国家 / 地区

09-MPLS配置指导

08-MPLS L3VPN配置

本章节下载  (2.36 MB)

docurl=/cn/Service/Document_Software/Document_Center/Routers/Catalog/SR_Router/SR6600-X/Configure/Operation_Manual/H3C_SR6600_SR6600-X_CG(V7)-6W102/09/201512/903409_30005_0.htm

08-MPLS L3VPN配置

目 

1 MPLS L3VPN

1.1 MPLS L3VPN简介

1.1.1 MPLS L3VPN基本网络架构

1.1.2 MPLS L3VPN基本概念

1.1.3 MPLS L3VPN路由信息发布

1.1.4 MPLS L3VPN报文转发

1.1.5 MPLS L3VPN常见组网方案

1.1.6 跨域VPN

1.1.7 运营商的运营商

1.1.8 嵌套VPN

1.1.9 多角色主机

1.1.10 HoVPN

1.1.11 OSPF VPN扩展

1.1.12 BGP的AS号替换和SoO属性

1.1.13 MPLS L3VPN快速重路由

1.1.14 Multi-VPN-Instance CE

1.1.15 协议规范

1.2 MPLS L3VPN配置任务简介

1.3 配置基本MPLS L3VPN

1.3.1 基本MPLS L3VPN配置任务简介

1.3.2 配置准备

1.3.3 配置VPN实例

1.3.4 配置PE-CE间路由交换

1.3.5 配置PE-PE间的路由交换

1.3.6 配置BGP VPNv4路由

1.4 配置跨域VPN

1.4.1 配置跨域VPN-OptionA

1.4.2 配置跨域VPN-OptionB

1.4.3 配置跨域VPN-OptionC

1.5 配置嵌套VPN

1.6 配置多角色主机

1.6.1 配置并应用策略路由

1.6.2 配置静态路由

1.7 配置HoVPN

1.8 配置OSPF伪连接

1.8.1 配置准备

1.8.2 配置Loopback接口

1.8.3 发布Loopback接口的路由

1.8.4 创建伪连接

1.9 配置Multi-VPN-Instance CE

1.9.1 配置MCE与站点之间的路由交换

1.9.2 配置MCE与PE之间的路由交换

1.10 配置Egress PE上私网路由标签操作方式

1.11 配置BGP的AS号替换和SoO属性

1.12 配置MPLS L3VPN快速重路由

1.13 开启告警功能

1.14 MPLS L3VPN显示和维护

1.14.1 复位BGP会话

1.14.2 显示MPLS L3VPN的运行状态

1.15 MPLS L3VPN典型配置举例

1.15.1 配置MPLS L3VPN示例

1.15.2 配置MPLS L3VPN采用GRE隧道示例

1.15.3 配置Hub&Spoke组网示例

1.15.4 配置跨域VPN-OptionA方式示例

1.15.5 配置跨域VPN-OptionB方式示例

1.15.6 配置跨域VPN-OptionC方式示例

1.15.7 配置运营商的运营商(相同AS)示例

1.15.8 配置运营商的运营商(不同AS)示例

1.15.9 配置嵌套VPN示例

1.15.10 配置多角色主机示例

1.15.11 配置HoVPN示例

1.15.12 配置OSPF伪连接

1.15.13 配置MCE示例

1.15.14 配置BGP的AS号替换

1.15.15 配置BGP的AS号替换和SoO属性

1.15.16 配置VPNv4路由备份VPNv4路由方式的MPLS L3VPN快速重路由

1.15.17 配置VPNv4路由备份IPv4路由方式的MPLS L3VPN快速重路由

1.15.18 配置IPv4路由备份VPNv4路由方式的MPLS L3VPN快速重路由

2 IPv6 MPLS L3VPN

2.1 IPv6 MPLS L3VPN简介

2.1.1 IPv6 MPLS L3VPN概述

2.1.2 IPv6 MPLS L3VPN的报文转发

2.1.3 IPv6 MPLS L3VPN的路由发布

2.1.4 IPv6 MPLS L3VPN支持的组网方案及功能

2.1.5 协议规范

2.2 IPv6 MPLS L3VPN配置任务简介

2.3 配置基本IPv6 MPLS L3VPN

2.3.1 基本IPv6 MPLS L3VPN配置任务简介

2.3.2 配置准备

2.3.3 配置VPN实例

2.3.4 配置PE-CE间的路由交换

2.3.5 配置PE-PE间的路由交换

2.3.6 配置BGP VPNv6路由

2.4 配置IPv6跨域VPN

2.4.1 配置准备

2.4.2 配置IPv6跨域VPN-OptionA

2.4.3 配置IPv6跨域VPN-OptionC

2.5 配置多角色主机

2.5.1 配置并应用策略路由

2.5.2 配置静态路由

2.6 配置OSPFv3伪连接

2.6.1 配置Loopback接口

2.6.2 发布Loopback接口的路由

2.6.3 创建伪连接

2.7 配置Multi-VPN-Instance CE

2.7.1 配置准备

2.7.2 配置MCE与站点之间的路由交换

2.7.3 配置MCE与PE之间的路由交换

2.8 配置BGP的AS号替换和SoO属性

2.9 IPv6 MPLS L3VPN显示和维护

2.9.1 复位BGP会话

2.9.2 显示IPv6 MPLS L3VPN的运行状态

2.10 IPv6 MPLS L3VPN典型配置举例

2.10.1 配置IPv6 MPLS L3VPN示例

2.10.2 配置IPv6 MPLS L3VPN采用GRE隧道示例

2.10.3 配置IPv6跨域VPN-OptionA方式示例

2.10.4 配置IPv6跨域VPN-OptionC方式示例

2.10.5 配置运营商的运营商(相同AS)示例

2.10.6 配置多角色主机示例

2.10.7 配置OSPFv3伪连接

2.10.8 配置IPv6 MCE示例

2.10.9 配置BGP的AS号替换

2.10.10 配置BGP的AS号替换和SoO属性

 


1 MPLS L3VPN

1.1  MPLS L3VPN简介

MPLS L3VPN是一种三层VPN技术,它使用BGP在服务提供商骨干网上发布用户站点的私网路由,使用MPLS在服务提供商骨干网上转发用户站点之间的私网报文,从而实现通过服务提供商的骨干网连接属于同一个VPN、位于不同地理位置的用户站点。

MPLS L3VPN组网方式灵活,可扩展性好,并能够方便地支持MPLS QoS和MPLS TE,因此得到了广泛的应用。

1.1.1  MPLS L3VPN基本网络架构

图1-1 MPLS L3VPN基本网络架构

 

MPLS L3VPN的基本网络架构如图1-1所示。MPLS L3VPN网络中设备的角色分为以下几种:

·     CE(Customer Edge,用户网络边缘)设备:直接与服务提供商网络相连的用户网络侧设备。CE“感知”不到VPN的存在,也不需要支持MPLS。

·     PE(Provider Edge,服务提供商网络边缘)设备:与CE相连的服务提供商网络侧设备。在MPLS L3VPN网络中,对VPN的所有处理都发生在PE上。

·     P(Provider,服务提供商网络)设备:服务提供商网络中的骨干设备,不与CE直接相连。P只需要在骨干网中将用户网络报文转发给正确的远端PE,不需要维护和处理VPN信息。

1.1.2  MPLS L3VPN基本概念

1. Site

Site(站点)的含义可以从下述几个方面理解:

·     Site是指相互之间具备IP连通性的一组IP系统,并且这组IP系统的IP连通性不需通过服务提供商网络实现;

·     Site的划分是根据设备的拓扑关系,而不是地理位置,尽管在大多数情况下一个Site中的设备地理位置相邻;

·     一个Site中的设备可以属于多个VPN,换言之,一个Site可以属于多个VPN;

·     Site通过CE连接到服务提供商网络,一个Site可以包含多个CE,但一个CE只属于一个Site。

对于多个连接到同一服务提供商网络的Site,通过制定策略,可以将它们划分为不同的集合(set),只有属于相同集合的Sites之间才能通过服务提供商网络互访,这种集合就是VPN。

2. VPN实例

在MPLS L3VPN中,不同VPN之间的路由隔离通过VPN实例(VPN-instance)实现,VPN实例又称为VRF(Virtual Routing and Forwarding,虚拟路由和转发)实例。PE上每个VPN实例都有相对独立的路由表和LFIB(Label Forwarding Information Base,标签转发信息库),确保VPN数据的独立性和安全性。

PE通过将与Site连接的接口与VPN实例关联,实现该Site与VPN实例的关联。一个Site只能与一个VPN实例关联;不同的Site可以关联同一个VPN实例。VPN实例中包含了与其关联的Site所属的所有VPN的成员关系和路由规则等信息。

VPN实例中的信息包括:LFIB、IP路由表、与VPN实例关联的接口以及VPN实例的管理信息。VPN实例的管理信息包括RD(Route Distinguisher,路由标识符)、VPN Target属性、路由过滤策略等。

3. VPN-IPv4地址

VPN是一种私有网络,不同的VPN独立管理自己使用的地址范围,也称为地址空间(Address Space)。不同VPN的地址空间可能会在一定范围内重合,比如,VPN 1和VPN 2都使用了10.110.10.0/24网段的地址,这就发生了地址空间重叠(Overlapping Address Spaces)。

传统BGP无法正确处理地址空间重叠的VPN的路由。假设VPN 1和VPN 2都使用了10.110.10.0/24网段的地址,并各自发布了一条去往此网段的路由,BGP只会选择其中一条路由,从而导致去往另一个VPN的路由丢失。

MPLS L3VPN使用VPN-IPv4地址(又称为VPNv4地址)来解决上述问题。

图1-2 VPN-IPv4地址结构

 

图1-2所示,VPN-IPv4地址共有12个字节,包括8字节的RD和4字节的IPv4地址前缀。其中,RD的作用是将其添加到一个IPv4地址前缀前,使之成为全局唯一的VPN-IPv4地址前缀。PE从CE接收到普通IPv4路由后,为IPv4地址前缀添加RD,将其转变为VPN-IPv4路由,并使用MP-BGP(Multiprotocol Border Gateway Protocol,多协议边界网关协议)将VPN-IPv4路由发布给对端PE,从而实现通过RD区分不同VPN的相同IPv4地址前缀。

RD有三种格式,通过2字节的Type字段区分:

·     Type为0时,Administrator子字段占2字节,Assigned number子字段占4字节,格式为:16位自治系统号:32位用户自定义数字,例如:100:1。

·     Type为1时,Administrator子字段占4字节,Assigned number子字段占2字节,格式为:32位IPv4地址:16位用户自定义数字,例如:172.1.1.1:1。

·     Type为2时,Administrator子字段占4字节,Assigned number子字段占2字节,格式为:32位自治系统号:16位用户自定义数字,其中的自治系统号最小值为65536,例如:65536:1。

为了保证VPN-IPv4地址全球唯一,建议不要将Administrator子字段的值设置为私有AS号或私有IP地址。

4. VPN Target属性

MPLS L3VPN使用BGP扩展团体属性——VPN Target(也称为Route Target)来控制VPN路由信息的发布。

VPN Target属性分为如下两类:

