15-SPB Configuration Guide

HomeSupportConfigure & DeployConfiguration GuidesH3C S6800[S6860][S6861] (R27xx) & S6820 (R630x) Switch Series Configuration Guide-6W10215-SPB Configuration Guide
Table of Contents
Related Documents
01-SPBM configuration
Title Size Download
01-SPBM configuration 651.79 KB

Contents

SPBM overview·· 1

SPBM network model 1

SPBM area· 1

SPBM device roles· 1

SPBM links· 2

SPBM interfaces· 2

Terminology· 2

SPBM packet types· 2

ISIS-SPB control packets· 2

SPBM data packet 3

Working mechanisms· 4

SPT calculation· 4

Formation and maintenance of ISIS-SPB adjacencies· 4

General data forwarding process· 4

Unicast 4

Multicast 5

Multiple SPB VSIs· 8

Load balancing· 9

Optimization of traffic distribution· 9

B-VLAN to ECT algorithm remapping· 9

ECT migration· 10

Loop prevention· 10

Fast channel for quick spread of LSPs· 10

Protocols and standards· 10

Configuring SPBM·· 12

Restrictions: Hardware compatibility with SPBM·· 12

Restrictions: Licensing requirements for SPBM·· 12

Restrictions and guidelines: SPBM configuration· 12

SPBM tasks at a glance· 12

Configuring basic SPBM settings on BEBs and BCBs· 13

Configuring MST region parameters· 13

Enabling SPBM·· 14

Configuring a provider network port as a hybrid or trunk port 15

Configuring customer-side settings on BEBs· 15

Enabling L2VPN· 15

Creating an SPB VSI 15

Assigning a B-VLAN to an SPB VSI 16

Configuring Ethernet service instances on BEBs· 16

Configuring SPBM multicast settings· 17

Configuring the SPBM multicast replication mode on BEBs· 17

Setting the SPSource ID·· 18

Enabling the multicast B-VLAN feature· 18

Optimizing traffic distribution· 19

Setting the bridge priority· 19

Setting a link metric value for a provider network port 19

Mapping B-VLANs to an ECT algorithm·· 20

Performing ECT migration for an SPB VSI 20

Configuring the AP mode· 22

Enabling dynamic hostname exchange· 22

Tuning ISIS-SPB adjacency maintenance settings· 23

About ISIS-SPB adjacency maintenance· 23

Restrictions and guidelines for configuring ISIS-SPB adjacency maintenance settings· 23

Setting the ISIS-SPB hello interval 23

Setting the hello multiplier for calculating the adjacency hold time· 23

Tuning ISIS-SPB LSP timers· 24

About ISIS-SPB LSP timers· 24

Setting the minimum LSP transmit interval and the maximum number of LSPs sent at each interval 24

Setting the LSP lifetime· 25

Tuning the LSP refresh interval and LSP generation timer 25

Enabling LSP fast-flooding· 26

Tuning the SPF calculation timer 26

Setting the LSDB overload bit 27

Configuring the control MAC address for ISIS-SPB· 28

Configuring ISIS-SPB authentication· 28

About ISIS-SPB authentication· 28

Configuring ISIS-SPB adjacency authentication· 28

Configuring ISIS-SPB area authentication· 29

Configuring Graceful Restart for ISIS-SPB· 30

Enabling NSR for ISIS-SPB· 30

Configuring SNMP notifications and context for SPBM·· 31

Enabling ISIS-SPB adjacency change logging· 32

Display and maintenance commands for SPBM·· 32

SPBM configuration examples· 34

Example: Configuring a basic SPBM network· 34

Example: Configuring SPBM with head-end replication· 39

Example: Configuring SPBM with tandem replication· 42

Example: Performing ECT migration by changing the B-VLAN· 45

Example: Performing ECT migration by changing the ECT algorithm·· 48

Example: Configuring SPBM NSR· 53

 


SPBM overview

IEEE 802.1aq Shortest Path Bridging (SPB) enables multipath routing in an Ethernet mesh network by using IS-IS as the control protocol. The technology allows all paths to be active, supports equal cost paths, and provides shortest path forwarding in an Ethernet mesh network. IEEE 802.1aq SPB provides faster convergence, higher link efficiency, and larger Layer 2 topologies than conventional spanning tree protocols such as MSTP.

Shortest path bridging MAC mode (SPBM) is one bridging method of IEEE 802.1aq SPB. This method encapsulates Ethernet frames into MAC-in-MAC frames in compliance with IEEE 802.1ah PBB.

SPBM network model

As shown in Figure 1, the SPBM network model includes the SPBM network and customer sites.

·     SPBM network—The SPBM network includes backbone edge bridges and backbone core bridges. The nodes in the SPBM network run ISIS-SPB to prevent loops and calculate the shortest path for a frame.

·     Customer site—A customer site is an independent Layer 2 network that is formed by hosts and switching devices. A customer site is connected to the SPBM network through one or multiple backbone edge bridges.

Figure 1 SPBM network model

 

SPBM area

An SPBM area is a subdomain of an SPBM network. The device supports only one area.

SPBM device roles

·     BCB—Backbone core bridges (BCBs) are core nodes of an SPBM network. They are identical to the P devices in an MPLS VPN network. BCBs forward MAC-in-MAC frames based on the B-MAC and B-VLAN. They do not learn customer MAC (C-MAC) addresses.

·     BEB—Backbone edge bridges (BEBs) are edge nodes of the SPBM network. They are identical to PEs in an MPLS VPN network. BEBs encapsulate customer frames into MAC-in-MAC frames before forwarding them to the SPBM network. BEBs also decapsulate MAC-in-MAC frames before sending them to a customer site. BEBs learn C-MACs.

SPBM links

·     AC—An attachment circuit (AC) is a physical or virtual link that connects a customer site to a backbone edge bridge. For example, an AC can be an Ethernet interface or a VLAN.

·     PW—Pseudo wires (PWs) are MAC-in-MAC tunnels established over the SPBM network for transmitting customer traffic. PWs are established between BEBs. BCBs do not set up PWs.

On an interface, incoming frames are assigned to the same PW if they match the packet match criterion of the same Ethernet service instance.

SPBM interfaces

On a BEB, a customer network port (CNP) connects to a customer site and a provider network port (PNP) connects to the SPBM network.

Terminology

·     B-MAC, B-VLAN—Backbone MAC addresses (B-MACs) are bridge MAC addresses associated with SPBM bridges. Backbone VLANs (B-VLANs) are VLANs assigned by the service provider for transmitting customer traffic on the SPBM network.

For customer frames to be transmitted across an SPBM network, the ingress BEB encapsulates them in MAC-in-MAC format. In the outer frame header, the source MAC address is a B-MAC of the ingress BEB, and the destination MAC is a B-MAC of the egress BEB. All devices in the SPBM network forward the MAC-in-MAC frames based on the destination B-MAC and B-VLAN.

·     I-SID—A backbone service instance identifier (I-SID) uniquely identifies a MAC-in-MAC service instance (also called an "SPB VSI") provided by the service provider.

·     SPB VSI—An SPB virtual switch instance (SPB VSI) provides MAC-in-MAC tunnel service for Ethernet service instances. An SPB VSI acts as a virtual switch. It has all the functionality of a conventional Ethernet switch, including source MAC address learning, MAC address aging, and flooding. Each SPB VSI is uniquely identified by an I-SID.

·     System ID—In the SPBM network, each device is uniquely identified by a 6-byte system ID. The system ID is automatically generated by ISIS-SPB.

·     Ethernet service instance—An Ethernet service instance provides forwarding service for a set of VLANs. To extend VLANs across customer sites over an SPBM network, you must configure Ethernet service instances on BEBs' customer edge ports and map them to SPB VSIs.

SPBM packet types

SPBM packets include ISIS-SPB control packets and SPBM data packets.

ISIS-SPB control packets

ISIS-SPB control packets include hello, LSP, and SNP. All SPBM control packets are encapsulated in 802.1q.

Hello

SPBM neighbors send IS-IS hello (IIH) PDUs to establish and maintain adjacencies.

LSP

Adjacent SPBM neighbors send link state PDUs (LSPs) to advertise topology data.

SNP

Adjacent SPBM neighbors exchange sequence number PDUs (SNPs) for LSDB synchronization.

SNPs include complete SNP (CSNP) and partial SNP (PSNP).

·     CSNP—Contains the digest of each LSP in the LSDB. Adjacent routers exchange CSNPs to maintain LSDB synchronization.

·     PSNP—Contains the sequence numbers of recently received LSPs. An SPBM node uses a PSNP to acknowledge LSPs or to request needed LSPs from a neighbor.

SPBM data packet

SPBM data packets use the IEEE 802.1ah MAC-in-MAC frame format, as shown in Figure 2.

Figure 2 IEEE 802.1ah-compliant MAC-in-MAC frame format

 

Table 1 IEEE 802.1ah encapsulated frame header fields

Field

Description

B-DA

Destination B-MAC that identifies the destination BEB.

B-SA

Source B-MAC. It is a known MAC address of the BEB that encapsulates the MAC-in-MAC frame.

B-Tag

B-VLAN tag identifies the VLAN ID and priority of the frame in the SPBM network. The TPID in the tag is fixed at 0x8100.

I-Tag

Backbone service instance tag contains the following subfields:

·     TPID—A value fixed at 0x88E7 to identify the frame as an 802.1ah encapsulated frame.

·     I-PCP—Transmission priority of the frame on the BEB.

·     I-DEI—Drop priority of the frame on the BEB.

·     I-SID—Backbone service instance identifier.

·     C-DA—Customer destination MAC address.

·     C-SA—Customer source MAC address.

S-Tag

This field contains the outer customer VLAN ID and priority.

C-Tag

This field contains the inner customer VLAN ID and priority.

 

Working mechanisms

To forward Layer 2 traffic between customer sites across an SPBM network, you must configure Ethernet service instances on BEBs' customer network ports, and map Ethernet service instances to SPB VSIs.

SPBM uses ISIS-SPB in the control plane to calculate shortest path trees. It uses IEEE 802.1ah PBB encapsulation in the data plane to encapsulate and forward traffic.

SPT calculation

SPBM uses the following generic process to calculate SPTs and forward traffic:

1.     BEBs and BCBs send ISIS-SPB P2P hellos to establish and maintain adjacencies.

2.     Adjacent nodes send LSPs to advertise their respective topology data. Eventually, the LSDBs of all nodes are synchronized.

3.     Each node selects the forwarding path:

a.     Each node runs SPF to calculate the shortest path from itself to each of the other nodes.

b.     If equal-cost paths are available, each node runs ECT to choose the best forwarding path.

c.     The nodes populate their respective FDB and FIB tables with the forwarding path.

4.     BEBs establish PWs over the SPBM network for transmitting customer traffic.

Formation and maintenance of ISIS-SPB adjacencies

ISIS-SPB only supports point-to-point links within an IS-IS level 1. It sends P2P hellos between directly connected nodes to form and maintain adjacencies. To forward traffic on an adjacency, two SPBM neighbors must meet the following requirements:

·     The neighbors have the same configuration digest for MSTI 4092.

·     The neighbors have the same B-VLAN to ECT algorithm mapping.

·     The neighbors have valid link metric values.

General data forwarding process

In an SPBM network, the general data forwarding process is as follows:

1.     The ingress BEB receives a data frame from a customer network port and learns the source C-MAC in the data plane. Then, the BEB encapsulates the frame into a MAC-in-MAC frame and sends the frame out to the SPBM network from a provider network port.

2.     BCBs in the SPBM network forward the MAC-in-MAC frame based on the destination B-MAC and B-VLAN. BCBs do not learn C-MACs.

3.     The MAC-in-MAC frame arrives at the egress BEB. The egress BEB decapsulates the frame, learns the source C-MAC, and sends the decapsulated frame to the destination from a customer network port.

For information about the detailed forwarding process of known unicast frames, see "Unicast."

To avoid loops, SPBM does not support broadcast. BEBs flood broadcast, multicast, and unknown unicast frames to the SPBM network as multicast frames. For the flooding process, see "Multicast."

Unicast

For an intra-site known unicast frame, the ingress BEB performs typical MAC address table lookup.

For a known inter-site unicast frame, the following forwarding process takes place, as shown in Figure 3:

1.     The ingress BEB performs the following tasks:

a.     Assigns the frame to the correct Ethernet service instance based on the outer VLAN.

b.     Learns the source MAC address.

c.     Looks up the destination MAC address in the Ethernet service instance's Ethernet address table.

2.     If the outgoing interface is a provider network port, the ingress BEB performs the following tasks:

a.     Encapsulates the frame in IEEE 802.1ah format.

b.     Sends the frame out of the unicast PW to the egress BEB.

The B-DA field in the outer frame header is the B-MAC of the egress BEB.

3.     Each BCB on the unicast PW forwards the frame based on the B-MAC and B-VLAN in the outer frame header until it reaches the egress BEB.

4.     The egress BEB removes the outer frame header and forwards the frame to the destination customer MAC address.

Figure 3 MAC-in-MAC unicast traffic over an SPBM network

 

Multicast

Multicast replication methods

SPBM floods broadcast, customer multicast, and unknown customer unicast as multicast traffic.

