1.1 verbose

 

Summary Count : 1

 

Destination: 1.1.1.1/32

   Protocol: O_INTRA            

 Process ID: 1

  SubProtID: 0x1                    Age: 04h20m37s

       Cost: 1               Preference: 10

      IpPre: N/A             QosLocalID: N/A

        Tag: 0                    State: Active Adv

  OrigTblID: 0x0                OrigVrf: default-vrf

    TableID: 0x2                 OrigAs: 0

      NibID: 0x26000002          LastAs: 0

     AttrID: 0xffffffff        Neighbor: 0.0.0.0

      Flags: 0x1008c        OrigNextHop: 13.13.13.1

      Label: NULL           RealNextHop: 13.13.13.1

    BkLabel: NULL             BkNextHop: 24.24.24.2

  Tunnel ID: Invalid          Interface: Vlan-interface200

BkTunnel ID: Invalid        BkInterface: Vlan-interface101

   FtnIndex: 0x0           TrafficIndex: N/A

  Connector: N/A                 PathID: 0x0

Troubleshooting OSPF configuration

No OSPF neighbor relationship established

Symptom

No OSPF neighbor relationship can be established.

Analysis

If the physical link and lower layer protocols work correctly, verify OSPF parameters configured on interfaces. Two neighbors must have the same parameters, such as the area ID, network segment, and mask. (A P2P or virtual link can have different network segments and masks.)

Solution

To resolve the problem:

1.        Use the display ospf peer command to verify OSPF neighbor information.

2.        Use the display ospf interface command to verify OSPF interface information.

3.        Ping the neighbor router's IP address to verify that the connectivity is normal.

4.        Verify OSPF timers. The dead interval on an interface must be a minimum of four times the hello interval.

5.        On an NBMA network, use the peer ip-address command to manually specify the neighbor.

6.        A minimum of one interface must have a router priority higher than 0 on an NBMA or a broadcast network.

7.        If the problem persists, contact H3C Support.

Incorrect routing information

Symptom

OSPF cannot find routes to other areas.

Analysis

The backbone area must maintain connectivity to all other areas. If a router connects to more than one area, a minimum of one area must be connected to the backbone. The backbone cannot be configured as a stub area.

In a stub area, all routers cannot receive external routes, and all interfaces connected to the stub area must belong to the stub area.

Solution

To resolve the problem:

1.        Use the display ospf peer command to verify neighbor information.

2.        Use the display ospf interface command to verify OSPF interface information.

3.        Use the display ospf lsdb command to verify the LSDB.

4.        Use the display current-configuration configuration ospf command to verify area configuration. If more than two areas are configured, a minimum of one area is connected to the backbone.

5.        In a stub area, all routers attached are configured with the stub command. In an NSSA area, all routers attached are configured with the nssa command.

6.        If a virtual link is configured, use the display ospf vlink command to verify the state of the virtual link.

7.        If the problem persists, contact H3C Support.