·     Export Target属性:本地PE从与自己直接相连的Site学习到IPv4路由后,将其转换为VPN-IPv4路由,为VPN-IPv4路由设置Export Target属性并发布给其它PE。

·     Import Target属性:PE在接收到其它PE发布的VPN-IPv4路由时,检查其Export Target属性。只有当此属性与PE上某个VPN实例的Import Target属性匹配时,才把路由加入到该VPN实例的路由表中。

VPN Target属性定义了一条VPN-IPv4路由可以为哪些Site所接收,PE可以接收哪些Site发送来的路由。

与RD类似,VPN Target也有三种格式:

·     16位自治系统号:32位用户自定义数字,例如:100:1。

·     32位IPv4地址:16位用户自定义数字,例如:172.1.1.1:1。

·     32位自治系统号:16位用户自定义数字,其中的自治系统号最小值为65536,例如:65536:1。

5. MP-BGP

MP-BGP(Multiprotocol Border Gateway Protocol,多协议边界网关协议)是对BGP协议的扩展,它可以为多种网络层协议传递路由信息,如IPv4组播、IPv6单播、IPv6组播、VPN-IPv4等。

在MPLS L3VPN中,PE之间利用MP-BGP来传递VPN-IPv4路由,既实现了VPN的私网路由在不同站点之间的传递,又确保了私网路由只在VPN内发布。

1.1.3  MPLS L3VPN路由信息发布

在MPLS L3VPN组网中,VPN路由信息的发布涉及CE和PE。P路由器只维护骨干网的路由,不需要了解任何VPN路由信息。PE路由器只维护与它直接相连的VPN的路由信息,不维护所有VPN路由。

VPN路由信息的发布过程包括三部分:本地CE到入口PE、入口PE到出口PE、出口PE到远端CE。完成这三部分后,本地CE与远端CE之间将建立可达路由。

下面分别对这三部分进行介绍。

1. 本地CE到入口PE的路由信息交换

CE使用静态路由、RIP、OSPF、IS-IS、EBGP或IBGP,将本站点的VPN路由发布给PE。CE发布给PE的是标准的IPv4路由。

2. 入口PE到出口PE的路由信息交换

PE从CE学到VPN路由信息后,将其存放到相应的VPN实例的路由表中。PE为这些标准IPv4路由增加RD和Export Target属性,并为这些路由分配MPLS标签,形成VPN-IPv4路由。

入口PE通过MP-BGP把VPN-IPv4路由(包括Export Target属性和MPLS标签)发布给出口PE。出口PE将VPN-IPv4路由的Export Target属性与自己维护的VPN实例的Import Target属性进行匹配。如果出口PE上某个VPN实例的Import Target属性与路由的Export Target属性中存在相同的属性值,则将该路由加入到该VPN实例的路由表中。

3. 出口PE到远端CE的路由信息交换

与本地CE到入口PE的路由信息交换相同,远端CE可以通过多种方式从出口PE学习VPN路由,包括静态路由、RIP、OSPF、IS-IS、EBGP和IBGP。

1.1.4  MPLS L3VPN报文转发

在基本MPLS L3VPN应用中(不包括跨域的情况),PE转发VPN报文时为报文封装如下内容:

·     外层标记:又称为公网标记。VPN报文在骨干网上沿着公网隧道从一端PE传送到另一端PE。公网隧道可以是LSP隧道、MPLS TE隧道和GRE隧道。当公网隧道为LSP隧道或MPLS TE隧道时,公网标记为MPLS标签,称为公网标签;当公网隧道为GRE隧道时,公网标记为GRE封装。

·     内层标签:又称为私网标签,用来指示报文应被送到哪个Site。对端PE根据私网标签可以确定报文所属的VPN实例,通过查找该VPN实例的路由表,将报文正确地转发到相应的Site。PE之间在通过MP-BGP发布VPN-IPv4路由时,将为私网路由分配的私网标签通告给对端PE。

图1-3 VPN报文转发示意图

 

图1-3所示,VPN报文的转发过程为:

(1)     Site 1发出一个目的地址为1.1.1.2的IP报文,由CE 1将报文发送至PE 1。

(2)     PE 1根据报文到达的接口及目的地址查找对应VPN实例的路由表,根据匹配的路由表项为报文添加私网标签,并查找到报文的下一跳为PE 2。

(3)     PE 1在公网路由表内查找到达PE 2的路由,根据查找结果为报文封装公网标签或进行GRE封装,并沿着公网隧道转发该报文。

(4)     MPLS网络内,P根据报文的公网标记转发报文,将报文转发到PE 2。如果公网标记为MPLS标签,则报文在到达PE 2的前一跳时剥离公网标签,仅保留私网标签;如果为GRE封装,则由PE 2剥离报文的GRE封装。

(5)     PE 2根据私网标签确定报文所属的VPN实例,通过查找该VPN实例的路由表,确定报文的出接口,剥离私网标签后将报文转发至CE 2。

(6)     CE 2根据正常的IP转发过程将报文转发给目的主机。

属于同一个VPN的两个Site连接到同一个PE时,PE不需要为VPN报文封装外层标记和内层标签,只需查找对应VPN实例的路由表,找到报文的出接口,将报文转发至相应的Site。

GRE的详细介绍,请参见“三层技术-IP业务配置指导”中的“GRE”。

1.1.5  MPLS L3VPN常见组网方案

在MPLS L3VPN网络中,通过VPN Target属性来控制VPN路由信息在各Site之间的发布和接收。VPN Export Target和Import Target的设置相互独立,并且都可以设置多个值,能够实现灵活的VPN访问控制,从而实现多种VPN组网方案。

1. 基本的VPN组网方案

最简单的情况下,一个VPN中的所有用户形成闭合用户群,相互之间能够进行流量转发,VPN中的用户不能与任何本VPN以外的用户通信。

对于这种组网,需要为每个VPN分配一个VPN Target,作为该VPN的Export Target和Import Target,且此VPN Target不能被其他VPN使用。

图1-4 基本的VPN组网方案

 

图1-4所示,PE上为VPN 1分配的VPN Target值为100:1,为VPN 2分配的VPN Target值为200:1。VPN 1的两个Site之间可以互访,VPN 2的两个Site之间也可以互访,但VPN 1和VPN 2的Site之间不能互访。

2. Hub&Spoke组网方案

使用Hub&Spoke组网方案可以实现在VPN中设置中心访问控制设备,其它用户的互访都通过中心访问控制设备进行,通过中心设备对其他设备之间的互访进行监控和过滤等。其中:

·     中心访问控制设备所在的站点称为Hub站点;该站点的CE称为Hub-CE;与该站点连接的PE称为Hub-PE。

·     其他分支站点称为Spoke站点;分支站点的CE称为Spoke-CE;与分支站点连接的PE称为Spoke-PE。

对于这种组网,VPN Target设置规则为:

·     Spoke-PE:Export Target为“Spoke”,Import Target为“Hub”;

·     Hub-PE:Hub-PE上需要使用两个接口或子接口连接Hub-CE,两个接口或子接口分别属于不同的VPN实例。一个VPN实例用于接收Spoke-PE发来的路由,其Import Target为“Spoke”;另一个VPN实例用于向Spoke-PE发布路由,其Export Target为“Hub”。

按照上述规则设置VPN Target,可以实现:

·     Hub-PE能够接收所有Spoke-PE发布的VPN-IPv4路由。

·     Hub-PE发布的VPN-IPv4路由能够为所有Spoke-PE接收。

·     Hub-PE将从Spoke-PE学到的路由发布给其他Spoke-PE,因此,Spoke站点之间可以通过Hub站点互访。

·     任意Spoke-PE的Import Target属性不与其它Spoke-PE的Export Target属性相同。因此,任意两个Spoke-PE之间不直接发布VPN-IPv4路由,Spoke站点之间不能直接互访。

图1-5 Hub&Spoke组网方案

 

图1-5所示,以站点1向站点2发布路由为例,Spoke站点之间的路由发布过程为:

(1)     Spoke-CE 1将站点1内的私网路由发布给Spoke-PE 1。

(2)     Spoke-PE 1将该路由转变为VPN-IPv4路由,通过MP-BGP发布给Hub-PE。

(3)     Hub-PE将该路由学习到VPN 1-in的路由表中,并将其转变为标准IPv4路由发布给Hub-CE。

(4)     Hub-CE将该路由再次发布给Hub-PE,Hub-PE将其学习到VPN 1-out的路由表中。

(5)     Hub-PE将VPN 1-out路由表中的私网路由转变为VPN-IPv4路由,通过MP-BGP发布给Spoke-PE 2。

(6)     Spoke-PE 2将VPN-IPv4路由转变为标准IPv4路由发布到站点2。

Spoke站点之间通过Hub站点完成路由交互后,Spoke站点之间的通信将通过Hub站点进行。

3. Extranet组网方案

如果一个VPN用户希望提供本VPN的部分站点资源给非本VPN的用户访问,可以使用Extranet组网方案。

对于这种组网,需要访问共享站点的VPN实例的Export Target必须包含在共享站点VPN实例的Import Target中,而其Import Target必须包含在共享站点VPN实例的Export Target中。

图1-6 Extranet组网方案

 

图1-6中,VPN 1的Site 3为共享站点,通过设置VPN Target实现:

·     PE 3能够接受PE 1和PE 2发布的VPN-IPv4路由。

·     PE 3发布的VPN-IPv4路由能够为PE 1和PE 2接受。

基于以上两点,VPN 1的Site 1和Site 3之间能够互访,VPN 2的Site 2和VPN 1的Site 3之间也能够互访。

PE 3不把从PE 1接收的VPN-IPv4路由发布给PE 2,也不把从PE 2接收的VPN-IPv4路由发布给PE 1(从IBGP邻居学来的路由不会再发送给其他的IBGP邻居)。因此,VPN 1的Site 1和VPN 2的Site 2之间不能互访。

1.1.6  跨域VPN

实际组网应用中,某用户一个VPN的多个Site可能会连接到使用不同AS号的多个服务提供商,或者连接到一个服务提供商的多个AS。这种VPN跨越多个自治系统的应用方式被称为跨域VPN(Multi-AS VPN)。

跨域VPN解决方案分为以下几种:

·     ASBR间建立VRF-to-VRF连接(VRF-to-VRF connections between ASBRs),也称为Inter-Provider Option A。

·     ASBR间通过MP-EBGP发布VPN-IPv4路由(EBGP redistribution of labeled VPN-IPv4 routes between ASBRs),也称为Inter-Provider Option B;

·     PE间通过MP-EBGP发布VPN-IPv4路由(Multi-hop EBGP redistribution of labeled VPN-IPv4 routes between PE routers),也称为Inter-Provider Option C。

1. ASBR间建立VRF-to-VRF连接

这种方式下,两个AS的PE路由器作为各自所在自治系统的边界路由器ASBR,通过多个子接口直接相连。两个PE都把对方当作自己的CE设备,通过EBGP会话向对端发布普通的IPv4单播路由,并将需要跨域的VPN实例与至少一个子接口关联。