SPBM supports the following replication methods for multicast:

·     Head-end replication—Replicates frames at the ingress BEB for each destination BEB for the frames to enter the SPBM network, as shown in Figure 4. This method is suitable for SPB VSIs that have sparse multicast traffic. It does not require BCBs to maintain multicast FDB entries.

·     Tandem replication—Replicates frames only at the node where the shortest path tree forks. The ingress BEB encapsulates a frame with a B-DA multicast address that uniquely identifies itself and the SPBM service. When this frame arrives at the BCB where the shortest path tree forks, the BCB replicates one frame for each destination BEB, as shown in Figure 5. This method is suitable for SPB VSIs that have dense multicast traffic. It requires BCBs to maintain multicast FDB entries.

Figure 4 Head-end replication

 

Figure 5 Tandem replication

 

SPBM multicast address

Each SPBM node has a multicast address for each SPB VSI. This multicast address consists of one shortest path source identifier (SPSource ID) and one I-SID. The I-SID identifies an SPB VSI, and the SPSource ID identifies the node as a multicast source in the SPB VSI.

Figure 6 SPBM multicast address format

 

Table 2 SPBM multicast address fields

Field

Description

M

1-bit multicast flag. Its value is fixed at 1.

L

1-bit local flag bit. Its value is fixed at 1.

TYP

2-bit SPSource ID type. Its value is fixed at 0.

SPSource ID

20-bit SPSource ID.

I-SID

24-bit SPB VSI identifier.

 

In Figure 6, LSB represents the lower 4 bits of a byte, and MSB represents the higher 4 bits of a byte. The first byte of an SPBM multicast address is identical to the combination of the first 4 bits of the SPSource ID field, the TYP field, the L field, and the M field. For example, the hexadecimal form of the first byte (E3) in the SPBM multicast address E386070006E9 is 11100011. This byte consists of 1110 (first 4 bits of SPSource ID), 00 (TYP), 1 (L), and 1 (M).

Multiple SPB VSIs

You can use multiple SPB VSIs to transmit traffic for different Ethernet services that span different customer sites. Each SPB VSI is identified by a unique I-SID.

For example, the network in Figure 7 has the following SPB VSIs:

·     I-SID 300 extends traffic to customer sites B, C, and D.

·     I-SID 400 extends traffic to all customer sites.

·     I-SID 500 extends traffic to customer sites A and D.

All traffic in one SPB VSI is transmitted in one B-VLAN. Different SPB VSIs can use the same B-VLAN to transmit traffic. Traffic of different SPB VSIs is isolated by I-SID.

Figure 7 Multiple SPB VSIs

 

Load balancing

For balanced traffic distribution, SPBM supports calculating one SPT for a set of B-VLANs by using different ECT algorithms. IEEE 802.1aq SPB provides 16 ECT algorithms. Each algorithm represents a set of tie-break rules. As a result, you can have up to 16 forwarding paths in an SPBM network.

To balance traffic between forwarding paths, you can map B-VLANs to different ECT algorithms. When a path is approaching congestion, you can move part of traffic on one path to another by moving a B-VLAN or an I-SID from one ECT algorithm to another.

Figure 8 shows two SPTs that are calculated by using two ECT algorithms.

Figure 8 Multiple SPTs in an SPBM network

 

Optimization of traffic distribution

You can optimize traffic distribution by using the following methods:

·     Modify B-VLAN to ECT algorithm mappings—This method moves all traffic of a B-VLAN from one path to another. The B-VLAN's traffic is disrupted before you complete B-VLAN to ECT algorithm remapping across the SPBM network.

·     Perform ECT migration—This method migrates traffic of an I-SID to a new path by changing the B-VLAN. ECT migration does not cause traffic loss.

B-VLAN to ECT algorithm remapping

As shown in Figure 9, two paths (path A and path B) are available between BEB 1 and BEB 2. B-VLAN 300 has been using path A calculated by using ECT algorithm 1. As path A is getting congested, you can map B-VLAN 300 to ECT algorithm 2 to migrate the traffic of B-VLAN 300 to path B. The B-VLAN's traffic is disrupted before you complete B-VLAN to ECT algorithm remapping across the SPBM network.

Figure 9 Traffic distribution optimization

 

ECT migration

ECT migration enables an I-SID to migrate from one ECT algorithm to another with minimum traffic loss.

To prevent traffic loss, ECT migration was designed based on the idea of make-before-break. All nodes in the SPBM network maintain the old path for the I-SID before a new path is set up. The SPBM nodes remove the old path only after all affected traffic has been moved from the old path to the new path for the I-SID.

As shown in Figure 9, two paths (path A and path B) are available between BEB 1 and BEB 2. I-SID 400 has been using path A. As path A is getting congested, you can perform ECT migration to move the traffic of I-SID 400 to path B.

Loop prevention

SPBM nodes collect topology data independently to calculate forwarding paths. Transient loops might occur during SPT recalculation caused by a network flapping because the latency varies for an LSP to reach the SPBM nodes. To prevent transient loops, SPBM uses the Agreement Protocol (AP) to exchange LSDB synchronization status. After a topology recalculation, ISIS-SPB issues new forwarding entries to the data plane only if topology data is synchronized between the SPBM node and its adjacent neighbors.

Fast channel for quick spread of LSPs

The fast channel feature provides a quicker LSP propagation method than conventional LSP propagation. This feature spreads ISIS-SPB LSPs in the SPBM network by forwarding LSPs as data packets along the SPT in a dedicated SPB VSI. An SPBM node does not need to complete updating its LSDB before it propagates the topology change to the next node.

The I-SID for the fast-channel VSI is 255. To use the fast-channel feature, you must create a VSI and assign I-SID 255 to the VSI.

You cannot associate any Ethernet service instance with the VSI that uses I-SID 255 for data transmission.

Protocols and standards

·     IEEE 802.1aq, Shortest Path Bridging

·     IEEE 802.1ah, Virtual Bridged Local Area Networks Amendment 7: Provider Backbone Bridges

·     ISO 10589, ISO IS-IS Routing Protocol

·     RFC 6329, IS-IS Extensions Supporting IEEE 802.1aq Shortest Path Bridging


Configuring SPBM

 

Restrictions: Hardware compatibility with SPBM

The S6820 switch series and S6861 switch series do not support SPBM.

Restrictions: Licensing requirements for SPBM

SPBM requires a license to run on the device. For information about feature licensing, see Fundamentals Configuration Guide.

Restrictions and guidelines: SPBM configuration

·     Provider network ports on BEBs and BCBs cannot be used for setting up standard IS-IS adjacencies.

·     You must configure the irf mac-address persistent always command to prevent the IRF bridge MAC address from changing after the address owner leaves. For more information about IRF bridge MAC persistence, see Virtual Technologies Command Reference.

·     If a B-MAC is the same as a static MAC entry in the MAC address table, remove the static MAC entry. The device can forward SPBM packets to the B-MAC only after the conflict is removed.

·     ISIS-SPB protocol frames are transmitted untagged on links. To prevent SPBM-enabled interfaces from dropping these frames, assign each SPBM-enabled interface to the port VLAN (PVID) as an untagged member. Make sure the PVIDs have been created on the device.

·     Do not use B-VLANs for other purposes such as EVI extended VLANs or VLAN interfaces. Before specifying a VLAN as a B-VLAN, you must remove all features that have been configured on the VLAN.

SPBM tasks at a glance

To configure SPBM, perform the following tasks:

1.     Configuring basic SPBM settings on BEBs and BCBs

a.     Configuring MST region parameters

b.     Enabling SPBM

2.     Configuring a provider network port as a hybrid or trunk port

3.     Configuring customer-side settings on BEBs

a.     Enabling L2VPN

b.     Creating an SPB VSI

c.     Assigning a B-VLAN to an SPB VSI

d.     Configuring Ethernet service instances on BEBs

4.     Configuring SPBM multicast settings

a.     Configuring the SPBM multicast replication mode on BEBs

b.     Setting the SPSource ID

5.     (Optional.) Enabling the multicast B-VLAN feature

6.     (Optional.) Optimizing traffic distribution

¡     Setting the bridge priority

¡     Setting a link metric value for a provider network port

¡     Mapping B-VLANs to an ECT algorithm

¡     Performing ECT migration for an SPB VSI

7.     (Optional.) Configuring the AP mode

8.     (Optional.) Optimizing SPBM networks

¡     Enabling dynamic hostname exchange

¡     Tuning ISIS-SPB adjacency maintenance settings

¡     Tuning ISIS-SPB LSP timers

¡     Tuning the SPF calculation timer

¡     Setting the LSDB overload bit

¡     Configuring the control MAC address for ISIS-SPB

9.     (Optional.) Configuring ISIS-SPB authentication

¡     Configuring ISIS-SPB adjacency authentication

¡     Configuring ISIS-SPB area authentication

10.     (Optional.) Configuring SPBM high availability

Choose one of the following options.

¡     Configuring Graceful Restart for ISIS-SPB

¡     Enabling NSR for ISIS-SPB

Graceful Restart and IS-IS NSR are mutually exclusive. You cannot use both features on the device.

11.     (Optional.) Configuring SNMP notifications and context for SPBM

12.     (Optional.) Enabling ISIS-SPB adjacency change logging

Configuring basic SPBM settings on BEBs and BCBs

Configuring MST region parameters

About MST region parameters

SPBM runs on MSTI 4092. For two SPBM neighbors to establish an adjacency, you must activate MSTI 4092 on both neighbors and make sure their in-between link has connectivity. To forward traffic on the link, you must also configure the same MST region parameters on the devices, including:

·     Format selector. The value for this parameter is fixed at 0.

·     Region name.

·     Revision level.

·     VLAN-to-MSTI mapping table.

For more information about MST region configuration commands, see spanning tree commands in Layer 2—LAN Switching Command Reference.

Restrictions and guidelines

·     Changing MST region settings causes spanning tree recalculation. Make sure you understand the impact on your network before you activate the MST region settings.

·     The spanning tree mode must be set to MSTP.

·     For SPBM neighbors to establish adjacencies, you must map all B-VLANs to MSTI 4092, and make sure their in-between links have connectivity. To forward traffic on an SPBM network, you must assign all SPBM nodes to the same MST region. For SPBM to run correctly, make sure MSTI 4092 is not used by RRPP or Smart Link. For more information about RRPP and Smart Link, see High Availability Configuration Guide.

Procedure

1.     Enter system view.

system-view

2.     Enter MST region view.

stp region-configuration

3.     Configure the MST region name.

region-name name

The default MST region name is the MAC address of the device.

4.     Set the MSTP revision level.

revision-level level

The default MSTP revision level is 0.

5.     Map B-VLANs to MSTI 4092.

instance instance-id vlan vlan-id-list

By default, all VLANs are mapped to the CIST (MSTI 0).

The value for the instance-id argument must be 4092.

6.     Activate the MST region configuration.

active region-configuration

Enabling SPBM

About enabling SPBM

Enable SPBM for ISIS-SPB to run on the device.

Restrictions and guidelines

You must enable SPBM both globally and on the provider network ports on all BEBs and BCBs in the SPBM network.

An SPBM-enabled interface can identify only MAC-in-MAC frames. Frames of other types are dropped by the interface.

Procedure

1.     Enter system view.

system-view

2.     Enable SPBM globally and enter SPBM view.

spbm

By default, SPBM is disabled globally.

3.     Return to system view.

quit

4.     Enter Layer 2 Ethernet interface view or Layer 2 aggregate interface view.

interface interface-type interface-number

5.     Enable SPBM on the interface.

spbm enable

By default, SPBM is disabled on interfaces.

Configuring a provider network port as a hybrid or trunk port

About the link type of a provider network port

You must configure the provider network ports on BEBs and BCBs as trunk or hybrid ports, and assign them to all B-VLANs as tagged VLAN members.

Procedure

1.     Enter system view.

system-view

2.     Enter Layer 2 Ethernet interface view or Layer 2 aggregate interface view.

interface interface-type interface-number

3.     Set the link type to hybrid or trunk.

port link-type { hybrid | trunk }

The default port link type is access.

Configuring customer-side settings on BEBs

Enabling L2VPN

About L2VPN

For SPBM settings to take effect, you must enable L2VPN.

Procedure

1.     Enter system view.

system-view

2.     Enable L2VPN.

l2vpn enable

By default, L2VPN is disabled.

Creating an SPB VSI

About SPB VSIs

SPBM uses a unique I-SID to identify an SPB VSI. An SPB VSI's I-SID must be the same across the SPBM network.

Restrictions and guidelines

You can configure one SPB I-SID and one PBB I-SID for one VSI, but the two I-SIDs cannot be the same. For more information about PBB, see Layer 2—LAN Switching Configuration Guide.

Procedure

1.     Enter system view.

system-view

2.     Create a VSI and enter VSI view.

vsi vsi-name

3.     Assign an SPB I-SID to the VSI.

spb i-sid i-sid

I-SID 255 is reserved for the fast channel. You cannot associate any Ethernet service instance with the VSI that uses I-SID 255. To use the fast-channel feature, you must create a VSI and assign I-SID 255 to the VSI.