图1-7 ASBR间建立VRF-to-VRF连接组网图

 

图1-7所示,VPN 1内路由从CE 1发布到CE 3的过程为:

(1)     PE 1从CE 1学习到私网路由后,通过MP-IBGP发布给ASBR 1。

(2)     ASBR 1比较Route Target属性,将PE 1发布的VPN-IPv4路由学习到相应的VPN实例路由表中,并作为IPv4单播路由通过EBGP会话发布给它的CE设备,即ASBR 2。

(3)     ASBR 2从它的CE(ASBR 1)接收到IPv4单播路由后,将其加入与接收路由的子接口绑定的VPN实例的路由表中,并通过MP-IBGP发布给PE 3。

(4)     PE 3接收到路由后,将其发布给CE 3。

报文转发过程中,在AS内部作为VPN报文,采用两层标签的方式转发;在ASBR之间则采用IP转发方式。

这种方式的优点是实现简单,两个作为ASBR的PE之间不需要为跨域进行特殊配置。缺点是可扩展性差:作为ASBR的PE需要管理所有VPN的路由,为每个VPN创建VPN实例,导致PE上的VPN-IPv4路由数量过于庞大;并且,PE上需要为每个跨域的VPN单独创建子接口,提高了对PE设备的要求。

2. ASBR间通过MP-EBGP发布VPN-IPv4路由

这种方式下,两个ASBR通过MP-EBGP交换它们从各自AS的PE路由器接收的VPN-IPv4路由。

图1-8 ASBR间通过MP-EBGP发布VPN-IPv4路由组网图

 

图1-8所示,VPN 1内路由从CE 1发布到CE 3的过程为:

(1)     PE 1从CE 1学习到私网路由后,通过MP-IBGP发布给ASBR 1。假设PE 1为私网路由分配的私网标签为L1。

(2)     ASBR 1接收PE 1发布的VPN-IPv4路由,并作为VPN-IPv4路由通过MP-EBGP将其发布给ASBR 2。ASBR 1发布该路由时,将路由的下一跳地址改为自身的地址,为路由分配新的私网标签L2,并为新的私网标签L2和旧的私网标签L1建立关联。

(3)     ASBR 2从ASBR 1接收到VPN-IPv4路由后,通过MP-IBGP将路由发布给PE 3。ASBR 2在发布路由时,将路由的下一跳地址改为自身的地址,为路由分配新的私网标签L3,并为新的私网标签L3和旧的私网标签L2建立关联。

(4)     PE 3接收到路由后,将其发布给CE 3。

完成路由发布后,报文从CE 3到CE 1的转发过程为:

(1)     PE 3接收到报文后,为其封装两层标签——私网标签L3和从PE 3到ASBR 2的公网隧道的标签,并将报文转发给ASBR 2。

(2)     ASBR 2剥离公网标签后,将私网标签L3替换为L2,并将报文发送给ASBR 1。ASBR 1和ASBR 2之间的报文只带一层私网标签。

(3)     ASBR 1将私网标签L2替换为L1,添加从ASBR 1到PE 1的公网隧道的标签,并将报文转发给PE 1。

(4)     PE 1剥离公网标签、私网标签后,将报文转发给CE 1。

采用这种方式时,ASBR需要接收所有跨域VPN的私网路由,因此,ASBR上不能根据Route Target属性对接收的VPN-IPv4路由进行过滤。

这种方式的扩展性优于Inter-Provider Option A。缺点是ASBR仍然需要参与VPN私网路由的维护和发布。

3. PE间通过MP-EBGP发布VPN-IPv4路由

这种方式下,不同AS的PE之间建立多跳MP-EBGP会话,通过该会话直接在PE之间发布VPN-IPv4路由。此时,一端PE上需要具有到达远端PE的路由以及该路由对应的标签,以便在两个PE之间建立跨越AS的公网隧道。Inter-Provider Option C通过如下方式建立公网隧道:

·     利用LDP等标签分发协议在AS内建立公网隧道;

·     ASBR通过BGP发布带标签的IPv4单播路由,实现跨域AS域建立公网隧道。带标签的IPv4单播路由是指为IPv4单播路由分配MPLS标签,并同时发布IPv4单播路由和标签,以便将路由和标签关联。

图1-9 PE间通过Multi-hop MP-EBGP发布VPN-IPv4路由组网图

 

图1-9所示,VPN 1内路由从CE 1发布到CE 3的过程比较简单,为:PE 1从CE 1学习到私网路由后,将其作为VPN-IPv4路由通过多跳MP-EBGP会话发布给PE 3(假设PE 1为CE 1分配的私网标签为Lx);PE 3将私网路由发布给CE 3。

Inter-Provider Option C的难点是建立跨越AS域的公网隧道。以PE 3到PE 1为例,公网隧道建立过程为:

(1)     在AS 100内,通过LDP等标签分发协议建立从ASBR 1到PE 1的公网隧道。假设ASBR 1上该公网隧道的出标签为L1。

(2)     ASBR 1通过EBGP会话向ASBR 2发布带标签的IPv4单播路由,将PE 1地址对应的路由及ASBR 1为其分配的标签(假设为L2)发布给ASBR 2,路由的下一跳地址为ASBR 1。这样,就建立了从ASBR 2到ASBR 1的公网隧道,ASBR 1上公网隧道的入标签为L2。

(3)     ASBR 2通过IBGP会话向PE 3发布带标签的IPv4单播路由,将PE 1地址对应的路由及ASBR 2为其分配的标签(假设为L3)发布给PE 3,路由的下一跳地址为ASBR 2。这样,就建立了从PE 3直接到ASBR 2的公网隧道,ASBR 2上公网隧道的入标签为L3,出标签为L2。

(4)     MPLS报文不能直接从PE 3转发给ASBR 2,在AS 200内,还需要通过LDP等标签分发协议逐跳建立另一条从PE 3到ASBR 2的公网隧道。假设PE 3上该公网隧道的出标签为Lv。

完成路由发布和公网隧道的建立后,报文从CE 3转发到CE 1的过程为:

(1)     PE 3接收到CE 3发送的报文后,查找路由表,发现下一跳地址为PE 1,私网标签为Lx,则为报文封装标签Lx;PE 3继续查找到达PE 1的路由,下一跳为ASBR 2,标签为L3,则在标签Lx外封装一层标签L3;PE 3查找到达ASBR 2的路由,出标签为Lv,则在标签L3外再封装标签Lv。

(2)     在AS 200内,路由器根据最外层标签,将报文转发到ASBR 2。

(3)     ASBR 2剥离最外层标签,将L3替换为L2,并将报文转发给ASBR 1。

(4)     ASBR 1将L2替换为L1,并转发报文。

(5)     在AS 100内,路由器根据最外层标签,将报文转发到PE 1。

(6)     PE 1剥离最外层标签,根据私网标签Lx,将报文转发给CE 1。

图1-10所示,为提高可扩展性,可以在每个AS中指定一个RR(Route Reflector,路由反射器),与同一AS的PE交换VPN-IPv4路由信息,由RR保存所有VPN-IPv4路由。两个AS的RR之间建立多跳MP-EBGP会话,通告VPN-IPv4路由。

图1-10 采用RR的跨域VPN OptionC方式组网图

 

Inter-Provider Option A和Inter-Provider Option B都需要ASBR参与VPN-IPv4路由的维护和发布。当每个AS都有大量的VPN路由需要交换时,ASBR很可能成为阻碍网络进一步扩展的瓶颈。Inter-Provider Option C中PE之间直接交换VPN-IPv4路由,具有很好的可扩展性。

1.1.7  运营商的运营商

MPLS L3VPN服务提供商的用户可能也是一个服务提供商。这种情况下,前者称为提供商运营商(Provider Carrier)或一级运营商(First Carrier),后者称为客户运营商(Customer Carrier)或二级运营商(Second Carrier)。这种组网模型称为运营商的运营商(Carriers’ carriers)。

运营商的运营商通过在二级运营商的路由器之间建立BGP会话直接交互二级运营商连接的用户网络的路由,实现一级运营商不引入二级运营商的用户网络路由,只引入二级运营商的骨干网路由,从而大大减少一级运营商网络中需要维护的路由数量,提高可扩展性。

由于一级运营商不引入二级运营商的用户网络路由,为了保证用户网络的报文能够跨越一级运营商传递,在一级运行商PE和接入一级运营商的二级运营商CE(在二级运营商内其为PE设备,以下简称为二级运营商CE)之间需要为二级运营商骨干网的路由分配标签。一级运行商PE和二级运营商CE之间需要进行如下配置:

·     如果一级运营商PE与二级运营商CE位于同一个AS内,则它们之间配置IGP和LDP;否则,它们之间配置MP-EBGP,通过MP-EBGP为PE与CE之间交换的IPv4单播路由分配标签。

·     无论二者是否位于同一个AS,二级运营商CE上都需要使能MPLS。并且,二级运营商CE上虽然有二级运营商的用户网络路由,但它们并不把这些路由发布给一级运营商PE,只在二级运营商PE之间交换。

二级运营商可能只是普通ISP,也可能是MPLS L3VPN服务提供商。

·     如图1-11所示,二级运营商是普通ISP时,其PE不需要运行MPLS,与二级运营商CE之间运行IGP。PE 3和PE 4之间通过IBGP会话交换二级运营商的用户网络路由(IPv4单播路由)。

图1-11 二级运营商是ISP

 

·     如图1-12所示,二级运营商是MPLS L3VPN服务提供商时,其PE也需要运行MPLS,与二级运营商CE之间运行IGP和LDP。PE 3和PE 4之间通过MP-IBGP会话交换二级运营商的用户网络路由(VPN-IPv4路由)。

图1-12 二级运营商是MPLS L3VPN服务提供商

 

提示

 

1.1.8  嵌套VPN

1. 简介

嵌套VPN通过在MPLS L3VPN的PE和CE之间传递VPNv4路由,使得用户可以管理自己内部的VPN,根据实际需要在用户网络内部进一步划分VPN,运营商不参与用户内部VPN的管理。如图1-13所示,用户网络在运营商MPLS VPN网络上所属的VPN为VPN A,在用户网络内部划分子VPN:VPN A-1和VPN A-2。运营商PE设备把用户网络当作普通VPN用户对待,不参与子VPN的划分。运营商CE设备(CE 1和CE 2)和运营商PE设备之间传递包括子VPN路由信息的VPNv4路由,从而实现用户网络内部子VPN路由信息的传递。

嵌套VPN支持对称组网方式和非对称组网方式,即属于同一用户网络的不同Site包括的用户内部VPN数目可以相同,也可以不同。嵌套VPN还支持用户内部VPN的多层嵌套。

图1-13 嵌套VPN组网应用

 

2. 路由信息的传播过程

嵌套VPN中,路由信息的传播过程为:

(1)     用户PE从用户CE接收到私网路由后,通过MP-BGP将VPN-IPv4路由发布给运营商CE设备。

(2)     运营商CE设备通过MP-BGP将VPN-IPv4路由发布给运营商的PE设备。

(3)     运营商的PE设备收到VPN-IPv4路由后,保留用户网络内部的VPN信息,并附加用户在运营商网络上的MPLS VPN属性,即将该VPN-IPv4路由的RD更换为用户所处运营商网络VPN的RD,同时将用户所处运营商网络VPN的Export Target添加到路由的扩展团体属性列表中。运营商的PE设备维护用户网络内部的VPN信息。

(4)     运营商的PE设备向其他运营商PE设备发布这些携带综合VPN信息的VPN-IPv4路由。

(5)     其他的运营商PE设备收到VPN-IPv4路由后,与本地VPN的Import Target进行匹配,每个VPN接收属于自己的路由,并将路由发布给运营商CE设备。如果运营商PE和运营商CE设备之间是IPv4连接(如CE 7和CE 8),则直接发布IPv4路由;如果是VPN-IPv4连接(如CE 1和CE 2),则表示通过私网连接的是一个用户MPLS VPN网络,运营商PE向运营商CE发布VPN-IPv4路由。

(6)     用户PE通过运营商CE接收到VPN-IPv4路由后,与本地VPN的Import Target进行匹配,每个VPN接收属于自己的路由,并发布给自己连接的用户CE设备(如图1-13中的CE 3、CE 4、CE 5和CE 6)。

1.1.9  多角色主机

Site所属的VPN由PE上连接Site的接口关联的VPN实例决定,即PE从同一个接口接收到的来自Site的报文都通过同一个VPN实例转发。在实际组网中,Site内的某些主机或服务器可能需要访问多个VPN,而其他主机或服务器只需访问某个VPN。虽然可以通过设置多个逻辑接口来实现上述需求,但会增加额外的配置负担,使用起来也有局限性。

多角色主机功能通过在PE上配置策略路由,可以使得来自Site内某些主机或服务器的报文可以访问多个VPN。这些主机或服务器称为多角色主机。

图1-14 多角色主机示意图

 

图1-14所示,多角色主机组网中,PE上需要进行如下配置:

·     将连接Site的接口与某个VPN实例关联。

·     配置策略路由,实现对于来自多角色主机的报文,在关联VPN实例的路由表内查找不到路由时,在其它VPN实例的路由表内查找路由,从而保证Site发送给PE的报文不仅可以转发到关联的VPN,还可以转发到其它的VPN。

·     为其它的VPN实例配置静态路由,指定到达多角色主机的路由的下一跳为关联VPN实例内CE的IP地址,从而实现PE将其它VPN发送的报文转发到该Site。

在多角色主机组网中,应保证多角色主机所能访问的所有VPN内IP地址不能重叠。

1.1.10  HoVPN

HoVPN(Hierarchy of VPN,分层VPN),又称为HoPE(Hierarchy of PE,分层PE),用来避免PE成为网络的瓶颈,以便于大规模部署VPN网络。

HoVPN将PE划分为UPE(Underlayer PE or User-end PE,下层PE或用户侧PE)和SPE(Superstratum PE or Service Provider-end PE,上层PE或运营商侧PE)。UPE和SPE分工不同,二者构成分层式PE,共同完成传统上一个PE的功能。分层式PE可以同普通PE共存于一个MPLS网络。

图1-15 HoVPN的基本结构

 

图1-15所示,UPE和SPE的功能分别为:

·     UPE直接连接用户网络,主要完成用户接入功能。UPE维护其直接相连的VPN Site的路由,但不维护VPN中其它远程Site的路由或仅维护它们的聚合路由;UPE为其直接相连的Site的路由分配内层标签,并通过MP-BGP随VPN路由发布此标签给SPE。UPE的路由容量和转发性能较低,但接入能力强。

·     SPE连接UPE并位于运营商网络内部,主要完成VPN路由的管理和发布。SPE维护其通过UPE连接的VPN所有路由,包括本地和远程Site的路由,SPE将路由信息发布给UPE,并携带标签。SPE发布的路由信息可以是VPN实例的缺省路由(或聚合路由),也可以是通过路由策略的路由信息。通过后者可以实现对同一VPN下不同站点之间互访的控制。SPE的路由表容量大,转发性能强,但接口资源较少。

SPE和UPE之间运行MP-IBGP或MP-EBGP。采用MP-IBGP时,SPE需要作为多个UPE的路由反射器,在UPE之间反射路由。

HoVPN支持分层式PE的嵌套:

·     一个分层式PE可以作为UPE,同另一个SPE组成新的分层式PE;

·     一个分层式PE可以作为SPE,同多个UPE组成新的分层式PE;

分层式PE的嵌套可以进行多次。在分层式PE的嵌套中,SPE和UPE是相对的概念,上层PE相对于下层就是SPE,下层PE相对于上层就是UPE。

图1-16 分层式PE的嵌套

 

图1-16是一个三层的分层式PE,称中间的PE为MPE(Middle-level PE)。SPE和MPE之间,以及MPE和UPE之间,均运行MP-BGP。MP-BGP为上层PE发布下层PE上的所有VPN路由,为下层PE发布上层PE的VPN实例缺省路由或通过路由策略的VPN路由。SPE维护了这个分层式PE接入的所有Site的VPN路由,路由数目最多;UPE只维护它所直接连接的Site的VPN路由,路由数目最少;MPE的路由数目介于SPE和UPE之间。

1.1.11  OSPF VPN扩展

本节重点介绍OSPF对VPN的扩展,如果需要了解OSPF的基本知识,请参见“三层技术-IP路由配置指导”中的“OSPF”。

1. PE上的OSPF多实例

在PE-CE间运行OSPF交互私网路由时,PE必须支持OSPF多实例,即每个OSPF进程与一个VPN实例绑定,通过该OSPF进程学习到的路由添加到对应VPN实例的路由表中,以实现不同VPN实例路由的隔离。

2. PE和CE间的OSPF区域配置

PE与CE之间的OSPF区域可以是非骨干区域,也可以是骨干区域。

在OSPF VPN扩展应用中,MPLS VPN骨干网被看作是骨干区域area 0。由于OSPF要求骨干区域连续,因此,所有站点的area 0必须与MPLS VPN骨干网相连(物理连通或通过Virtual-link实现逻辑上的连通)。

3. BGP/OSPF交互

如果在PE和CE间运行OSPF,则PE上需要将PE之间传递的BGP路由引入到OSPF路由中,再将该路由通过OSPF发布给CE。这样就会导致即使不同的站点属于同一个OSPF路由域,在一个站点学到的路由,也将作为外部路由发布给另一站点。通过为属于同一个OSPF路由域的站点配置相同的域ID(Domain ID),可以解决上述问题。

图1-17 BGP/OSPF交互示意图

 

图1-17为例,CE 11、CE 21和CE 22属于同一个VPN,且属于同一个OSPF路由域。配置Domain ID前,VPN 1内路由从CE 11发布到CE 21和CE 22的过程为:首先在PE 1上将CE 11的OSPF路由引入BGP;然后通过BGP将这些VPN路由发布给PE 2;在PE 2上将BGP路由引入到OSPF,再通过AS External LSA(即Type-5 LSA)或NSSA External LSA(即Type-7 LSA)发布给CE 21和CE 22。

配置Domain ID后,路由传递过程为:在PE 1上将OSPF路由引入到BGP时,将Domain ID附加到BGP VPNv4路由上,作为BGP的扩展团体属性传递给PE 2。PE 2接收到BGP路由后,将本地配置的Domain ID与路由中携带的Domain ID进行比较。如果相同,且为区域内或区域间路由,则在PE 2将路由重新引入到OSPF时,该路由作为Network Summary LSA(即Type-3 LSA)发布给CE 21和CE 22;否则,该路由将作为AS External LSA(即Type-5 LSA)或NSSA External LSA(即Type-7 LSA)发布给CE 21和CE 22。

4. 路由环路的检测与避免

图1-18 路由环路检测与避免示意图

 

图1-18所示,同一个站点连接到多个不同PE的情况下,当一个PE通过OSPF向站点发布从MP-BGP学习到的私网路由时,该路由可能被另一个PE接收到,造成路由环路。

OSPF VPN扩展通过如下方法避免路由环路:

·     对于Type-3 LSA,通过DN(Down Bit)标识位避免路由环路:当PE设备将BGP路由引入OSPF,并生成Type-3 LSA时,PE为生成的LSA设置DN位。其他PE接收到CE发布的Type-3 LSA后,如果该LSA的DN位置位,则计算路由时忽略该LSA,从而避免再次通过BGP协议发布该路由造成路由环路。

·     对于Type-5 LSA和Type-7 LSA,通过Route Tag(VPN引入路由的外部路由标记)避免路由环路:为连接同一站点的PE设备配置相同的Route Tag。一台PE设备将BGP路由引入OSPF,并生成Type-5 LSA或Type-7 LSA时,为该Type-5或Type-7 LSA添加本地配置的外部路由标记。其他PE接收到CE发布的Type-5或Type-7 LSA后,将其中的外部路由标记值与本地配置的值进行比较。如果相同,则在进行路由计算时忽略该LSA,从而避免路由环路。

5. OSPF伪连接

图1-19所示:VPN 1的两个站点之间存在两条路由:

·     通过PE连接的路由:该路由为区域间(域ID相同)或外部路由(未配置域ID或域ID不同)。

·     CE之间直接相连的路由:该路由为区域内路由,称为backdoor链路。

前者的优先级低于后者,导致VPN流量总是通过backdoor链路转发,而不走骨干网。为了避免这种情况发生,可以在PE路由器之间建立OSPF伪连接(Sham-link),使经过MPLS VPN骨干网的路由也成为OSPF区域内路由。通过调整度量值,使得VPN流量通过骨干网中的Sham-link转发。

图1-19 Sham-link应用示意图

 

Sham-link是VPN内的一条虚拟点到点链路,该链路在Type-1 LSA中发布。Sham-link通过源IP地址和目的IP地址来唯一标识。源IP地址和目的IP地址分别为本端PE和远端PE上属于该VPN的地址,通常情况下采用32位掩码的Loopback接口地址。

为了保证一端PE的VPN实例路由表中具有到达Sham-link目的IP地址的路由,确保路由可达,PE上需要将Sham-link的源IP地址作为VPN-IPv4地址通过MP-BGP发布;为了避免路由环路,Sham-link路由不会通过MP-BGP发布。即,一端PE只会通过MP-BGP发布Sham-link的源IP地址,不会发布Sham-link的目的IP地址。

1.1.12  BGP的AS号替换和SoO属性

在MPLS L3VPN中,如果PE和CE之间运行EBGP,由于BGP使用AS号检测路由环路,为保证路由信息的正确发送,需要为物理位置不同的站点分配不同的AS号。

如果物理位置不同的CE复用相同的AS号,则需要在PE上配置BGP的AS号替换功能,当PE向指定对等体(CE)发布路由时,如果路由的AS_PATH中存在CE所在的AS号,则PE将该AS号替换成PE的AS号后,再发布该路由,以保证私网路由能够正确发布。