Assigning a B-VLAN to an SPB VSI

Restrictions and guidelines

For an SPB VSI, you must specify the same I-SID and B-VLAN across all BEBs and BCBs. You can assign only one B-VLAN to an SPB VSI, but different SPB VSIs can use the same B-VLAN.

Procedure

1.     Enter system view.

system-view

2.     Enter VSI view.

vsi vsi-name

3.     Enter SPB I-SID view.

spb i-sid i-sid

4.     Assign a B-VLAN to the SPB VSI.

b-vlan vlan-id

By default, an SPB VSI does not have a B-VLAN.

Configuring Ethernet service instances on BEBs

About Ethernet service instances

For a BEB to identify VLANs that must be extended across sites, you must configure Ethernet service instances on its customer network ports to map VLANs to SPB VSIs.

Restrictions and guidelines

An SPB VSI can be mapped to multiple Ethernet service instances on the same port or different ports.

For correct traffic processing, do not use the outer VLAN specified with the encapsulation command to provide any other services, including Layer 2 and Layer 3 services. The outer VLAN refers to the C-VLAN for a single-tagged frame and the S-VLAN for a double-tagged frame.

You can create Ethernet service instances on both a Layer 2 aggregate interface and its member ports and map the Ethernet service instances to VSIs. However, the Ethernet service instances on the aggregation member ports are down. To bring up the Ethernet service instances, you must remove the aggregation member ports from the aggregation group.

Procedure

1.     Enter system view.

system-view

2.     Enter Layer 2 Ethernet interface view or Layer 2 aggregate interface view.

interface interface-type interface-number

3.     Assign the interface to C-VLANs:

a.     Configure the port link type.

port link-type { access | trunk | hybrid }

The default port link type is access.

b.     Use one of the following commands to assign the interface to VLANs.

port access vlan vlan-id

port trunk permit vlan { vlan-id-list | all }

port hybrid vlan vlan-id-list { tagged | untagged }

4.     Create an Ethernet service instance and enter its view.

service-instance instance-id

For more information about this command, see VPLS commands in MPLS Command Reference.

5.     Configure a frame match criterion.

¡     Match frames with the specified outer VLAN tags.

encapsulation s-vid { vlan-id-list | vlan-id [ only-tagged ] }

¡     Match any VLAN tagged or untagged frames.

encapsulation { tagged | untagged }

¡     Match frames that do not match any other service instance on the interface.

encapsulation default

By default, an Ethernet service instance does not contain a frame match criterion.

For more information about this command, see VPLS commands in MPLS Command Reference.

6.     Map the Ethernet service instance to the SPB VSI.

xconnect vsi vsi-name [ access-mode { ethernet | vlan } ] *

By default, an Ethernet service instance is not mapped to any SPB VSI.

The VLAN access mode is not supported if you use the default, untagged, or s-vid vlan-id-list criterion.

For more information about this command, see VPLS commands in MPLS Command Reference.

Configuring SPBM multicast settings

Configuring the SPBM multicast replication mode on BEBs

About SPBM multicast replication modes

SPBM supports head-end replication and tandem replication for broadcast, multicast, and unknown unicast traffic.

Head-end replication is suitable for service instances that have sparse multicast traffic. Tandem replication is suitable for service instances that have dense multicast traffic.

Restrictions and guidelines

·     Multicast replication mode must be the same across all BEBs.

·     You must enable the multicast B-VLAN feature on all nodes in the SPBM network if the following conditions exist:

¡     Tandem replication is used.

¡     A BEB uses interfaces on an EC or EF interface card as provider network ports. (An EC or EF interface card is an interface card suffixed with EC or EF.)

Procedure

1.     Enter system view.

system-view

2.     Enter VSI view.

vsi vsi-name

3.     Enter I-SID view.

spb i-sid i-sid

4.     Configure the SPBM multicast mode.

multicast replicate-mode { head-end | tandem }

By default, head-end replication applies.

Setting the SPSource ID

About the SPSource ID

An SPSource ID uniquely identifies a device in an SPBM network. By default, the device generates an SPSource ID automatically.

If you set an SPSource ID manually, make sure the ID is unique on the SPBM network.

Procedure

1.     Enter system view.

system-view

2.     Enter SPBM view.

spbm

3.     Set SPSource ID.

spsource spsource-id

By default, the device generates an SPSource ID automatically.

Enabling the multicast B-VLAN feature

About multicast B-VLAN

You must enable the multicast B-VLAN feature on all nodes in the SPBM network if the following conditions exist:

·     Tandem replication is used.

·     A BEB uses interfaces on an EC or EF interface card as provider network ports.

Restrictions and guidelines

·     Enable or disable the multicast B-VLAN feature on all nodes in the SPBM network.

·     Enabling or disabling the multicast B-VLAN feature can cause transient traffic loss.

·     Map both odd B-VLAN ID and even B-VLAN ID to MSTI 4092, and assign all ports on the path of the two VLANs to the VLANs.

·     Assign the odd B-VLAN ID for unicast traffic to the I-SID when you use the b-vlan command. The device will automatically assign the even B-VLAN ID to the I-SID for multicast traffic.

Procedure

1.     Enter system view.

system-view

2.     Enter SPBM view.

spbm

3.     Enable the multicast B-VLAN feature.

multicast-bvlan enable

By default, the multicast B-VLAN feature is disabled.

Optimizing traffic distribution

Setting the bridge priority

About the bridge priority

In conjunction with the system ID, the SPBM bridge priority forms the SPBM bridge ID. The SPBM bridge ID is a tie-breaker used in the ECT algorithms for choosing the forwarding path.

Procedure

1.     Enter system view.

system-view

2.     Enter SPBM view.

spbm

3.     Set a bridge priority.

bridge-priority priority

The default bridge priority is 32768.

Setting a link metric value for a provider network port

About the link metric value

The following are methods to assign a link metric value to an interface:

·     Set an interface-specific value in interface view.

·     Set a global value in SPBM view. This global value applies to all SPBM-enabled interfaces.

·     Set a bandwidth reference in SPBM view for the system to calculate a value automatically for the interface.

The system chooses a link metric value for an interface in order of interface-specific value, global value, and autocalculated value. ISIS-SPB automatically calculates a link metric value for an interface if both the global and interface-specific link metric values are not set.

The following is the calculation formula:

Link metric value=(Reference bandwidth/Interface rate)x10

The value range for the link metric value is 1 to 16777214.

Setting a port-specific link metric value

1.     Enter system view.

system-view

2.     Enter Layer 2 Ethernet interface view or Layer 2 aggregate interface view.

interface interface-type interface-number

3.     Set a port-specific link metric value.

spbm cost cost-value

By default, automatic link metric calculation applies.

Setting the global link metric value

1.     Enter system view.

system-view

2.     Enter SPBM view.

spbm

3.     Set a global SPBM link metric value.

circuit-cost cost-value

By default, no global SPBM link metric value is set.

Setting the bandwidth reference for automatic link metric calculation

1.     Enter system view.

system-view

2.     Enter SPBM view.

spbm

3.     Set the reference bandwidth for automatic link metric calculation.

bandwidth-reference value

The default bandwidth reference is 40000 Mbps.

Mapping B-VLANs to an ECT algorithm

About mapping B-VLANs to an ECT algorithm

An ECT algorithm represents a set of tie-breakers for calculating SPTs. To improve link efficiency in an SPBM network, you can distribute B-VLAN traffic along different paths by mapping B-VLANs to different ECT algorithms.

Restrictions and guidelines

To ensure correct SPT calculation for a B-VLAN, the B-VLAN to ECT algorithm mappings must be the same across the SPBM network. For more information about the ECT algorithms, see IEEE 802.1aq SPB.

Procedure

1.     Enter system view.

system-view

2.     Enter SPBM view.

spbm

3.     Map B-VLANs to an ECT algorithm.

ect ect-index b-vlan vlan-id-list

By default, all B-VLANs are mapped to ECT algorithm 1.

Performing ECT migration for an SPB VSI

About ECT migration

To move traffic from an overloaded path to a path that has less traffic, you can perform ECT migration. ECT migration moves traffic by I-SID without traffic loss and provides more granular traffic control than the B-VLAN to ECT algorithm remapping method.

Configuring a new B-VLAN

1.     Enter system view.

system-view

2.     Add a new B-VLAN and enter VLAN view.

vlan vlan-id

3.     Return to the system view

quit

4.     Enter MST region view.

stp region-configuration

5.     Assign the VLAN to MSTI 4092.

instance instance-id vlan vlan-list

By default, all VLANs are mapped to the CIST (MSTI 0).

The value for the instance-id argument must be 4092.

6.     Activate the MST region configuration.

active region-configuration

7.     Return to system view.

quit

8.     Enter interface range view.

interface range interface-list

Specify all provider network ports.

9.     Assign all provider network ports to the VLAN.

¡     Assign trunk ports to the VLAN.

port trunk permit vlan { vlan-id-list | all }

¡     Assign hybrid ports to the VLAN.

port hybrid vlan vlan-id-list { tagged | untagged }

Configuring the ECT algorithm mapping for the new B-VLAN

1.     Enter system view.

system-view

2.     Enable SPBM globally and enter SPBM view.

spbm

By default, SPBM is disabled globally.

3.     Map the new B-VLAN to a new ECT algorithm.

ect ect-index b-vlan vlan-id-list

To avoid traffic disruption, you must verify that the new mapping has been added across the SPBM network before you proceed to the next task.

This ECT algorithm must be different from the one mapped to the old B-VLAN.

4.     Verify that the mapping has been added.

display spbm b-vlan [ vlan-id ]

Assigning the new B-VLAN to the SPB VSI on all BEBs

1.     Enter system view.

system-view

2.     Enter VSI view.

vsi vsi-name

3.     Enter SPB I-SID view.

spb i-sid i-sid

4.     Assign the new B-VLAN to the SPB VSI.

b-vlan vlan-id

The SPB VSI's traffic will not be switched over to the new path until you assign the new B-VLAN to the SPB VSI on all BEBs.

Configuring the AP mode

About the AP mode

The Agreement Protocol (AP) prevents temporary loops that might occur when the topologies of SPBM neighbors do not match.

If AP is enabled, SPBM issues forwarding entries to the forwarding plane only if AP declares a topology match.

Procedure

1.     Enter system view.

system-view

2.     Enter SPBM view.

spbm

3.     Configure the AP mode.

ap-mode { both | multicast | off }

By default, AP is enabled for both multicast and unicast entries. SPBM issues a unicast or multicast entry to the forwarding plane only if AP declares a topology match.

Enabling dynamic hostname exchange

About dynamic hostname exchange

ISIS-SPB uses a 6-byte system ID to represent a node in the network. This type of ID is difficult for administrators to identify devices when they examine ISIS-SPB adjacencies, FDB entries, and LSDB entries.

Dynamic hostname exchange enables you to assign a symbolic hostname to each SPBM node. ISIS-SPB advertises this information in the Dynamic hostname TLV in LSPs to remote LSDBs.

Procedure

1.     Enter system view.

system-view

2.     Enter SPBM view.

spbm

3.     Configure a symbolic hostname.

is-name is-name

By default, dynamic hostname exchange is disabled, and no symbolic hostname is configured for the device.

Tuning ISIS-SPB adjacency maintenance settings

About ISIS-SPB adjacency maintenance

ISIS-SPB uses the ISIS-SPB hello interval and the hello multiplier for adjacency establishment and maintenance.

Adjacency hold time sets the maximum amount of time for one SPBM node to retain the adjacency with another. This timer determines the amount of time it takes for an SPBM node to detect a failed link.

The adjacency hold time equals the ISIS-SPB hello interval multiplied by the hello multiplier.

An SPBM node sends its adjacency hold time in hello packets to update the adjacencies with its neighbor. The neighbor removes the adjacency with the advertising node and recalculates routes if it does not receive a hello packet before the timer expires.

Restrictions and guidelines for configuring ISIS-SPB adjacency maintenance settings

The maximum adjacency hold time is 65535 seconds. If this value is exceeded after you change the hello interval, the original hello interval remains unchanged. If this value is exceeded after you change the hello multiplier, the original hello multiplier remains unchanged.

Setting the ISIS-SPB hello interval

1.     Enter system view.

system-view

2.     Enter Layer 2 Ethernet interface view or Layer 2 aggregate interface view.

interface interface-type interface-number

3.     Set the ISIS-SPB hello interval.

spbm timer hello seconds

The default hello interval is 10 seconds.

A short interval improves network convergence time, but it requires more system resources.

Setting the hello multiplier for calculating the adjacency hold time

1.     Enter system view.

system-view

2.     Enter Layer 2 Ethernet interface view or Layer 2 aggregate interface view.

interface interface-type interface-number

3.     Set the hello multiplier.

spbm timer holding-multiplier value

The default multiplier is 3.

Tuning ISIS-SPB LSP timers

About ISIS-SPB LSP timers

Change LSP timer settings depending on network stability to increase the network convergence speed and protect CPU from unnecessary route recalculations.