说明

使能BGP的AS号替换功能后,PE向对等体组中所有已建立连接的CE重新发送所有路由,并对发送路由中的AS_PATH属性按上述规则替换。

 

图1-20 BGP AS号替换和SoO应用示意图

 

图1-20中,Site 1和Site 2都使用AS号800,在PE 2上使能针对CE 2的AS号替换功能。当CE 1发来的Update信息从PE 2发布给CE 2时,PE 2发现AS_PATH中存在与CE 2相同的AS号800,就把它替换为自己的AS号100,这样,CE 2就可以正确接收CE 1的路由信息。

PE使用不同接口连接同一站点的多个CE时,如图1-20中的CE 2和CE 3,使用BGP的AS号替换功能,会导致CE 3发布的路由通过PE 2和CE 2再次发布到Site 2,引起路由环路。此时,通过在PE 2上为对等体CE 2和CE 3配置相同的SoO属性,可以避免路由环路。PE 2从CE 2或CE 3接收到路由后为路由添加SoO属性;向CE 2或CE 3发布路由时检查路由的SoO属性。由于CE 3发布路由的SoO属性与CE 2的SoO属性相同,PE 2不会将该路由发布给CE 2,从而避免路由环路。

SoO属性的详细介绍,请参见“三层技术-IP路由配置指导”中的“BGP”。

1.1.13  MPLS L3VPN快速重路由

MPLS L3VPN FRR(Fast Reroute,快速重路由)功能用来在CE双归属(即一个CE同时连接两个PE)的组网环境下,通过为流量转发的主路径指定一条备份路径,并通过BFD检测主路径的状态,实现当主路径出现故障时,将流量迅速切换到备份路径,大大缩短了故障恢复时间。在使用备份路径转发报文的同时,会重新进行路由优选,优选完毕后,使用新的最优路由来转发报文。

MPLS L3VPN快速重路由的路径备份方式分为如下几种。

(1)     VPNv4路由备份VPNv4路由

图1-21 VPNv4路由备份VPNv4路由示意图

 

图1-21所示,在入节点PE 1上指定VPN 1的FRR备份下一跳为PE 3,则PE 1接收到PE 2和PE 3发布的到达CE 2的VPNv4路由后,PE 1会记录这两条VPNv4路由,并将PE 2发布的VPNv4路由当作主路径,PE 3发布的VPNv4路由当作备份路径。

在PE 1上配置BFD检测LSP或MPLS TE隧道功能,通过BFD检测PE 1到PE 2之间公网隧道的状态。当公网隧道正常工作时,CE 1和CE 2通过主路径CE 1—PE 1—PE 2—CE 2通信。当PE 1检测到该公网隧道出现故障时,PE 1将通过备份路径CE 1—PE 1—PE 3—CE 2转发CE 1访问CE 2的流量。

在这种备份方式中,PE 1负责主路径检测和流量切换。

BFD检测LSP或MPLS TE隧道功能的详细介绍,请参见“MPLS配置指导”中“MPLS OAM”。

(2)     VPNv4路由备份IPv4路由

图1-22 VPNv4路由备份IPv4路由示意图

 

图1-22所示,在出节点PE 2上指定VPN 1的FRR备份下一跳为PE 3,则PE 2接收到CE 2发布的IPv4路由和PE 3发布的到达CE 2的VPNv4路由后,PE 2会记录这两条路由,并将CE 2发布的IPv4路由当作主路径,PE 3发布的到达CE 2的VPNv4路由当作备份路径。同时,PE 2通过ARP或Echo方式的BFD会话检测PE 2—CE 2这条路径的状态。当此路径正常工作时,CE 1和CE 2通过主路径CE 1—PE 1—PE 2—CE 2通信。当PE 2检测到路径PE 2—CE 2出现故障时,快速切换到路径PE 2—PE 3—CE 2,CE 1将通过备份路径CE 1—PE 1—PE 2—PE 3—CE 2访问CE 2。从而,避免路由收敛(切换到路径CE 1—PE 1—PE 3—CE 2)前,流量转发中断。

在这种备份方式中,PE 2负责主路径检测和流量切换。

(3)     IPv4路由备份VPNv4路由

图1-23 IPv4路由备份VPNv4路由示意图

 

图1-23所示,在PE 2上指定VPN 1的FRR备份下一跳为CE 2,则PE 2接收到CE 2发布的IPv4路由和PE 3发布的到达CE 2的VPNv4路由后,PE 2会记录这两条路由,并将PE 3发布的到达CE 2的VPNv4路由当作主路径,CE 2发布的IPv4路由当作备份路径。

在PE 2上配置BFD检测LSP或MPLS TE隧道功能,通过BFD检测PE 2到PE 3之间公网隧道的状态。当公网隧道正常工作时,CE 1和CE 2通过主路径CE 1—PE 1—PE 2—PE 3—CE 2通信。当PE 2检测到该公网隧道出现故障时,PE 2将通过备份路径CE 1—PE 1—PE 2—CE 2转发CE 1访问CE 2的流量。

在这种备份方式中,PE 2负责主路径检测和流量切换。

1.1.14  Multi-VPN-Instance CE

传统的MPLS L3VPN架构要求每个用户站点单独使用一个CE与PE相连,如图1-1所示。随着用户业务的不断细化和安全需求的提高,一个私有网络内的用户可能需要划分成多个VPN,不同VPN用户间的业务需要完全隔离。此时,为每个VPN单独配置一台CE将加大用户的设备开支和维护成本;而多个VPN共用一台CE,使用同一个路由表项,又无法保证数据的安全性。

MCE(Multi-VPN-Instance CE,多VPN实例CE)功能通过在CE设备上建立VPN实例,为不同的VPN提供逻辑独立的路由转发表和地址空间,使多个VPN可以共享一个CE。该CE设备称为MCE设备。MCE功能有效地解决了多VPN网络带来的用户数据安全与网络成本之间的矛盾。

图1-24 MCE工作原理示意图

 

图1-24所示,MCE组网的关键是在MCE与用户站点之间、MCE与PE之间交互私网路由,并将其正确学习到相应VPN实例的路由表中。其他处理与传统的MPLS L3VPN相同,此处不再赘述。

·     MCE与用户站点之间的私网路由交互:在MCE设备上为VPN 1和VPN 2创建VPN实例,并使用Vlan-interface2接口与VPN 1进行绑定、Vlan-interface3接口与VPN 2进行绑定。在接收路由信息时,MCE设备根据路由的接收接口,即可判断该路由信息的来源,并将其维护到对应VPN实例的路由表中。

·     MCE与PE之间的私网路由交互:MCE与PE 1之间通过Trunk链路连接,并允许VLAN 2和VLAN 3的报文携带VLAN Tag传输。在PE 1上为VPN 1和VPN 2创建VPN实例,并将连接MCE的VLAN接口(Vlan-interface2接口和Vlan-interface3接口)与VPN实例绑定,绑定的方式与MCE设备一致。从而,使得MCE与PE之间交互的私网路由可以准确地学习到对应VPN实例的路由表中。

MCE与VPN站点之间、MCE与PE之间可以使用静态路由、RIP、OSPF、IS-IS、EBGP或IBGP交换路由信息。

说明

MCE设备上可以配置DHCP服务器或DHCP中继功能,实现为私网内的DHCP客户端动态分配IP地址。MCE作为DHCP服务器时,不同私网的IP地址空间不能重叠。

 

1.1.15  协议规范

与MPLS L3VPN相关的协议规范有:

·     RFC 3107:Carrying Label Information in BGP-4

·     RFC 4360:BGP Extended Communities Attribute

·     RFC 4364:BGP/MPLS IP Virtual Private Networks (VPNs)

·     RFC 4577:OSPF as the Provider/Customer Edge Protocol for BGP/MPLS IP Virtual Private Networks (VPNs)

1.2  MPLS L3VPN配置任务简介

表1-1 MPLS L3VPN配置任务简介

配置任务

说明

详细配置

配置基本MPLS L3VPN

必选

1.3 

配置跨域VPN

可选

1.4 

配置嵌套VPN

可选

1.5 

配置多角色主机

可选

1.6 

配置HoVPN

可选

1.7 

配置OSPF伪连接

可选

1.8 

配置Multi-VPN-Instance CE

可选

1.9 

配置Egress PE上私网路由标签操作方式

可选

1.10 

配置BGP的AS号替换和SoO属性

可选

1.11 

配置MPLS L3VPN快速重路由

可选

1.12 

开启告警功能

可选

1.13 

 

1.3  配置基本MPLS L3VPN

1.3.1  基本MPLS L3VPN配置任务简介

配置MPLS L3VPN的关键在于管理VPN私网路由在MPLS骨干网上的发布,包括PE-CE间的路由发布管理以及PE-PE间的路由发布管理。

表1-2 基本MPLS L3VPN配置任务简介

配置任务

说明

详细配置

配置VPN实例

创建VPN实例

必选

1.3.3  1.

配置VPN实例与接口关联

必选

1.3.3  2.

配置VPN实例的路由相关属性

可选

1.3.3  3.  

配置PE-CE间的路由交换

必选

1.3.4 

配置PE-PE间的路由交换

必选

1.3.5 

配置BGP VPNv4路由

可选

1.3.6 

 

1.3.2  配置准备

在配置基本MPLS L3VPN之前,需完成以下任务:

·     对MPLS骨干网(PE、P)配置IGP,实现骨干网的IP连通性

·     对MPLS骨干网(PE、P)配置MPLS基本能力

·     对MPLS骨干网(PE、P)配置MPLS LDP,建立LDP LSP

1.3.3  配置VPN实例

VPN实例不仅可以将VPN私网路由与公网路由隔离,还可以隔离不同VPN实例的路由,这一特点使得VPN实例的使用不限于MPLS L3VPN。

配置VPN实例的操作是在PE或MCE设备上进行的。

1. 创建VPN实例

VPN实例在实现中与Site关联。VPN实例不是直接对应于VPN,一个VPN实例综合了和它所对应Site的VPN成员关系和路由规则。

表1-3 创建VPN实例

操作

命令

说明

进入系统视图

system-view

-

创建VPN实例,并进入VPN实例视图

ip vpn-instance vpn-instance-name

缺省情况下,设备上不存在任何VPN实例

PE上最多可配置的VPN实例数量为4095

配置VPN实例的RD

route-distinguisher route-distinguisher

缺省情况下,没有指定VPN实例的RD

(可选)配置VPN实例的描述信息

description text

缺省情况下,未配置VPN实例的描述信息

(可选)配置VPN实例的ID

vpn-id vpn-id

缺省情况下,没有指定VPN实例的ID

(可选)配置VPN实例的SNMP上下文

snmp context-name context-name

缺省情况下,没有指定VPN实例的SNMP上下文

 

2. 置VPN实例与接口关联

提示

执行ip binding vpn-instance命令将删除接口上已经配置的IP地址,因此需要重新配置接口的IP地址。

 