Table 3 ISIS-SPB LSP timers

LSP timer

Functionality

Tuning guidelines

Minimum LSP transmit interval

Sets the minimum interval for transmitting LSPs out of an interface.

You can also set the number of LSPs that can be sent at each interval.

Increase the interval to reduce LSP traffic in the network.

Decrease the interval for quick LSDB synchronization.

LSP lifetime

Sets the amount of time that an LSP can be retained in an LSDB.

Set the lifetime to a higher value than the LSP refresh interval.

LSP refresh interval and LSP generation timer

Control the update interval for an LSP.

Increase the interval to protect the CPU from frequent LSP generation.

Decrease the interval for quick reaction to topology change events.

LSP fast-flooding

Floods the first several LSPs that invoke SPF before SPF computation is started.

Enable this feature for quick LSDB synchronization.

 

Setting the minimum LSP transmit interval and the maximum number of LSPs sent at each interval

About the minimum LSP transmit interval and the maximum number of LSPs sent at each interval

To control ISIS-SPB traffic on a circuit, set the minimum interval for the device to transmit LSPs out of the circuit and the maximum number of LSPs sent at each interval. Before the minimum interval expires, newly generated LSP updates must wait in queue before they can be sent out.

ISIS-SPB requires acknowledgment for each LSP sent on a point-to-point circuit. ISIS-SPB will retransmit an LSP at a 5-second interval until it receives an acknowledgment for the LSP. This retransmission interval is not user configurable.

Procedure

1.     Enter system view.

system-view

2.     Enter Layer 2 Ethernet interface view or Layer 2 aggregate interface view.

interface interface-type interface-number

3.     Set the minimum LSP transmit interval and the maximum number of LSP segments sent at each interval.

spbm timer lsp time [ count count ]

By default, the minimum LSP transmit interval is 33 milliseconds. A maximum of five LSP segments can be sent at each interval.

Setting the LSP lifetime

About the LSP lifetime

The LSP lifetime specifies the maximum amount of time for an LSP to be retained in an LSDB.

SPBM nodes add a lifetime in each LSP they have advertised. If an SPBM node does not receive an update for an LSP before its lifetime expires, the SPBM node performs the following operations:

·     Removes the LSP from the LSDB.

·     Retains the LSP digest for 60 seconds.

·     Sends an update of the LSP with a lifetime of 0. The SPBM neighbors remove the LSP from their LSDBs when they receive the LSP update.

Procedure

1.     Enter system view.

system-view

2.     Enter SPBM view.

spbm

3.     Set the maximum LSP lifetime.

timer lsp-max-age seconds

The default maximum LSP lifetime is 1200 seconds.

Tuning the LSP refresh interval and LSP generation timer

About the LSP refresh interval and LSP generation timer

To prevent LSPs from age-out and synchronize LSDBs, ISIS-SPB performs periodic and event-driven LSP updates:

·     LSP refresh interval—Sets the interval at which ISIS-SPB regularly regenerates an LSP, regardless of whether any change has occurred to the LSP.

·     LSP generation timer—Sets the delay for ISIS-SPB to generate a new version of an LSP in response to an LSP change. For example, an update occurs because of a change in adjacency, interface metric value, system ID, or area address.

The LSP generation timer is an exponential generation timer. With this timer, ISIS-SPB quickly responds to the first events for an LSP and then slows down to protect the CPU from frequent LSP generation.

The LSP generation timer value is derived from the following parameters:

·     minimum-interval—Minimum LSP generation interval.

·     incremental-interval—Base number for the incremental interval.

·     maximum-interval—Maximum LSP generation interval.

When the network is stable, the LSP generation timer is set to the minimum interval for each LSP generation. When the network is unstable, the LSP generation timer increments by incremental-interval×2n-2 (n is the number of generation times) for each LSP generation until the maximum interval is reached. If an event triggers LSP generation after the maximum interval is reached, the LSP generation timer re-initiates with the minimum interval.

 

 

NOTE:

The network is considered unstable if the interval between consecutive LSP generation events is smaller than two times the maximum interval.

 

Procedure

1.     Enter system view.

system-view

2.     Enter SPBM view.

spbm

3.     Set the LSP refresh interval.

timer lsp-refresh seconds

The default refresh interval is 900 seconds.

4.     Set the LSP generation timer parameters.

timer lsp-generation maximum-interval [ minimum-interval [ incremental-interval ] ]

Default values for the LSP generation timer parameters:

¡     maximum-interval—2 seconds.

¡     minimum-interval—10 milliseconds.

¡     incremental-interval—10 milliseconds.

Enabling LSP fast-flooding

About LSP fast-flooding

 LSP fast-flooding enables ISIS-SPB to flood the first several LSPs that invoke SPF before SPF computation is started. This mechanism improves ISIS-SPB convergence time. The number of LSPs that can be fast flooded is user configurable.

Procedure

1.     Enter system view.

system-view

2.     Enter SPBM view.

spbm

3.     Configure LSP fast-flooding.

flash-flood [ flood-count flooding-count | max-timer-interval interval ] *

By default, LSP fast-flooding is disabled.

Tuning the SPF calculation timer

About the SPF calculation timer

The SPF calculation timer sets the delay between consecutive SPF calculations. You can decrease the timer for ISIS-SPB to react quickly to topology changes, and decrease the timer to protect the CPU from frequent SPF calculations.

The SPF timer is an exponential generation timer. With this timer, ISIS-SPB quickly responds to the first events that trigger SPF calculation, and then slows down to protect the CPU from frequent SPF calculations.

The SPF calculation timer value is derived from three parameters: minimum wait time (minimum-interval), base number for incremental wait time (incremental-interval), and maximum wait time (maximum-interval).

When the network is stable, the SPF calculation timer is set to the minimum wait time for each SPF computation. When the network is unstable, the SPF calculation timer increments by incremental-interval×2n-2 (n is the number of calculations) for each SPF calculation until the maximum wait time is reached. If an event triggers SPF calculation after the maximum wait time is reached, the SPF calculation timer re-initiates with the minimum wait time.

 

 

NOTE:

The network is considered unstable if the interval between consecutive SPF calculations is smaller than two times the maximum wait time.

 

Procedure

1.     Enter system view.

system-view

2.     Enter SPBM view.

spbm

3.     Set the SPF calculation exponential backoff timers.

timer spf maximum-interval [ minimum-interval [ incremental-interval ] ]

Default values for the SPF calculation timer parameters:

¡     maximum-interval—5 seconds.

¡     minimum-interval—10 milliseconds.

¡     incremental-interval—10 milliseconds.

The minimum interval and the incremental interval must be shorter than the maximum interval.

Setting the LSDB overload bit

About the LSDB overload bit

ISIS-SPB sets the overload bit in LSPs to notify its neighbors that it is experiencing an LSDB error condition and cannot forward traffic correctly. During path calculation, ISIS-SPB does not choose a path as the shortest path if the path includes the device that has the overload bit set.

You can set the LSDB overload bit when the device cannot record complete topology data in the LSDB for memory insufficiency or any other problems.

Procedure

1.     Enter system view.

system-view

2.     Enter SPBM view.

spbm

3.     Set the LSDB overload bit.

set-overload [ on-startup [ [ start-from-nbr system-id [ timeout1 [ nbr-timeout ] ] ] | timeout2 ] ]

By default, ISIS-SPB does not set the LSDB overload bit.

Configuring the control MAC address for ISIS-SPB

About the control MAC address for ISIS-SPB

ISIS-SPB uses a control MAC address for ISIS-SPB peer-to-peer communication. This control MAC specifies the destination MAC address for ISIS-SPB protocol frames. Vendors might use different control MAC addresses. You can change the ISIS-SPB control MAC for interoperability in a multivendor network.

Procedure

1.     Enter system view.

system-view

2.     Enter SPBM view.

spbm

3.     Configure the control MAC for ISIS-SPB.

control-address { all-cb | all-is | all-l1-is | all-l2-is | all-pb }

The default control MAC for ISIS-SPB is 0180-C200-002E (all-pb).

Configuring ISIS-SPB authentication

About ISIS-SPB authentication

ISIS-SPB authentication helps improve security in an SPBM network. It includes adjacency authentication and area authentication.

Configuring ISIS-SPB adjacency authentication

About ISIS-SPB adjacency authentication

ISIS-SPB adjacency authentication guarantees that SPBM nodes establish adjacencies only with trustworthy neighbors.

SPBM nodes send adjacency authentication information (including the authentication method and password) in ISIS-SPB hello packets. The recipient establishes or maintains an adjacency with the sender only if the received authentication settings match its local authentication settings.

Restrictions and guidelines

·     To prevent loss of adjacencies, use the following procedure when you modify adjacency authentication settings:

a.     Disable adjacency authentication for incoming ISIS-SPB hello packets on the neighbor devices.

b.     Modify the authentication settings on the local end.

c.     Modify the authentication settings on the remote end.

d.     Enable adjacency authentication for incoming ISIS-SPB hello packets on the neighbor devices.

·     For two devices to establish an adjacency, you must configure the same authentication method and password on them.

Procedure

1.     Enter system view.

system-view

2.     Enter Layer 2 Ethernet interface view or Layer 2 aggregate interface view.

interface interface-type interface-number

3.     Set an adjacency authentication method and password.

spbm authentication-mode { md5 | simple } { cipher | plain } string

By default, adjacency authentication is disabled. No authentication method or password is configured.

4.     (Optional.) Disable adjacency authentication for incoming IS-IS hello packets.

spbm authentication send-only

By default, the device authenticates incoming IS-IS hello packets if adjacency authentication is enabled.

Configuring ISIS-SPB area authentication

About ISIS-SPB area authentication

ISIS-SPB area authentication guarantees that SPBM nodes learn topology data only from trustworthy neighbors.

ISIS-SPB sends area authentication information (including the authentication method and password) in topology advertisement packets (LSP, CSNP, and PSNP). The recipients accept a topology advertisement packet only if the authentication settings in the packet match their local authentication settings.

Restrictions and guidelines

·     To prevent temporary drops of topology advertisement packets, use the following procedure when you modify authentication settings:

a.     Disable area authentication for incoming ISIS-SPB topology advertisement packets on the neighbor devices.

b.     Modify the authentication settings on the local end.

c.     Modify the authentication settings on the remote end.

d.     Enable area authentication for incoming ISIS-SPB topology advertisement packets on the neighbor devices.

·     For correct authentication, make sure the authentication method and password is the same across the SPBM network.

Procedure

1.     Enter system view.

system-view

2.     Enter SPBM view.

spbm

3.     Set an authentication method and password.

area-authentication-mode { md5 | simple } { cipher | plain } string

By default, area authentication is disabled. No authentication method or password is configured.

4.     (Optional.) Disable area authentication for incoming ISIS-SPB packets.

area-authentication send-only

By default, the device authenticates incoming ISIS-SPB packets if area authentication is enabled.

Configuring Graceful Restart for ISIS-SPB

About Graceful Restart for ISIS-SPB

Graceful Restart ensures nonstop forwarding while ISIS-SPB processes are re-establishing their adjacency after SPBM is re-enabled or an active/standby switchover is performed.

Graceful Restart enables a restarting node (the GR restarter) to quickly recover its SPBM topology, routing, and session information from a neighbor (the GR helper). During the GR process, the GR helper maintains the adjacency with the GR restarter.

Restrictions and guidelines

Typically, you only need to configure Graceful Restart on the GR restarter. As a best practice, configure Graceful Restart on an SPBM node if it is the only feature available on the node to ensure nonstop forwarding.

Graceful Restart and IS-IS NSR are mutually exclusive. You cannot use both features on the device.

Procedure

1.     Enter system view.

system-view

2.     Enter SPBM view.

spbm

3.     Enable Graceful Restart for ISIS-SPB.

graceful-restart

By default, ISIS-SPB Graceful Restart is disabled.

4.     (Optional.) Set the SA bit in ISIS-SPB hello PDUs.

undo graceful-restart suppress-sa

By default, the Suppress-Advertisement (SA) bit is set.

5.     (Optional.) Set the T2 timer.

graceful-restart t2 t2-value

The default T2 timer is 300 seconds for ISIS-SPB Graceful Restart.

The device advertises the T2 timer as the adjacency hold time to its neighbor during a GR process. Before the timer expires, the neighbor maintains the adjacency with the device. If the device fails to complete the restart before this timer expires, the neighbor removes the adjacency.

Enabling NSR for ISIS-SPB

About NSR for ISIS-SPB

To use NSR for ISIS-SPB, the device must have a minimum of two MPUs.

NSR ensures nonstop services when ISIS-SPB has redundant processes on multiple MPUs. In contrast to Graceful Restart, NSR does not require a neighbor device to recover routing information.

NSR backs up SPBM link state information from the active ISIS-SPB process to the standby ISIS-SPB process. The standby ISIS-SPB process takes over when any of the following events occurs:

·     The active ISIS-SPB process restarts.

·     The active MPU fails.

·     An ISSU starts on the active MPU.

Restrictions and guidelines

Graceful Restart and IS-IS NSR are mutually exclusive. You cannot use both features on the device.

Procedure

1.     Enter system view.

system-view

2.     Enter SPBM view.

spbm

3.     Enable NSR for ISIS-SPB.

non-stop-routing

By default, NSR is disabled for ISIS-SPB.

Configuring SNMP notifications and context for SPBM

About SNMP notifications and context for SPBM

To report critical SPBM events to an NMS, enable SNMP notifications for SPBM. For SNMP notifications to be sent correctly, you must also configure SNMP on the device. For more information about SNMP configuration, see the network management and monitoring configuration guide for the device.

ISIS-SPB shares the standard IS-IS MIB with IS-IS and other protocols that use IS-IS in the control plane. For SNMP to correctly identify a protocol's management information in the standard IS-IS MIB, you must configure a unique context for each of these protocols. If a protocol supports multiple processes, you must assign a unique context to each process.

The context names must be unique among all the protocols and their processes.

Restrictions and guidelines

Context is a method introduced to SNMPv3 for multiple instance managements. For SNMPv1/v2c, you must specify a context name as a community name for protocol identification.

Procedure

1.     Enter system view.

system-view

2.     Enable SNMP notifications for SPBM.

snmp-agent trap enable spbm [ adjacency-state-change | area-mismatch | authentication | authentication-type | b-mac-conflict | buffsize-mismatch | id-length-mismatch | lsdboverload-state-change | lsp-parse-error | lsp-size-exceeded | max-seq-exceeded | maxarea-mismatch | own-lsp-purge | protocol-support | rejected-adjacency | skip-sequence-number | spsource-conflict | version-skew ] *

By default, SNMP notifications for SPBM are enabled.

3.     Enter SPBM view.

spbm

4.     Configure an SNMP context for ISIS-SPB.

snmp context-name context-name

By default, no SNMP context is configured for ISIS-SPB.

Enabling ISIS-SPB adjacency change logging

About ISIS-SPB adjacency change logging

Adjacency change logging enables ISIS-SPB to send a log message to the information center when an adjacency change occurs. With the information center, you can set log message filtering and output rules, including output destinations. For more information about using the information center, see Network Management and Monitoring Configuration Guide.

Procedure

1.     Enter system view.

system-view

2.     Enter SPBM view.

spbm

3.     Enable ISIS-SPB adjacency change logging.

log-peer-change

By default, ISIS-SPB adjacency change logging is enabled.

Display and maintenance commands for SPBM

Execute display commands in any view and reset commands in user view.

 

Task

Command

Display MAC-in-MAC connections.

display l2vpn minm connection [ vsi vsi-name ]

Display MAC-in-MAC forwarding entries.

display l2vpn minm forwarding [ vsi vsi-name ] [ slot slot-number ]

Display VSI information.

display l2vpn vsi [ name vsi-name ] [ verbose ]

Display AP information for an ECT algorithm on an interface.

display spbm agreement-protocol status interface interface-type interface-number ect ect-number

Display B-VLAN to ECT algorithm mappings by B-VLAN.

display spbm b-vlan [ vlan-id ]

Display SPBM bridge information.

display spbm bridge

Display SPBM B-VLAN information.

display spbm bvlan-info [ slot slot-number ]

Display SPBM B-VLAN statistics.

display spbm bvlan-info statistics [ slot slot-number ]

Display global SPBM statistics.

display spbm common statistics [ slot slot-number ]

Display ECT algorithms and B-VLANs mapped to ECT algorithms.

display spbm ect [ ect-index ]

Display ECT migration information for an I-SID.

display spbm ect-migration i-sid i-sid

Display fast-channel statistics.

display spbm fast-channel statistics

Display SPBM Graceful Restart logs.

display spbm graceful-restart event-log slot slot-number

Display the Graceful Restart state of ISIS-SPB.

display spbm graceful-restart status

Display SPBM-enabled interfaces.

display spbm interface [ interface-type interface-number ] [ verbose ]

Display the SPBM LSDB.

display spbm lsdb [ [ lsp-id lspid | lsp-name lspname ] | local | verbose ] *

Display SPBM multicast FDB entries.

display spbm multicast-fdb [ b-vlan vlan-id | i-sid i-sid | system-id system-id ]

Display the number of SPBM multicast FDB entries.

display spbm multicast-fdb [ b-vlan vlan-id ] count

Display SPBM multicast FIB entries.

display spbm multicast-fib [ mac-address mac-address [ b-vlan vlan-id ] | b-vlan vlan-id ] [ slot slot-number ] [ verbose ]

Display the number of SPBM multicast FIB entries.

display spbm multicast-fib [ b-vlan vlan-id ] [ slot slot-number ] count

Display SPBM multicast FIB statistics.

display spbm multicast-fib statistics [ slot slot-number ]

Display SPBM multicast PWs.

display spbm multicast-pw [ i-sid i-sid ] [ count ]

Display SPBM NSR logs.

display spbm non-stop-routing event-log slot slot-number

Display SPBM NSR status.

display spbm non-stop-routing status

Display SPBM neighbor information.

display spbm peer [ system-id system-id ] [ verbose ]

Display the SPBM summary.

display spbm summary

Display SPBM unicast FDB entries.

display spbm unicast-fdb [ b-mac mac-address | b-vlan vlan-id | system-id system-id ]

Display the number of SPBM unicast FDB entries.

display spbm unicast-fdb [ b-mac mac-address | b-vlan vlan-id | system-id system-id ] count

Display SPBM unicast FIB entries.

display spbm unicast-fib [ b-mac mac-address [ b-vlan vlan-id ] | b-vlan vlan-id ] [ slot slot-number ] [ verbose ]

Display the number of SPBM unicast FIB entries.

display spbm unicast-fib [ b-vlan vlan-id ] [ slot slot-number ] count

Display SPBM unicast FIB statistics.

display spbm unicast-fib statistics [ slot slot-number ]

Display SPBM unicast PWs.

display spbm unicast-pw [ i-sid i-sid ] [ count ]

Display information about the unicast SPF tree.

display spbm unicast-tree

Clear SPBM B-VLAN statistics.

reset spbm bvlan-info statistics slot slot-number

Clear the SPBM database.

reset spbm database [ graceful-restart ]

Clear SPBM Graceful Restart logs.

reset spbm graceful-restart event-log slot slot-number

Clear SPBM multicast FIB statistics.

reset spbm multicast-fib statistics slot slot-number

Clear SPBM NSR logs.

reset spbm non-stop-routing event-log slot slot-number

Clear SPBM unicast FIB statistics.

reset spbm unicast-fib statistics slot slot-number

 

SPBM configuration examples

Example: Configuring a basic SPBM network

Network configuration

Deploy an SPBM network as shown in Figure 10.

Use I-SID 1000 to extend VLAN 100 across customer sites 1, 2, and 3. Configure I-SID 1000, as shown in Table 4.

Table 4 SPBM service requirements

Item

Requirements

B-VLAN

VLAN 10

ECT algorithm index

3

Multicast replication

Tandem replication

 

Figure 10 Network diagram

Procedure

1.     Configure basic SPBM parameters:

# Create VLAN 100 and B-VLAN 10.

<BEB1> system-view

[BEB1] vlan 100

[BEB1-vlan100] quit

[BEB1] vlan 10

[BEB1-vlan10] quit

# Configure MST region parameters on BEB 1. Make sure B-VLAN 10 is mapped to MSTI 4092.

[BEB1] stp region-configuration

[BEB1-mst-region] region-name spbm

[BEB1-mst-region] instance 4092 vlan 10

[BEB1-mst-region] active region-configuration

[BEB1-mst-region] quit

# Enable SPBM both globally and on the provider network ports on BEB 1, and assign the provider network ports to VLAN 10.

[BEB1] spbm

[BEB1-spbm] quit

[BEB1] interface ten-gigabitethernet 1/0/1

[BEB1-Ten-GigabitEthernet1/0/1] spbm enable

[BEB1-Ten-GigabitEthernet1/0/1] port link-type trunk

[BEB1-Ten-GigabitEthernet1/0/1] port trunk permit vlan 10

[BEB1-Ten-GigabitEthernet1/0/1] quit

[BEB1] interface ten-gigabitethernet 1/0/3

[BEB1-Ten-GigabitEthernet1/0/3] spbm enable

[BEB1-Ten-GigabitEthernet1/0/3] port link-type trunk

[BEB1-Ten-GigabitEthernet1/0/3] port trunk permit vlan 10

[BEB1-Ten-GigabitEthernet1/0/3] quit

# Repeat the previous steps to configure the MST parameters and SPBM feature on all other BEBs and BCBs. (Details not shown.)

 

 

NOTE:

On BCBs, you must enable SPBM on all the ports in the SPBM network.

 

2.     Map B-VLAN 10 to ECT algorithm 3:

# Map B-VLAN 10 to ECT algorithm 3 on BEB 1.

[BEB1] spbm

[BEB1-spbm] ect 3 b-vlan 10

[BEB1-spbm] quit

# Repeat the previous step to map B-VLAN 10 to ECT algorithm 3 on all other BEBs and BCBs. (Details not shown.)

3.     Configure the Ethernet service instance for VLAN 100 on the customer edge port on BEB 1:

# Enable L2VPN.

[BEB1] l2vpn enable

# Create an SPB VSI (I-SID 1000) for VLAN 100 traffic.

[BEB1] vsi test

[BEB1-vsi-test] spb i-sid 1000

# Assign B-VLAN 10 to the SPB VSI.

[BEB1-vsi-test-1000] b-vlan 10

# Enable tandem multicast replication mode for the SPB VSI.

[BEB1-vsi-test-1000] multicast replicate-mode tandem

[BEB1-vsi-test-1000] quit

[BEB1-vsi-test] quit

# Create Ethernet service instance 1, assign VLAN 100 to this instance, and map the service instance to the SPB VSI.

[BEB1] interface ten-gigabitethernet 1/0/2

[BEB1-Ten-GigabitEthernet1/0/2] port link-type trunk

[BEB1-Ten-GigabitEthernet1/0/2] port trunk permit vlan 100

[BEB1-Ten-GigabitEthernet1/0/2] service-instance 1

[BEB1-Ten-GigabitEthernet1/0/2-srv1] encapsulation s-vid 100

[BEB1-Ten-GigabitEthernet1/0/2-srv1] xconnect vsi test

[BEB1-Ten-GigabitEthernet1/0/2-srv1] quit

[BEB1-Ten-GigabitEthernet1/0/2] quit

[BEB1] quit

# Repeat the previous step to configure the Ethernet service instance for VLAN 100 on all other BEBs. (Details not shown.)

Verifying the configuration

Use Table 5 to verify that all the SPBM nodes have correctly established ISIS-SPB adjacencies and collected topology data, and that the BEBs have correctly established PWs.

Table 5 B-MACs of SPBM nodes

BEB

B-MAC

BCB

B-MAC

BEB 1

0011.2200.1101

BCB 1

0011.2200.1401

BEB 2

0011.2200.1201

BCB 2

0011.2200.1501

BEB 3

0011.2200.1301

 

 

 

1.     Verify the configuration on BEBs (for example, BEB 1):

# Verify that the BEB has ISIS-SPB adjacencies with all its neighbors.

<BEB1> display spbm peer

                           Peer information for SPBM

                           -------------------------

 

System ID         Port                        Circuit ID    State    Holdtime

0011.2200.1401    XGE1/0/1                    1             Up       28s

0011.2200.1501    XGE1/0/3                    1             Up       28s

The output shows that BEB 1 has adjacencies with BCB 1 and BCB 2.