VPN实例配置完成后,还需要与连接CE的接口进行关联。

表1-4 配置VPN实例与接口关联

操作

命令

说明

进入系统视图

system-view

-

进入接口视图

interface interface-type interface-number

-

将当前接口与VPN实例关联

ip binding vpn-instance vpn-instance-name

缺省情况下,接口不关联任何VPN实例

 

3. 配置VPN实例的路由相关属性

表1-5 配置VPN实例的路由相关属性

操作

命令

说明

 

进入系统视图

system-view

-

 

进入VPN实例视图或IPv4 VPN视图

进入VPN实例视图

ip vpn-instance vpn-instance-name

VPN实例视图下配置的路由相关属性既可以用于IPv4 VPN,也可以用于IPv6 VPN

既可以在VPN实例视图下,也可以在IPv4 VPN视图下,配置IPv4 VPN的路由相关属性。如果同时在两个视图下配置了路由相关属性,则IPv4 VPN采用IPv4 VPN视图下配置的路由相关属性

进入IPv4 VPN视图

ip vpn-instance vpn-instance-name

address-family ipv4

配置VPN实例的VPN Target

vpn-target vpn-target&<1-8> [ both | export-extcommunity | import-extcommunity ]

缺省情况下,没有指定VPN实例的VPN Target

 

配置VPN实例支持的最大激活路由前缀数

routing-table limit number { warn-threshold | simply-alert }

缺省情况下,一个VPN实例可以支持的最大激活路由前缀数为1000100

配置一个VPN实例可以支持的最大激活路由前缀数,可以防止PE路由器上保存过多的激活路由前缀信息

一个PE路由器最多可以支持的激活路由前缀数为1~1000100

 

对当前VPN实例应用入方向路由策略

import route-policy route-policy

缺省情况下,允许所有VPN Target属性匹配的路由通过

执行本配置时,需要创建路由策略。路由策略的详细介绍,请参见“三层技术-IP路由配置指导”中的“路由策略”

 

对当前VPN实例应用出方向路由策略

export route-policy route-policy

缺省情况下,不对发布的路由进行过滤

执行本配置时,需要创建路由策略。路由策略的详细介绍,请参见“三层技术-IP路由配置指导”中的“路由策略”

 

配置VPN实例的隧道策略

tnl-policy tunnel-policy-name

缺省情况下,隧道策略为按照LSP隧道->GRE隧道->CR-LSP隧道的优先级顺序选择隧道,负载分担条数为1

为VPN实例配置隧道策略之前必须先创建隧道策略,否则将采用缺省策略

隧道策略的创建及配置方法,请参见“MPLS配置指导”中的“隧道策略”

 

 

1.3.4  配置PE-CE间路由交换

配置PE-CE间路由交换可以使用静态路由、RIP、OSPF、IS-IS、EBGP和IBGP路由协议。具体采用哪种协议请根据配置的实际需要。

1. 配置PE-CE间使用静态路由

表1-6 配置PE-CE间使用静态路由

操作

命令

说明

进入系统视图

system-view

-

为指定VPN实例配置静态路由

ip route-static vpn-instance s-vpn-instance-name dest-address { mask-length | mask } { interface-type interface-number [ next-hop-address ] | next-hop-address [ public ] [ track track-entry-number ] | vpn-instance d-vpn-instance-name next-hop-address [ track track-entry-number ] } [ permanent ] [ preference preference-value ] [ tag tag-value ] [ description description-text ]

缺省情况下,没有配置静态路由

该配置在PE上进行,CE上的配置方法与普通静态路由相同

静态路由的详细配置请参见“三层技术-IP路由配置指导”中的“静态路由”

 

2. 配置PE-CE间使用RIP

一个RIP进程只能属于一个VPN实例。如果在启动RIP进程时不绑定到VPN实例,则该进程属于公网进程。有关RIP的介绍和详细配置,请参见“三层技术-IP路由配置指导”中的“RIP”。

表1-7 配置PE-CE间使用RIP

操作

命令

说明

进入系统视图

system-view

-

创建PE-CE间的RIP实例,并进入RIP视图

rip [ process-id ] vpn-instance vpn-instance-name

该配置在PE上进行,CE上配置普通RIP即可

在指定网段上使能RIP

network network-address

缺省情况下,没有网段使能RIP

 

3. 配置PE-CE间使用OSPF

VPN实例绑定的OSPF进程中不使用系统视图下配置的公网Router ID,因此用户需要在启动进程时手工配置Router ID,或者所要绑定的VPN实例中至少有一个接口配置了IP地址。

一个OSPF进程只能属于一个VPN实例。如果在启动OSPF进程时不绑定到VPN实例,则该进程属于公网进程。有关OSPF的介绍和详细配置,请参见“三层技术-IP路由配置指导”中的“OSPF”。

表1-8 配置PE-CE间使用OSPF

操作

命令

说明

进入系统视图

system-view

-

创建PE-CE间的OSPF实例,并进入OSPF视图

ospf [ process-id | router-id router-id | vpn-instance vpn-instance-name ] *

该配置在PE上进行,CE上配置普通OSPF即可

一个VPN实例中最多可以启动的OSPF进程数为1000

删除VPN实例后,相关的所有OSPF进程也将全部被删除

(可选)配置OSPF域标识符

domain-id domain-id [ secondary ]

缺省情况下,OSPF域标识符为0

该配置在PE上进行

OSPF进程的域ID包含在此进程生成的路由中,在将OSPF路由引入BGP时,域ID被附加到BGP路由上,作为BGP的扩展团体属性传递

配置域ID时需要注意:

·     每个OSPF进程只能配置一个域ID,不同进程的域ID可以相同

·     同一个VPN的所有OSPF进程应配置相同的域ID,以保证路由发布的正确性

(可选)配置OSPF扩展团体属性的类型编码

ext-community-type { domain-id type-code1 | router-id type-code2 | route-type type-code3 }

缺省情况下,OSPF扩展团体属性Domain ID的类型编码是0x0005,Router ID的类型编码是0x0107,Route Type的类型编码是0x0306

该配置在PE上进行

配置OSPF区域,并进入OSPF区域视图

area area-id

缺省情况下,没有配置OSPF区域

配置区域所包含的网段并在指定网段的接口上使能OSPF

network ip-address wildcard-mask

缺省情况下,接口不属于任何区域且OSPF功能处于关闭状态

 

4. 配置PE-CE间使用IS-IS

一个IS-IS进程只能属于一个VPN实例。如果在启动IS-IS进程时不绑定到VPN实例,则该进程属于公网进程。有关IS-IS的介绍和详细配置,请参见“三层技术-IP路由配置指导”中的“IS-IS”。

表1-9 配置PE-CE间使用IS-IS

操作

命令

说明

进入系统视图

system-view

-

创建PE-CE间的IS-IS实例,并进入IS-IS视图

isis [ process-id ] vpn-instance vpn-instance-name

该配置在PE上进行,CE上配置普通IS-IS即可

配置网络实体名称

network-entity net

缺省情况下,没有配置NET

退回系统视图

quit

-

进入接口视图

interface interface-type interface-number

-

配置指定接口上使能IS-IS路由进程

isis enable [ process-id ]

缺省情况下,IS-IS功能在接口上处于关闭状态,且没有任何IS-IS进程与其关联

 

5. 配置PE-CE间使用EBGP

(1)     PE上的配置

表1-10 PE上的配置

操作

命令

说明

进入系统视图

system-view

-

进入BGP视图

bgp as-number

-

进入BGP-VPN实例视图

ip vpn-instance vpn-instance-name

BGP-VPN实例视图下的配置任务与BGP视图下的相同,有关介绍和详细配置,请参见“三层技术-IP路由配置指导”中的“BGP”

将CE配置为VPN私网EBGP对等体

peer { group-name | ip-address [ mask-length ] } as-number as-number

缺省情况下,设备上不存在任何BGP对等体

BGP的配置中有对等体和对等体组的配置,有关介绍和详细说明请参见“三层技术-IP路由配置指导”中的“BGP”。本章中不将对等体和对等体组加以区分

创建BGP-VPN IPv4单播地址族,并进入BGP-VPN IPv4单播地址族视图

address-family ipv4 [ unicast ]

缺省情况下,没有创建BGP-VPN IPv4单播地址族

使能本地路由器与指定对等体/对等体组交换IPv4单播路由信息的能力

peer { group-name | ip-address [ mask-length ] } enable

缺省情况下,本地路由器不能与对等体交换IPv4单播路由信息

引入本端CE路由

import-route protocol [ { process-id | all-processes } [ allow-direct | med med-value | route-policy route-policy-name ] * ]

PE需要将到本端CE的路由引入VPN路由表中,以发布给对端PE

(可选)配置允许本地AS号在所接收的路由的AS_PATH属性中出现,并可同时配置允许重复的次数

peer { group-name | ip-address [ mask-length ] } allow-as-loop [ number ]

缺省情况下,不允许本地AS号在接收路由的AS_PATH属性中出现

通常情况下,BGP通过AS号检测路由环路。但在Hub&Spoke组网方式下,如果在PE和CE之间运行EBGP,当PE将路由信息通告给CE时带上本自治系统的AS号,再从CE接收路由更新时,路由更新消息中会带有本自治系统的AS号,这样PE就不能接收这条路由更新信息,此时需要配置允许路由环路

 

(2)     CE上的配置

表1-11 CE上的配置

操作

命令

说明

进入系统视图

system-view

-

进入BGP视图

bgp as-number

-

将PE配置为对等体

peer { group-name | ip-address [ mask-length ] } as-number as-number

缺省情况下,设备上不存在任何BGP对等体

创建BGP IPv4单播地址族,并进入BGP IPv4单播地址族视图

address-family ipv4 [ unicast ]

缺省情况下,没有创建BGP IPv4单播地址族

使能本地路由器与指定对等体/对等体组交换IPv4单播路由信息的能力

peer { group-name | ip-address [ mask-length ] } enable

缺省情况下,本地路由器不能与对等体交换IPv4单播路由信息

(可选)配置路由引入

import-route protocol [ { process-id | all-processes } [ allow-direct | med med-value | route-policy route-policy-name ] * ]

CE需要将自己所能到达的VPN网段地址发布给接入的PE,通过PE发布给对端CE

 

6. 配置PE-CE间使用IBGP

提示

PE和CE之间使用IBGP路由协议只适用于基本的MPLS L3VPN组网环境,Hub&Spoke、Extranet、跨域VPN、运营商的运营商、嵌套VPN和HoVPN组网中,PE和CE之间不能配置IBGP。

 

(1)     PE上的配置

表1-12 PE上的配置

操作

命令

说明

进入系统视图

system-view

-

进入BGP视图

bgp as-number

-

进入BGP-VPN实例视图

ip vpn-instance vpn-instance-name

BGP-VPN实例视图下的配置任务与BGP视图下的相同,有关介绍和详细配置,请参见“三层技术-IP路由配置指导”中的“BGP”