# Verify that ISIS-SPB can collect complete SPBM topology data.

<BEB1> display spbm lsdb

                         Database information for SPBM

                         -----------------------------

LSP ID: * - Local LSP

 

LSP ID                Seq Num      Checksum      Holdtime      Length  Overload

-------------------------------------------------------------------------------

0011.2200.1101.00-00* 0x00000002   0x7bf8        1180          93      0

0011.2200.1101.00-01* 0x00000003   0xe7c8        1180          108     0

0011.2200.1201.00-00  0x00000002   0xa9e         1186          93      0

0011.2200.1201.00-01  0x00000003   0x7e23        1186          108     0

0011.2200.1301.00-00  0x00000002   0xc9e         1186          93      0

0011.2200.1301.00-01  0x00000003   0x7a21        1186          108     0

0011.2200.1401.00-00  0x00000002   0xa23b        1190          93      0

0011.2200.1401.00-01  0x00000003   0xdfb6        1190          108     0

0011.2200.1501.00-00  0x00000002   0xa23b        1190          93      0

0011.2200.1501.00-01  0x00000003   0xdfb6        1190          108     0

# Verify that the BEB has unicast PWs to all other BEBs.

<BEB1> display spbm unicast-pw

System ID            I-SID      B-MAC            B-VLAN   Port

0011.2200.1201       1000       0011-2200-1201   10       XGE1/0/1

0011.2200.1301       1000       0011-2200-1301   10       XGE1/0/1

# Verify that the BEB has a multicast PW on B-VLAN 10 for I-SID 1000.

<BEB1> display spbm multicast-pw

System ID            I-SID      MAC address      B-VLAN   Port

0011.2200.1101       1000       0306-4000-03e8   10       XGE1/0/1

# Verify that the BEB has created unicast FDB entries for reaching other SPBM neighbors.

<BEB1> display spbm unicast-fdb

Flags: E-Egress T-Transit

 

System ID            B-MAC            B-VLAN   Flags  Port

0011.2200.1201       0011-2200-1201   10       T      XGE1/0/1

0011.2200.1301       0011-2200-1301   10       T      XGE1/0/1

0011.2200.1401       0011-2200-1401   10       T      XGE1/0/1

0011.2200.1501       0011-2200-1501   10       T      XGE1/0/3

# Verify that the BEB has created multicast FDB entries with itself as the multicast source.

<BEB1> display spbm multicast-fdb

Flags: E-Egress T-Transit

 

System ID            MAC address      B-VLAN   Flags  Port

0011.2200.1101       0306-4000-03e8   10       T      XGE1/0/1

0011.2200.1201       0306-4001-03e8   10       E      N/A

0011.2200.1301       0306-4002-03e8   10       E      N/A

2.     Verify the configuration on BCBs (for example, BCB 1):

# Verify that the BCB has ISIS-SPB adjacencies with all its neighbors.

<BCB1> display spbm peer

                           Peer information for SPBM

                           -------------------------

 

System ID         Port                        Circuit ID    State    Holdtime

0011.2200.1101    XGE1/0/1                    1             Up       26s

0011.2200.1201    XGE1/0/2                    1             Up       26s

0011.2200.1301    XGE1/0/3                    1             Up       22s

# Verify that ISIS-SPB can collect complete SPBM topology data.

<BCB1> display spbm lsdb

                         Database information for SPBM

                         -----------------------------

LSP ID: * - Local LSP

 

LSP ID                Seq Num      Checksum      Holdtime      Length  Overload

-------------------------------------------------------------------------------

0011.2200.1101.00-00  0x00000002   0x7bf8        1180          93      0

0011.2200.1101.00-01  0x00000003   0xe7c8        1180          108     0

0011.2200.1201.00-00  0x00000002   0xa9e         1186          93      0

0011.2200.1201.00-01  0x00000003   0x7e23        1186          108     0

0011.2200.1301.00-00  0x00000002   0xc9e         1186          93      0

0011.2200.1301.00-01  0x00000003   0x7a21        1186          108     0

0011.2200.1401.00-00* 0x00000002   0xa23b        1190          93      0

0011.2200.1401.00-01* 0x00000003   0xdfb6        1190          108     0

0011.2200.1501.00-00  0x00000002   0xa23b        1190          93      0

0011.2200.1501.00-01  0x00000003   0xdfb6        1190          108     0

# Verify that the BCB has created unicast FDB entries for reaching all other SPBM nodes.

<BCB1> display spbm unicast-fdb

Flags: E-Egress T-Transit

 

System ID            B-MAC            B-VLAN   Flags  Port

0011.2200.1101       0011-2200-1101   10       T      XGE1/0/1

0011.2200.1201       0011-2200-1201   10       T      XGE1/0/2

0011.2200.1301       0011-2200-1301   10       T      XGE1/0/3

0011.2200.1501       0011-2200-1501   10       T      XGE1/0/1

# Verify that the BCB has created multicast FDB entries for reaching all other SPBM nodes.

<BCB1> display spbm multicast-fdb

Flags: E-Egress T-Transit

 

System ID            MAC address      B-VLAN   Flags  Port

0011.2200.1101       0306-4000-03e8   10       T      XGE1/0/2

                                                      XGE1/0/3

0011.2200.1201       0306-4001-03e8   10       T      XGE1/0/1

                                                      XGE1/0/3

0011.2200.1301       0306-4002-03e8   10       T      XGE1/0/1

                                                      XGE1/0/2

Example: Configuring SPBM with head-end replication

Network configuration

As shown in Figure 11, deploy an SPBM network to meet the following requirements:

·     Use I-SID 3001 to extend VLAN 100 across customer sites 1, 2, and 3.

·     Use head-end replication (the default) for multicast in the SPBM network.

·     Assign B-VLAN 3001 to I-SID 3001.

Figure 11 Network diagram

Procedure

1.     Configure BEB 1:

# Create VLAN 100 and B-VLAN 3001.

<BEB1> system-view

[BEB1] vlan 100

[BEB1-vlan100] quit

[BEB1] vlan 3001

[BEB1-vlan3001] quit

# Configure MST region parameters on BEB 1. Make sure B-VLAN 3001 is mapped to MSTI 4092.

[BEB1] stp region-configuration

[BEB1-mst-region] region-name spb

[BEB1-mst-region] instance 4092 vlan 3001

[BEB1-mst-region] active region-configuration

[BEB1-mst-region] quit

# Enable SPBM both globally and on the provider network port on BEB 1. Assign the provider network port to B-VLAN 3001.

[BEB1] spbm

[BEB1-spbm] quit

[BEB1] interface ten-gigabitethernet 1/0/2

[BEB1-Ten-GigabitEthernet1/0/2] port link-type trunk

[BEB1-Ten-GigabitEthernet1/0/2] port trunk permit vlan 3001

[BEB1-Ten-GigabitEthernet1/0/2] spbm enable

[BEB1-Ten-GigabitEthernet1/0/2] quit

# Enable L2VPN.

[BEB1] l2vpn enable

# Create an SPB VSI (I-SID 3001).

[BEB1] vsi test

[BEB1-vsi-test] spb i-sid 3001

# Assign B-VLAN 3001 to the SPB VSI.

[BEB1-vsi-test-3001] b-vlan 3001

[BEB1-vsi-test-3001] quit

[BEB1-vsi-test] quit

# Assign customer network port Ten-GigabitEthernet 1/0/1 to VLAN 100.

[BEB1] interface ten-gigabitethernet 1/0/1

[BEB1-Ten-GigabitEthernet1/0/1] port link-type trunk

[BEB1-Ten-GigabitEthernet1/0/1] port trunk permit vlan 100

# Configure Ethernet service instance 1 to match VLAN 100, and map the service instance to the SPB VSI.

[BEB1-Ten-GigabitEthernet1/0/1] service-instance 1

[BEB1-Ten-GigabitEthernet1/0/1-srv1] encapsulation s-vid 100

[BEB1-Ten-GigabitEthernet1/0/1-srv1] xconnect vsi test

[BEB1-Ten-GigabitEthernet1/0/1-srv1] quit

[BEB1-Ten-GigabitEthernet1/0/1] quit

2.     Repeat the previous steps to configure the MST parameters and SPBM feature on BEB 2 and BEB 3. (Details not shown.)

3.     Configure the BCB:

# Create B-VLAN 3001.

<BCB> system-view

[BCB] vlan 3001

[BCB-vlan3001] quit

# Configure MST region parameters on the BCB. Make sure B-VLAN 3001 is mapped to MSTI 4092.

[BCB] stp region-configuration

[BCB-mst-region] region-name spb

[BCB-mst-region] instance 4092 vlan 3001

[BCB-mst-region] active region-configuration

[BCB-mst-region] quit

# Enable SPBM both globally and on the provider network ports on the BCB. Assign the provider network ports to B-VLAN 3001.

[BCB] spbm

[BCB-spbm] quit

[BCB] interface ten-gigabitethernet 1/0/1

[BCB-Ten-GigabitEthernet1/0/1] port link-type trunk

[BCB-Ten-GigabitEthernet1/0/1] port trunk permit vlan 3001

[BCB-Ten-GigabitEthernet1/0/1] spbm enable

[BCB-Ten-GigabitEthernet1/0/1] quit

[BCB] interface ten-gigabitethernet 1/0/2

[BCB-Ten-GigabitEthernet1/0/2] port link-type trunk

[BCB-Ten-GigabitEthernet1/0/2] port trunk permit vlan 3001

[BCB-Ten-GigabitEthernet1/0/2] spbm enable

[BCB-Ten-GigabitEthernet1/0/2] quit

Verifying the configuration

Verify the configuration on BEBs (for example, BEB 1).

1.     Verify that the BEB has ISIS-SPB adjacency with its neighbor.

[BEB1] display spbm peer

                           Peer information for SPBM

                           -------------------------

 System ID         Port                        Circuit ID    State    Holdtime

 0000.eeee.0101    XGE1/0/2                    2             Up       29s

2.     Verify that the BEB has established tunnels to other BEBs.

[BEB1] display l2vpn vsi name test verbose

VSI Name: test

  VSI Index               : 1

  VSI State               : Up

  MTU                     : 1500

  Bandwidth               : Unlimited

  Broadcast Restrain      : Unlimited

  Multicast Restrain      : Unlimited

  Unknown Unicast Restrain: Unlimited

  MAC Learning            : Enabled

  MAC Table Limit         : -

  MAC Learning rate       : -

  Drop Unknown            : -

  SPB I-SID               : 3001

  Flooding                : Enabled

  Statistics              : Disabled

  VXLAN ID                : -

  SPB Connections:

    BMAC            BVLAN            Link ID    Type

    0000-eeee-0141  3001             64         Unicast

    0000-9999-0141  3001             65         Unicast

  ACs:

    AC                               Link ID    State    Type

    XGE1/0/1 srv1                    0          Up       Manual

Example: Configuring SPBM with tandem replication

Network configuration

As shown in Figure 12, deploy an SPBM network to meet the following requirements:

·     Use I-SID 3001 to extend VLAN 100 across customer sites 1, 2, and 3.

·     Use tandem replication for multicast in the SPBM network.

·     Assign B-VLAN 3001 to I-SID 3001.

Figure 12 Network diagram

Procedure

1.     Configure BEB 1:

# Create VLAN 100 and B-VLAN 3001.

<BEB1> system-view

[BEB1] vlan 100

[BEB1-vlan100] quit

[BEB1] vlan 3001

[BEB1-vlan3001] quit

# Configure MST region parameters on BEB 1. Make sure B-VLAN 3001 is mapped to MSTI 4092.

[BEB1] stp region-configuration

[BEB1-mst-region] region-name spb

[BEB1-mst-region] instance 4092 vlan 3001

[BEB1-mst-region] active region-configuration

[BEB1-mst-region] quit

# Enable SPBM both globally and on the provider network port on BEB 1. Assign the provider network port to B-VLAN 3001.

[BEB1] spbm

[BEB1-spbm] quit

[BEB1] interface ten-gigabitethernet 1/0/2

[BEB1-Ten-GigabitEthernet1/0/2] port link-type trunk

[BEB1-Ten-GigabitEthernet1/0/2] port trunk permit vlan 3001

[BEB1-Ten-GigabitEthernet1/0/2] spbm enable

[BEB1-Ten-GigabitEthernet1/0/2] quit

# Enable L2VPN.

[BEB1] l2vpn enable

# Create an SPB VSI (I-SID 3001).

[BEB1] vsi test

[BEB1-vsi-test] spb i-sid 3001

# Assign B-VLAN 3001 to the SPB VSI.

[BEB1-vsi-test-3001] b-vlan 3001

# Enable tandem multicast replication for the SPB VSI.

[BEB1-vsi-test-3001] multicast replicate-mode tandem

[BEB1-vsi-test-3001] quit

[BEB1-vsi-test] quit

# Assign customer network port Ten-GigabitEthernet 1/0/1 to VLAN 100.

[BEB1] interface ten-gigabitethernet 1/0/1

[BEB1-Ten-GigabitEthernet1/0/1] port link-type trunk

[BEB1-Ten-GigabitEthernet1/0/1] port trunk permit vlan 100

# Configure Ethernet service instance 1 to match VLAN 100, and map the service instance to the SPB VSI.

[BEB1-Ten-GigabitEthernet1/0/1] service-instance 1

[BEB1-Ten-GigabitEthernet1/0/1-srv1] encapsulation s-vid 100

[BEB1-Ten-GigabitEthernet1/0/1-srv1] xconnect vsi test

[BEB1-Ten-GigabitEthernet1/0/1-srv1] quit

[BEB1-Ten-GigabitEthernet1/0/1] quit

2.     Repeat the previous steps to configure the MST parameters and SPBM feature on BEB 2 and BEB 3. (Details not shown.)

3.     Configure the BCB:

# Create B-VLAN 3001.

<BCB> system-view

[BCB] vlan 3001

[BCB-vlan3001] quit

# Configure MST region parameters on the BCB. Make sure B-VLAN 3001 is mapped to MSTI 4092

[BCB] stp region-configuration

[BCB-mst-region] region-name spb

[BCB-mst-region] instance 4092 vlan 3001

[BCB-mst-region] active region-configuration

[BCB-mst-region] quit

# Enable SPBM both globally and on the provider network ports on the BCB. Assign the provider network ports to B-VLAN 3001.

[BCB] spbm

[BCB-spbm] quit

[BCB] interface ten-gigabitethernet 1/0/1

[BCB-Ten-GigabitEthernet1/0/1] port link-type trunk

[BCB-Ten-GigabitEthernet1/0/1] port trunk permit vlan 3001

[BCB-Ten-GigabitEthernet1/0/1] spbm enable

[BCB-Ten-GigabitEthernet1/0/1] quit

[BCB] interface ten-gigabitethernet 1/0/2

[BCB-Ten-GigabitEthernet1/0/2] port link-type trunk

[BCB-Ten-GigabitEthernet1/0/2] port trunk permit vlan 3001

[BCB-Ten-GigabitEthernet1/0/2] spbm enable

[BCB-Ten-GigabitEthernet1/0/2] quit

Verifying the configuration

Verify the configuration on BEBs (for example, BEB 1).

1.     Verify that the BEB has ISIS-SPB adjacency with its neighbor.

[BEB1] display spbm peer

                           Peer information for SPBM

                           -------------------------

 System ID         Port                        Circuit ID    State    Holdtime

 0000.eeee.0101    XGE1/0/2                    2             Up       29s

2.     Verify that the BEB has established tunnels to other BEBs.

[BEB1] display l2vpn vsi name test verbose

VSI Name: test

  VSI Index               : 1

  VSI State               : Up

  MTU                     : 1500

  Bandwidth               : Unlimited

  Broadcast Restrain      : Unlimited

  Multicast Restrain      : Unlimited

  Unknown Unicast Restrain: Unlimited

  MAC Learning            : Enabled

  MAC Table Limit         : -

  MAC Learning rate       : -

  Drop Unknown            : -

  SPB I-SID               : 3001

  Flooding                : Enabled

  Statistics              : Disabled

  VXLAN ID                : -

  SPB Connections:

    BMAC            BVLAN            Link ID    Type

    0000-eeee-0141  3001             64         Unicast

    0000-9999-0141  3001             65         Unicast

    0300-6000-0bb9  3001             -          Multicast

  ACs:

    AC                               Link ID    State    Type

    XGE1/0/1 srv1                    0          Up       Manual

The output shows that a multicast tunnel has been established for tandem multicast replication.

Example: Performing ECT migration by changing the B-VLAN

Network configuration

As shown in Figure 13, deploy an SPBM network to meet the following requirements:

·     Use I-SID 3001 to extend VLAN 100 across customer sites 1, 2, and 3.

·     Move I-SID 3001 from the original ECT algorithm to ECT algorithm 9. Change the B-VLAN from 3001 to 3003 for I-SID 3001.

Figure 13 Network diagram

Procedure

1.     Configure BEB 1:

# Create VLAN 100, B-VLAN 3001, and B-VLAN 3003.

<BEB1> system-view

[BEB1] vlan 100

[BEB1-vlan100] quit

[BEB1] vlan 3001

[BEB1-vlan3001] quit

[BEB1] vlan 3003

[BEB1-vlan3003] quit

# Configure MST region parameters on BEB 1. Make sure B-VLAN 3001 and B-VLAN 3003 are mapped to MSTI 4092.

[BEB1] stp region-configuration

[BEB1-mst-region] region-name spb

[BEB1-mst-region] instance 4092 vlan 3001 3003

[BEB1-mst-region] active region-configuration

[BEB1-mst-region] quit

# Enable SPBM globally.

[BEB1] spbm

# Map B-VLAN 3003 to ECT algorithm 9.

[BEB1-spbm] ect 9 b-vlan 3003

[BEB1-spbm] quit

# Enable SPBM on the provider network ports on BEB 1. Assign the provider network ports to B-VLAN 3001 and B-VLAN 3003.

[BEB1] interface ten-gigabitethernet 1/0/2

[BEB1-Ten-GigabitEthernet1/0/2] port link-type trunk

[BEB1-Ten-GigabitEthernet1/0/2] port trunk permit vlan 3001 3003

[BEB1-Ten-GigabitEthernet1/0/2] spbm enable

[BEB1-Ten-GigabitEthernet1/0/2] quit

[BEB1] interface ten-gigabitethernet 1/0/3

[BEB1-Ten-GigabitEthernet1/0/3] port link-type trunk

[BEB1-Ten-GigabitEthernet1/0/3] port trunk permit vlan 3001 3003

[BEB1-Ten-GigabitEthernet1/0/3] spbm enable

[BEB1-Ten-GigabitEthernet1/0/3] quit

# Enable L2VPN.

[BEB1] l2vpn enable

# Create an SPB VSI (I-SID 3001).

[BEB1] vsi test

[BEB1-vsi-test] spb i-sid 3001

# Assign B-VLAN 3001 to the SPB VSI.

[BEB1-vsi-test-3001] b-vlan 3001

[BEB1-vsi-test-3001] quit

[BEB1-vsi-test] quit

# Assign customer network port Ten-GigabitEthernet 1/0/1 to VLAN 100.

[[BEB1] interface ten-gigabitethernet 1/0/1

[BEB1-Ten-GigabitEthernet1/0/1] port link-type trunk

[BEB1-Ten-GigabitEthernet1/0/1] port trunk permit vlan 100

# Configure Ethernet service instance 1 to match VLAN 100, and map the service instance to the SPB VSI.

[BEB1-Ten-GigabitEthernet1/0/1] service-instance 1

[BEB1-Ten-GigabitEthernet1/0/1-srv1] encapsulation s-vid 100

[BEB1-Ten-GigabitEthernet1/0/1-srv1] xconnect vsi test

[BEB1-Ten-GigabitEthernet1/0/1-srv1] quit

[BEB1-Ten-GigabitEthernet1/0/1] quit

2.     Repeat the previous steps to configure the MST parameters and SPBM feature on BEB 2. (Details not shown.)

3.     Configure BCB 1:

# Create B-VLAN 3001 and B-VLAN 3003.

<BCB1> system-view

[BCB1] vlan 3001

[BCB1-vlan3001] quit

[BCB1] vlan 3003

[BCB1-vlan3003] quit

# Configure MST region parameters on BCB 1. Make sure B-VLAN 3001 and B-VLAN 3003 are mapped to MSTI 4092.

[BCB1] stp region-configuration

[BCB1-mst-region] region-name spb

[BCB1-mst-region] instance 4092 vlan 3001 3003

[BCB1-mst-region] active region-configuration

[BCB1-mst-region] quit

# Enable SPBM globally.

[BCB1] spbm

# Map B-VLAN 3003 to ECT algorithm 9.

[BCB1-spbm] ect 9 b-vlan 3003

[BCB1-spbm] quit

# Enable SPBM on the provider network ports on BCB 1. Assign the provider network ports to B-VLAN 3001 and B-VLAN 3003.

[BCB1] interface ten-gigabitethernet 1/0/1

[BCB1-Ten-GigabitEthernet1/0/1] port link-type trunk

[BCB1-Ten-GigabitEthernet1/0/1] port trunk permit vlan 3001 3003

[BCB1-Ten-GigabitEthernet1/0/1] spbm enable

[BCB1-Ten-GigabitEthernet1/0/1] quit

[BCB1] interface ten-gigabitethernet 1/0/2

[BCB1-Ten-GigabitEthernet1/0/2] port link-type trunk

[BCB1-Ten-GigabitEthernet1/0/2] port trunk permit vlan 3001 3003

[BCB1-Ten-GigabitEthernet1/0/2] spbm enable

[BCB1-Ten-GigabitEthernet1/0/2] quit

4.     Configure BCB 2 in the same way you configure BCB 1. (Details not shown.)

5.     Perform ECT migration:

# On BEB 1, change the B-VLAN to 3003 for the SPB VSI test.

[BEB1] vsi test

[BEB1-vsi-test] spb i-sid 3001

[BEB1-vsi-test-3001] b-vlan 3003

[BEB1-vsi-test-3001] quit

[BEB1-vsi-test] quit

# Configure BEB 2 in the same way you configure BEB 1. (Details not shown.)

Verifying the configuration

1.     Before you perform ECT migration, verify the configuration on BEBs (for example, BEB 1):

# Verify that the BEB has ISIS-SPB adjacencies with all its neighbors.

[BEB1] display spbm peer

                           Peer information for SPBM

                           -------------------------

 System ID         Port                        Circuit ID    State    Holdtime

 0000.eeee.0101    XGE1/0/2                    2             Up       29s

 0000.eeee.0141    XGE1/0/3                    3             Up       29s

# Verify that the BEB has established a tunnel to the other BEB.

[BEB1] display l2vpn vsi name test verbose

VSI Name: test

  VSI Index               : 1

  VSI State               : Up

  MTU                     : 1500

  Bandwidth               : 102400 kbps

  Broadcast Restrain      : 5%

  Multicast Restrain      : -

  Unknown Unicast Restrain: -

  MAC Learning            : Enabled

  MAC Table Limit         : Unlimited

  Drop Unknown            : -

  SPB I-SID               : 3001

  SPB Connections:

    BMAC            BVLAN            Link ID    Type

    0000-9999-0141  3001             65         Unicast

  ACs:

    AC                               Link ID    State

    XGE1/0/1 srv1                    0          Up

# Verify that I-SID 3001 uses B-VLAN 3001 to transmit customer traffic.

[BEB1] display spbm ect-migration i-sid 3001

ECT            B-VLAN    T    R

00-80-c2-01    3001      1    1

2.     After you perform ECT migration, verify that I-SID 3001 uses B-VLAN 3003 to transmit customer traffic (for example, on BEB 1):

[BEB1] display spbm ect-migration i-sid 3001

ECT            B-VLAN    T    R

00-80-c2-09    3003      0    1

Example: Performing ECT migration by changing the ECT algorithm

Network configuration

As shown in Figure 14, move I-SID 1000 from the original ECT algorithm to ECT algorithm 2. Change the B-VLAN for I-SID 1000 from VLAN 10 to VLAN 20.

Figure 14 Network diagram

Procedure

This example uses BEB 1 to show the configuration procedure. You can configure other SPBM devices in the same way you configure BEB 1.

1.     Configure the new B-VLAN (VLAN 20 in this example):

Perform this task on all BEBs and BCBs in the SPBM network.

# Create VLAN 20.

<BEB1> system-view

[BEB1] vlan 20

[BEB1-vlan20] quit

# Map B-VLAN 20 to MSTI 4092, and activate the change.

[BEB1] stp region-configuration

[BEB1-mst-region] instance 4092 vlan 20

[BEB1-mst-region] active region-configuration

[BEB1-mst-region] quit

# Assign the provider network ports to VLAN 20.

[BEB1] interface ten-gigabitethernet 1/0/1

[BEB1-Ten-GigabitEthernet1/0/1] port trunk permit vlan 20

[BEB1-Ten-GigabitEthernet1/0/1] quit

[BEB1] interface ten-gigabitethernet 1/0/3

[BEB1-Ten-GigabitEthernet1/0/3] port trunk permit vlan 20

[BEB1-Ten-GigabitEthernet1/0/3] quit

2.     Map B-VLAN 20 to ECT algorithm 2.

Perform this task on all BEBs and BCBs in the SPBM network.

[BEB1] spbm

[BEB1-spbm] ect 2 b-vlan 20

[BEB1-spbm] quit

3.     Assign B-VLAN 20 to I-SID 1000.

Perform this task on all BEBs in the SPBM network.

[BEB1] vsi test

[BEB1-vsi-test] spb i-sid 1000

[BEB1-vsi-test-1000] b-vlan 20

[BEB1-vsi-test-1000] quit

[BEB1-vsi-test] quit

[BEB1] quit

Verifying the configuration

1.     Verify the configuration and forwarding states during ECT migration:

¡     On BEBs (BEB 1 in this example):

# Verify the ECT migration configuration for I-SID 1000.

<BEB1> display spbm ect-migration i-sid 1000

ECT            B-VLAN    T    R

00-80-c2-02    20        1    1

00-80-c2-03    10        1    1

The output shows that I-SID 1000 is migrating from ECT algorithm 3 to ECT algorithm 2. During this period, both B-VLAN 10 and B-VLAN 20 can transmit traffic.