将CE配置为VPN私网IBGP对等体

peer { group-name | ip-address [ mask-length ] } as-number as-number

缺省情况下,设备上不存在任何BGP对等体

创建BGP-VPN IPv4单播地址族,并进入BGP-VPN IPv4单播地址族视图

address-family ipv4 [ unicast ]

缺省情况下,没有创建BGP-VPN IPv4单播地址族

使能本地路由器与指定对等体/对等体组交换IPv4单播路由信息的能力

peer { group-name | ip-address [ mask-length ] } enable

缺省情况下,本地路由器不能与对等体交换IPv4单播路由信息

将CE配置为路由反射器的客户端

peer { group-name | ip-address [ mask-length ] } reflect-client

缺省情况下,没有配置路由发射器及其客户端

缺省情况下PE不会向IBGP对等体(包括VPNv4的IBGP对等体)发送从IBGP对等体CE学习的路由,只有将CE配置为路由反射器的客户端后,才能向其它IBGP对等体发送从该CE学习的路由

配置路由反射器后不会修改路由的下一跳。如果需要修改下一跳,则需在路由的接收端通过入策略进行修改

(可选)允许路由反射器在客户机之间反射路由

reflect between-clients

缺省情况下,允许路由反射器在客户机之间反射路由

(可选)配置路由反射器的集群ID

reflector cluster-id { cluster-id | ip-address }

缺省情况下,每个路由反射器都使用自己的Router ID作为集群ID

如果一个集群中配置了多个路由反射器,请使用本命令为所有的路由反射器配置相同的集群ID,以避免产生路由环路

 

(2)     CE上的配置

表1-13 CE上的配置

操作

命令

说明

进入系统视图

system-view

-

进入BGP视图

bgp as-number

-

将PE配置为IBGP对等体

peer { group-name | ip-address [ mask-length ] } as-number as-number

缺省情况下,设备上不存在任何BGP对等体

创建BGP IPv4单播地址族,并进入BGP IPv4单播地址族视图

address-family ipv4 [ unicast ]

缺省情况下,没有创建BGP IPv4单播地址族

使能本地路由器与指定对等体/对等体组交换IPv4单播路由信息的能力

peer { group-name | ip-address [ mask-length ] } enable

缺省情况下,本地路由器不能与对等体交换IPv4单播路由信息

(可选)配置路由引入

import-route protocol [ { process-id | all-processes } [ allow-direct | med med-value | route-policy route-policy-name ] * ]

CE需要将自己所能到达的VPN网段地址发布给接入的PE,通过PE发布给对端CE

 

1.3.5  配置PE-PE间的路由交换

表1-14 配置PE-PE间的路由交换

操作

命令

说明

进入系统视图

system-view

-

进入BGP视图

bgp as-number

-

将对端PE配置为对等体

peer { group-name | ip-address [ mask-length ] } as-number as-number

缺省情况下,设备上不存在任何BGP对等体

指定与对等体/对等体组创建BGP会话时建立TCP连接使用的源接口

peer { group-name | ip-address [ mask-length ] } connect-interface interface-type interface-number

缺省情况下,BGP使用到达BGP对等体的最佳路由的出接口作为与对等体/对等体组创建BGP会话时建立TCP连接的源接口

创建BGP VPNv4地址族,并进入BGP VPNv4地址族视图

address-family vpnv4

缺省情况下,没有创建BGP VPNv4地址族

使能本地路由器与指定对等体交换VPNv4路由信息的能力

peer { group-name | ip-address [ mask-length ] } enable

缺省情况下,本地路由器不能与对等体交换VPNv4路由信息

 

1.3.6  配置BGP VPNv4路由

BGP VPNv4路由的属性需要在BGP VPNv4地址族视图下配置。BGP VPNv4路由的很多配置都与BGP IPv4单播路由相同,详细配置请参见“三层技术-IP路由配置指导”中的“BGP”。

表1-15 配置BGP VPNv4路由

操作

命令

说明

进入系统视图

system-view

-

进入BGP视图

bgp as-number

-

进入BGP VPNv4地址族视图

address-family vpnv4

-

配置对发布的路由信息进行过滤

filter-policy { acl-number | prefix-list prefix-list-name } export [ protocol process-id ]

缺省情况下,不对发布的路由信息进行过滤

配置对接收的路由信息进行过滤

filter-policy { acl-number | prefix-list prefix-list-name } import

缺省情况下,不对接收的路由信息进行过滤

配置向对等体/对等体组发布团体属性

peer { group-name | ip-address [ mask-length ] } advertise-community

缺省情况下,不向对等体/对等体组发布团体属性

配置对于从对等体/对等体组接收的路由,允许本地AS号在接收路由的AS_PATH属性中出现,并配置允许出现的次数

peer { group-name | ip-address [ mask-length ] } allow-as-loop [ number ]

缺省情况下,不允许本地AS号在接收路由的AS_PATH属性中出现

为对等体/对等体组设置基于AS路径过滤列表的BGP路由过滤策略

peer { group-name | ip-address [ mask-length ] } as-path-acl as-path-acl-number { export | import }

缺省情况下,没有设置基于AS路径过滤列表的BGP路由过滤策略

向对等体/对等体组发送缺省路由

peer { group-name | ip-address [ mask-length ] } default-route-advertise vpn-instance vpn-instance-name

缺省情况下,不向对等体/对等体组发送缺省路由

为对等体/对等体组设置基于ACL的BGP路由过滤策略

peer { group-name | ip-address [ mask-length ] } filter-policy acl-number { export | import }

缺省情况下,没有设置基于ACL的BGP路由过滤策略

保存所有来自指定对等体/对等体组的原始路由更新信息,不管这些路由是否通过了路由策略的过滤

peer { group-name | ip-address [ mask-length ] } keep-all-routes

缺省情况下,不保存来自对等体/对等体组的原始路由更新信息

配置向对等体/对等体组发布路由时,将下一跳属性修改为自身的地址

peer { group-name | ip-address [ mask-length ] } next-hop-local

缺省情况下,向对等体/对等体组发布路由时,将下一跳属性修改为自身的地址

配置向EBGP对等体/对等体组发布路由时不改变下一跳

peer { group-name | ip-address [ mask-length ] } next-hop-invariable

缺省情况下,向EBGP对等体/对等体组发布路由时会将下一跳改为自己的地址

如果在跨域VPN OptionC组网中使用路由反射器RR(Route Reflector)通告VPNv4路由,则需要在路由反射器上通过本命令配置向EBGP邻居和反射客户通告VPNv4路由时,不改变路由的下一跳,以保证私网路由下一跳不会被修改

为从指定对等体/对等体组接收的路由分配首选值

peer { group-name | ip-address [ mask-length ] } preferred-value value

缺省情况下,从对等体/对等体组接收的路由的首选值为0

为对等体/对等体组设置基于地址前缀列表的BGP路由过滤策略

peer { group-name | ip-address [ mask-length ] } prefix-list prefix-list-name { export | import }

缺省情况下,没有设置基于地址前缀列表的BGP路由过滤策略

配置向指定EBGP对等体/对等体组发送BGP更新消息时只携带公有AS号,不携带私有AS号

peer { group-name | ip-address [ mask-length ] } public-as-only

缺省情况下,向EBGP对等体/对等体组发送BGP更新消息时,既可以携带公有AS号,又可以携带私有AS号

配置将本机作为路由反射器,并将对等体或对等体组作为路由反射器的客户

peer { group-name | ip-address [ mask-length ] } reflect-client

缺省情况下,没有配置路由反射器及其客户

设置允许从指定对等体/对等体组收到的路由数量

peer { group-name | ip-address [ mask-length ] } route-limit prefix-number [ { alert-only | discard | reconnect reconnect-time } | percentage-value ] *

缺省情况下,不限制从对等体/对等体组接收的路由数量

对来自对等体/对等体组的路由或发布给对等体/对等体组的路由应用路由策略

peer { group-name | ip-address [ mask-length ] } route-policy route-policy-name { export | import }

缺省情况下,没有为对等体/对等体组指定路由策略

对接收到的VPNv4路由使能VPN-Target过滤功能

policy vpn-target

缺省情况下,对接收到的VPNv4路由使能VPN-Target过滤功能

允许路由反射器在客户机之间反射路由

reflect between-clients

缺省情况下,允许路由反射器在客户机之间反射路由

配置路由反射器的集群ID

reflector cluster-id { cluster-id | ip-address }

缺省情况下,每个路由反射器都使用自己的Router ID作为集群ID

创建路由反射器的反射策略

rr-filter extended-community-number

缺省情况下,路由反射器不会对反射的路由进行过滤

为BGP对等体/对等体组配置SoO属性

peer { group-name | ip-address [ mask-length ] } soo site-of-origin

缺省情况下,没有为BGP对等体/对等体组配置SoO属性

 

1.4  配置跨域VPN

如果承载VPN路由的MPLS骨干网跨越多个AS,就需要配置跨域VPN。

跨域VPN有三种解决方案,详细描述请参见“1.1.6  跨域VPN”。请根据实际组网情况,选择合适的跨域VPN方案。

1.4.1  配置跨域VPN-OptionA

跨域VPN-OptionA的实现比较简单,当PE上的VPN数量及VPN路由数量都比较少时可以采用这种方案。跨域VPN-OptionA的配置可以描述为:对各AS分别进行基本MPLS L3VPN配置,对于ASBR,将对端ASBR看作自己的CE配置即可。即:跨域VPN-OptionA方式需要在PE和ASBR上分别配置VPN实例,前者用于接入CE,后者用于接入对端ASBR。配置方法请参见“1.3  配置基本MPLS L3VPN”。

在跨域VPN-OptionA方式中,对于同一个VPN,同一AS内的ASBR与PE的VPN实例的VPN Target应能匹配;不同AS的PE之间的VPN实例的VPN Target则不需要匹配。

1.4.2  配置跨域VPN-OptionB

跨域VPN-OptionB的配置主要包括以下内容:

·     PE上的配置:

配置基本MPLS L3VPN,并指定同一AS内的ASBR为MP-IBGP对等体。对于同一个VPN,不同AS的PE上为该VPN实例配置的VPN Target需要匹配。

·     ASBR上的配置:

¡     在连接AS内部路由器的接口上配置路由协议、使能MPLS能力、使能LDP能力,以便在AS内建立公网隧道。

¡     指定同一AS内的PE为MP-IBGP对等体,不同AS的ASBR为MP-EBGP对等体;

¡     配置不对VPNv4路由进行VPN Target过滤,使得ASBR可以保存所有VPNv4路由信息,以通告给对端ASBR;

¡     在ASBR之间使能MPLS能力,使其具有转发标签报文的能力,不需要配置MPLS LDP等标签分发协议。

配置跨域VPN-OptionB时,需要注意:ASBR在将VPNv4路由发布给MP-IBGP对等体时,始终会将下一跳修改为自身的地址,不受peer next-hop-local命令的控制。