# Verify that the BEB has set up unicast PWs for I-SID 1000 on both B-VLANs 10 and 20.

<BEB1> display spbm unicast-pw

System ID            I-SID      B-MAC            B-VLAN   Port

0011.2200.1201       1000       0011-2200-1201   10       XGE1/0/1

                                                 20       XGE1/0/3

0011.2200.1301       1000       0011-2200-1301   10       XGE1/0/1

                                                 20       XGE1/0/3

# Verify that the BEB still uses the original multicast PW established on B-VLAN 10 for I-SID 1000.

<BEB1> display spbm multicast-pw

System ID            I-SID      MAC address      B-VLAN   Port

0011.2200.1101       1000       0306-4000-03e8   10       XGE1/0/1

# Verify that the BEB has created unicast FDB entries in both B-VLAN 10 and B-VLAN 20 for I-SID 1000.

<BEB1> display spbm unicast-fdb

Flags: E-Egress T-Transit

 

System ID            B-MAC            B-VLAN   Flags  Port

0011.2200.1201       0011-2200-1201   10       T      XGE1/0/1

0011.2200.1201       0011-2200-1201   20       T      XGE1/0/3

0011.2200.1301       0011-2200-1301   10       T      XGE1/0/1

0011.2200.1301       0011-2200-1301   20       T      XGE1/0/3

0011.2200.1401       0011-2200-1401   10       T      XGE1/0/1

0011.2200.1401       0011-2200-1401   20       T      XGE1/0/1

0011.2200.1501       0011-2200-1501   10       T      XGE1/0/3

0011.2200.1501       0011-2200-1501   20       T      XGE1/0/3

# Verify that the BEB has created multicast FDB entries in both B-VLAN 10 and B-VLAN 20 for I-SID 1000.

<BEB1> display spbm multicast-fdb

Flags: E-Egress T-Transit

 

System ID            MAC address      B-VLAN   Flags  Port

0011.2200.1101       0306-4000-03e8   10       T      XGE1/0/1

0011.2200.1101       0306-4000-03e8   20       T      XGE1/0/3

0011.2200.1201       0306-4001-03e8   10       E      N/A

0011.2200.1201       0306-4001-03e8   20       E      N/A

0011.2200.1301       0306-4002-03e8   10       E      N/A

0011.2200.1301       0306-4002-03e8   20       E      N/A

¡     On BCBs (BCB 1 in this example):

# Verify that the BCB has created unicast FDB entries in both B-VLANs 10 and 20 for I-SID 1000.

<BCB1> display spbm unicast-fdb

Flags: E-Egress T-Transit

 

System ID            B-MAC            B-VLAN   Flags  Port

0011.2200.1101       0011-2200-1101   10       T      XGE1/0/1

0011.2200.1101       0011-2200-1101   20       T      XGE1/0/1

0011.2200.1201       0011-2200-1201   10       T      XGE1/0/2

0011.2200.1201       0011-2200-1201   20       T      XGE1/0/2

0011.2200.1301       0011-2200-1301   10       T      XGE1/0/3

0011.2200.1301       0011-2200-1301   20       T      XGE1/0/3

0011.2200.1501       0011-2200-1501   10       T      XGE1/0/1

0011.2200.1501       0011-2200-1501   20       T      XGE1/0/3

# Verify that the BCB has created multicast FDB entries in both B-VLANs 10 and 20 for I-SID 1000.

<BCB1> display spbm multicast-fdb

Flags: E-Egress T-Transit

 

System ID            MAC address      B-VLAN   Flags  Port

0011.2200.1101       0306-4000-03e8   10       T      XGE1/0/2

                                                      XGE1/0/3

0011.2200.1101       0306-4000-03e8   20       T      XGE1/0/2

                                                      XGE1/0/3

0011.2200.1201       0306-4001-03e8   10       T      XGE1/0/1

                                                      XGE1/0/3

0011.2200.1201       0306-4001-03e8   20       T      XGE1/0/1

                                                      XGE1/0/3

0011.2200.1301       0306-4002-03e8   10       T      XGE1/0/1

                                                      XGE1/0/2

0011.2200.1301       0306-4002-03e8   20       T      XGE1/0/1

                                                      XGE1/0/2

2.     Verify the configuration and forwarding states after ECT migration is complete:

¡     On BEBs (BEB 1 in this example):

# Verify that I-SID 1000 has migrated from ECT algorithm 3 to ECT algorithm 2. SPBM has removed the mapping between I-SID 1000 and B-VLAN 10.

<BEB1> display spbm ect-migration i-sid 1000

ECT            B-VLAN    T    R

00-80-c2-02    20        1    1

# Verify that the BEB has unicast PWs only on B-VLAN 20 for I-SID 1000. The BEB has removed the PWs set up on B-VLAN 10 for I-SID 1000.

<BEB1> display spbm unicast-pw

System ID            I-SID      B-MAC            B-VLAN   Port

0011.2200.1201       1000       0011-2200-1201   20       XGE1/0/3

0011.2200.1301       1000       0011-2200-1301   20       XGE1/0/3

# Verify that the BEB has set up a multicast PW on B-VLAN 20 for I-SID 1000. The original multicast PW has been removed.

<BEB1> display spbm multicast-pw

System ID            I-SID      MAC address      B-VLAN   Port

0011.2200.1101       1000       0306-4000-03e8   20       XGE1/0/3

# Verify that the BEB has unicast FDB entries for both B-VLANs 10 and 20. The BEB still has unicast FDB entries for B-VLAN 10 because B-VLAN 10 is still on MSTI 4092.

<BEB1> display spbm unicast-fdb

Flags: E-Egress T-Transit

 

System ID            B-MAC            B-VLAN   Flags  Port

0011.2200.1201       0011-2200-1201   10       T      XGE1/0/1

0011.2200.1201       0011-2200-1201   20       T      XGE1/0/3

0011.2200.1301       0011-2200-1301   10       T      XGE1/0/1

0011.2200.1301       0011-2200-1301   20       T      XGE1/0/3

0011.2200.1401       0011-2200-1401   10       T      XGE1/0/1

0011.2200.1401       0011-2200-1401   20       T      XGE1/0/1

0011.2200.1501       0011-2200-1501   10       T      XGE1/0/3

0011.2200.1501       0011-2200-1501   20       T      XGE1/0/3

# Verify that the BEB has multicast FDB entries only in B-VLAN 20.

<BEB1> display spbm multicast-fdb

Flags: E-Egress T-Transit

 

System ID            MAC address      B-VLAN   Flags  Port

0011.2200.1101       0306-4000-03e8   20       T      XGE1/0/3

0011.2200.1201       0306-4001-03e8   20       E      N/A

0011.2200.1301       0306-4002-03e8   20       E      N/A

¡     On BCBs (BCB 1 in this example):

# Verify that the BCB has unicast FDB entries in both B-VLANs 10 and 20 for I-SID 1000.

<BCB> display spbm unicast-fdb

Flags: E-Egress T-Transit

 

System ID            B-MAC            B-VLAN   Flags  Port

0011.2200.1101       0011-2200-1101   10       T      XGE1/0/1

0011.2200.1101       0011-2200-1101   20       T      XGE1/0/1

0011.2200.1201       0011-2200-1201   10       T      XGE1/0/2

0011.2200.1201       0011-2200-1201   20       T      XGE1/0/2

0011.2200.1301       0011-2200-1301   10       T      XGE1/0/3

0011.2200.1301       0011-2200-1301   20       T      XGE1/0/3

0011.2200.1501       0011-2200-1501   10       T      XGE1/0/1

0011.2200.1501       0011-2200-1501   20       T      XGE1/0/3

# Verify that the BCB has multicast FDB entries only in B-VLAN 20 for I-SID 1000.

<BCB> display spbm multicast-fdb

Flags: E-Egress T-Transit

 

System ID            MAC address      B-VLAN   Flags  Port

0011.2200.1101       0306-4000-03e8   20       T      XGE1/0/2

                                                      XGE1/0/3

0011.2200.1201       0306-4001-03e8   20       T      XGE1/0/1

                                                      XGE1/0/3

0011.2200.1301       0306-4002-03e8   20       T      XGE1/0/1

                                                      XGE1/0/2

Example: Configuring SPBM NSR

Network configuration

As shown in Figure 15, deploy an SPBM network to meet the following requirements:

·     Use I-SID 1000 to extend VLAN 100 across customer sites 1 and 2.

·     Use tandem replication for multicast in the SPBM network.

·     Assign B-VLAN 10 to I-SID 1000. Map B-VLAN 10 to ECT algorithm 3.

·     Enable NSR for SPBM on the BCB.

Figure 15 Network diagram

Table 6 B-MACs

BEB

B-MAC

BCB

B-MAC

BEB 1

0011.2200.1101

BCB

0011.2200.1401

BEB 2

0011.2200.1201

 

 

 

Procedure

1.     Configure the MST parameters and SPBM feature on BEB 1:

# Configure MST region parameters. Make sure B-VLAN 10 is mapped to MSTI 4092.

<BEB1> system-view

[BEB1] vlan 10

[BEB1-vlan10] quit

[BEB1] stp region-configuration

[BEB1-mst-region] instance 4092 vlan 10

[BEB1-mst-region] region-name spbm

[BEB1-mst-region] active region-configuration

[BEB1-mst-region] quit

# Enable SPBM both globally and on the provider network port Ten-GigabitEthernet 1/0/1. Assign the provider network port to B-VLAN 10.

[BEB1] spbm

[BEB1-spbm] quit

[BEB1] interface ten-gigabitethernet 1/0/1

[BEB1-Ten-GigabitEthernet1/0/1] spbm enable

[BEB1-Ten-GigabitEthernet1/0/1] port link-type trunk

[BEB1-Ten-GigabitEthernet1/0/1] port trunk permit vlan 10

[BEB1-Ten-GigabitEthernet1/0/1] quit

# Map B-VLAN 10 to ECT algorithm 3.

[BEB1] spbm

[BEB1-spbm] ect 3 b-vlan 10

[BEB1-spbm] quit

2.     Configure the MST parameters and SPBM feature on BEB 2 and the BCB in the same way you configure BEB 1. (Details not shown.)

3.     Configure the customer-side settings on BEB 1:

# Enable L2VPN.

[BEB1] l2vpn enable

# Create an SPB VSI (I-SID 1000).

[BEB1] vsi test

[BEB1-vsi-test] spb i-sid 1000

# Assign B-VLAN 10 to the SPB VSI.

[BEB1-vsi-test-1000] b-vlan 10

# Enable tandem multicast replication for the SPB VSI.

[BEB1-vsi-test-1000] multicast replicate-mode tandem

[BEB1-vsi-test-1000] quit

[BEB1-vsi-test] quit

# Assign customer network port Ten-GigabitEthernet 1/0/2 to VLAN 100.

[BEB1] interface ten-gigabitethernet 1/0/2

[BEB1-Ten-GigabitEthernet1/0/2] port link-type trunk

[BEB1-Ten-GigabitEthernet1/0/2] port trunk permit vlan 100

# Configure Ethernet service instance 1 to match VLAN 100, and map the service instance to the SPB VSI.

[BEB1-Ten-GigabitEthernet1/0/2] service-instance 1

[BEB1-Ten-GigabitEthernet1/0/2-srv1] encapsulation s-vid 100

[BEB1-Ten-GigabitEthernet1/0/2-srv1] xconnect vsi test

[BEB1-Ten-GigabitEthernet1/0/2-srv1] quit

[BEB1] quit

4.     Configure the customer-side settings on BEB 2 in the same way you configure BEB 1. (Details not shown.)

5.     Enable NSR for SPBM on the BCB.

<BCB> system-view

[BCB] spbm

[BCB-spbm] non-stop-routing

[BCB-spbm] quit

Verifying the configuration

1.     Trigger an active/standby switchover on the BCB. (Details not shown.)

2.     Verify that the BEBs are unaware of the ongoing active/standby switchover:

# Verify that the BEB has adjacency with the BCB. This example uses BEB 1.

<BEB1> display spbm peer

                           Peer information for SPBM

                           -------------------------

 

System ID         Port                        Circuit ID    State    Holdtime

0011.2200.1401    XGE1/0/1                    1             Up       28s

# Verify that the network topology information has not changed on the BEB.

<BEB1> display spbm lsdb

                         Database information for SPBM

                         -----------------------------

LSP ID: * - Local LSP

 

LSP ID                Seq Num      Checksum      Holdtime      Length  Overload

-------------------------------------------------------------------------------

0011.2200.1101.00-00* 0x00000002   0x7bf8        1180          93      0

0011.2200.1201.00-00  0x00000002   0xa9e         1186          93      0

0011.2200.1401.00-00  0x00000002   0xa23b        1190          93      0

# Verify that the unicast MAC-in-MAC tunnel has not changed between the BEBs.

<BEB1> display spbm unicast-pw

System ID            I-SID      B-MAC            B-VLAN   Port

0011.2200.1201       1000       0011-2200-1201   10       XGE1/0/1

# Verify that the multicast MAC-in-MAC tunnel has not changed between the BEBs.

<BEB1> display spbm multicast-pw

System ID            I-SID      MAC address      B-VLAN   Port

0011.2200.1101       1000       0306-4000-03e8   10       XGE1/0/1

# Verify that the unicast routes have not changed on the BEB.

<BEB1> display spbm unicast-fdb

Flags: E-Egress T-Transit

 

System ID            B-MAC            B-VLAN   Flags  Port

0011.2200.1201       0011-2200-1201   10       T      XGE1/0/1

0011.2200.1401       0011-2200-1401   10       T      XGE1/0/1

# Verify that the multicast routes have not changed on the BEB.

<BEB1> display spbm multicast-fdb

Flags: E-Egress T-Transit

 

System ID            MAC address      B-VLAN   Flags  Port

0011.2200.1101       0306-4000-03e8   10       T      XGE1/0/1

0011.2200.1201       0306-4001-03e8   10       E      N/A

  • Cloud & AI
  • InterConnect
  • Intelligent Computing
  • Security
  • SMB Products
  • Intelligent Terminal Products
  • Product Support Services
  • Technical Service Solutions
All Services
  • Resource Center
  • Policy
  • Online Help
All Support
  • Become a Partner
  • Partner Resources
  • Partner Business Management
All Partners
  • Profile
  • News & Events
  • Online Exhibition Center
  • Contact Us
All About Us
新华三官网