PE的配置请参见“1.3  配置基本MPLS L3VPN”,以下配置是在ASBR上进行的。

表1-16 配置跨域VPN-OptionB的ASBR

操作

命令

说明

进入系统视图

system-view

-

进入连接AS内部路由器接口的接口视图

interface interface-type interface-number

-

使能接口的MPLS能力

mpls enable

缺省情况下,接口的MPLS能力处于关闭状态

使能接口的LDP能力

mpls ldp enable

缺省情况下,接口的LDP能力处于关闭状态

退回系统视图

quit

-

进入连接对端ASBR接口的接口视图

interface interface-type interface-number

-

使能接口的MPLS能力

mpls enable

缺省情况下,接口的MPLS能力处于关闭状态

退回系统视图

quit

-

进入BGP视图

bgp as-number

-

创建BGP对等体

peer { group-name | ip-address [ mask-length ] } as-number as-number

缺省情况下,设备上不存在任何BGP对等体

本配置中,需要将同一AS的PE配置为IBGP对等体,不同AS的ASBR配置为EBGP对等体

进入BGP VPNv4地址族视图

address-family vpnv4

-

使能本地路由器与同一AS的PE、不同AS的ASBR交换VPNv4路由信息的能力

peer { group-name | ip-address [ mask-length ] } enable

缺省情况下,本地路由器不能与对等体交换VPNv4路由信息

不对VPNv4路由进行VPN Target过滤

undo policy vpn-target

缺省情况下,PE对收到的VPNv4路由进行VPN Target过滤,通过过滤的路由会被加入到路由表中,没有通过过滤的路由将被丢弃

 

1.4.3  配置跨域VPN-OptionC

跨域VPN-OptionC的配置主要包括以下内容:

·     PE上的配置:

¡     配置基本MPLS L3VPN,并指定另一AS内的PE为MP-EBGP对等体。对于同一个VPN,不同AS的PE上为该VPN实例配置的VPN Target需要匹配。

¡     由于PE之间不是直连,因此需要配置peer ebgp-max-hop命令,允许本地路由器同非直连网络上的邻居建立EBGP会话。

¡     指定同一AS的ASBR为IBGP对等体,并使能二者之间交换带标签的IPv4单播路由的能力。

·     ASBR上的配置:

¡     在连接AS内部路由器的接口上配置路由协议、使能MPLS能力、使能LDP能力,以便在AS内建立公网隧道。

¡     指定同一AS内的PE为IBGP对等体,不同AS的ASBR为EBGP对等体,分别使能二者之间交换带标签的IPv4单播路由的能力。

¡     在ASBR之间使能MPLS能力,使其具有转发标签报文的能力,不需要配置MPLS LDP等标签分发协议。

¡     ASBR上还可以配置路由策略,来灵活控制向IBGP或EBGP对等体发布的哪些IPv4单播路由带有MPLS标签。

除了上述配置外,还需要在PE或ASBR上配置通过BGP发布PE地址对应的路由,配置方法请参见“三层技术-IP路由配置指导”中的“BGP”。

1. 配置PE

PE上基本MPLS L3VPN的配置方法请参见“1.3  配置基本MPLS L3VPN”,表1-17只罗列跨域VPN-OptionC中PE的特殊配置。

表1-17 配置PE

操作

命令

说明

进入系统视图

system-view

-

进入BGP视图

bgp as-number

-

配置本AS的ASBR为IBGP对等体

peer { group-name | ip-address [ mask-length ] } as-number as-number

缺省情况下,设备上不存在任何BGP对等体

将另一AS的PE配置为EBGP对等体

peer { group-name | ip-address [ mask-length ] } as-number as-number

缺省情况下,设备上不存在任何BGP对等体

创建BGP IPv4单播地址族,并进入BGP IPv4单播地址族视图

address-family ipv4 [ unicast ]

缺省情况下,没有创建BGP IPv4单播地址族

使能本地路由器与本AS的ASBR交换IPv4单播路由信息的能力

peer { group-name | ip-address [ mask-length ] } enable

缺省情况下,本地路由器不能与对等体交换IPv4单播路由信息

配置与本AS的ASBR之间能够交换带标签的IPv4路由

peer  { group-name | ip-address [ mask-length ] } label-route-capability

缺省情况下,不具有与对等体/对等体组交换带标签IPv4路由的能力

退回BGP视图

quit

-

进入BGP VPNv4地址族视图

address-family vpnv4

-

使能本地路由器与另一AS的PE交换VPNv4路由信息的能力

peer { group-name | ip-address [ mask-length ] } enable

缺省情况下,本地路由器不能与对等体交换VPNv4路由信息

(可选)配置向EBGP对等体发送路由时不改变下一跳

peer { group-name | ip-address [ mask-length ] } next-hop-invariable

该步骤用于使用RR通告VPNv4路由的情况:在RR上执行本配置,使得RR之间通告VPNv4路由时,路由的下一跳不会被改变

 

2. 配置ASBR

为了建立跨越AS域的公网隧道,ASBR需要为PE地址对应的路由分配MPLS标签,并同时发布该路由和标签。通常情况下,ASBR通过BGP发布的路由不仅包括PE地址,还包括其他路由。此时,可以通过配置路由策略,实现只对满足某些条件的路由分配标签,其它路由仍作为普通IPv4路由发布。

跨域VPN-OptionC中,路由策略常用的配置为:

·     if-match mpls-label:用来匹配带有MPLS标签的报文。

·     apply mpls-label:实现向对等体发布IPv4路由时,为其添加MPLS标签。本命令可以和if-match子句配合使用。例如,和if-match mpls-label配合使用时,表示如果报文中带有MPLS标签,则为其分配新的MPLS标签,并发布该路由及新分配的标签。

有关路由策略的详细介绍,请参见“三层技术-IP路由配置指导”中的“路由策略”。

表1-18 配置ASBR

操作

命令

说明

 

进入系统视图

system-view

-

 

(可选)创建路由策略,并进入路由策略视图

route-policy route-policy-name { deny | permit } node node-number

缺省情况下,设备上不存在任何路由策略

(可选)匹配带标签的IPv4路由

if-match mpls-label

缺省情况下,不匹配路由信息的MPLS标签

(可选)为IPv4路由分配标签

apply mpls-label

缺省情况下,没有为IPv4路由分配标签

退回系统视图

quit

-

进入连接AS内部路由器接口的接口视图

interface interface-type interface-number

-

使能接口的MPLS能力

mpls enable

缺省情况下,接口的MPLS能力处于关闭状态

使能接口的LDP能力

mpls ldp enable

缺省情况下,接口的LDP能力处于关闭状态

退回系统视图

quit

-

进入连接对端ASBR接口的接口视图

interface interface-type interface-number

-

使能接口的MPLS能力

mpls enable

缺省情况下,接口的MPLS能力处于关闭状态

退回系统视图

quit

-

进入BGP视图

bgp as-number

-

 

配置本AS的PE为IBGP对等体

peer { group-name | ip-address [ mask-length ] } as-number as-number

缺省情况下,设备上不存在任何BGP对等体

 

将另一AS的ASBR配置为EBGP对等体

peer { group-name | ip-address [ mask-length ] } as-number as-number

缺省情况下,设备上不存在任何BGP对等体

 

创建BGP IPv4单播地址族,并进入BGP IPv4单播地址族视图

address-family ipv4 [ unicast ]

缺省情况下,没有创建BGP IPv4单播地址族

 

使能本地路由器与本AS的PE、另一AS的ASBR交换IPv4单播路由信息的能力

peer { group-name | ip-address [ mask-length ] } enable

缺省情况下,本地路由器不能与对等体交换IPv4单播路由信息

 

配置与本AS的PE及另一AS的ASBR之间能够交换带标签的IPv4路由

peer { group-name | ip-address [ mask-length ] } label-route-capability

缺省情况下,不具有与对等体/对等体组交换带标签IPv4路由的能力

 

向本AS的PE发布路由时将下一跳改为自己的地址

peer { group-name | ip-address [ mask-length ] } next-hop-local

缺省情况下,BGP发言者在向IBGP对等体/对等体组发布路由时不会将下一跳改为自己的地址

 

(可选)对来自对等体/对等体组的路由或发布给对等体/对等体组的路由应用路由策略

peer { group-name | ip-address [ mask-length ] } route-policy route-policy-name { export | import }

缺省情况下,没有为对等体/对等体组指定路由策略

 

 

1.5  配置嵌套VPN

如果网络中VPN接入数量比较多,管理者想要管理权限层次化(通过VPN划分访问权限),且不想让外部知道用户网络内部VPN的部署情况,可以使用嵌套VPN的组网方式。在嵌套VPN组网方式中,用户通过较低的管理复杂度和组网成本,就可以实现内部VPN网络的层次化管理。

嵌套VPN组网中,需要进行以下配置:

·     用户PE和用户CE之间的配置:PE上配置VPN实例;配置PE和CE之间的路由交换。

·     用户PE和运营商CE之间的配置:配置通过BGP VPNv4路由交互用户网络内部子VPN的路由;为了确保运营商CE能够接收所有的BGP VPNv4路由,需要在运营商CE上通过undo policy vpn-target命令配置运营商CE不根据RT对VPNv4路由进行过滤。

·     运营商CE和运营商PE之间的配置:在PE上配置VPN实例,并使能嵌套VPN功能;配置PE和CE之间交互BGP VPNv4路由。

·     运营商PE之间的配置:配置PE和PE之间交互BGP VPNv4路由。

在嵌套VPN组网中,用户PE也可以直接连接运营商PE,与运营商PE交互VPNv4路由,不需要在网络中部署运营商CE。此时,用户PE同时作为运营商CE设备,在用户PE上要进行运营商CE的相关配置。

用户CE、用户PE、运营商CE上的配置与MPLS L3VPN基本配置相似,运营商PE上的配置与MPLS L3VPN基本配置有所不同。运营商PE上的配置如表1-19所示。

配置嵌套VPN时,需要注意:

·     同一用户网络的不同子VPN之间地址空间不能重叠。

·     建议嵌套VPN中对等体CE的地址不要与公网中对等体的地址重叠。

·     目前,嵌套VPN不支持多跳EBGP组网方式,因此运营商PE和运营商CE之间必须使用直连接口地址建立邻居关系。

表1-19 运营商PE上的嵌套VPN配置

操作

命令

说明

进入系统视图

system-view

-

进入BGP视图

bgp as-number

-

进入BGP VPNv4地址族视图

address-family vpnv4

-

使能嵌套VPN功能

nesting-vpn

缺省情况下,嵌套VPN功能处于禁止状态

退回BGP视图

quit

-

进入BGP-VPN实例视图

ip vpn-instance vpn-instance-name

-

配置对等体CE或CE所属对等体组的AS号

peer { group-name | peer-address } as-number as-number

缺省情况下,没有指定对等体或对等体组的AS

创建BGP-VPN VPNv4地址族,并进入BGP-VPN VPNv4地址族视图

address-family vpnv4

缺省情况下,没有创建BGP-VPN VPNv4地址族

激活对等体CE或CE所属的对等体组,使能与其交换BGP-VPNv4路由信息的能力

peer { group-name | peer-address } enable

缺省情况下,未激活对等体和对等体组

(可选)为BGP对等体/对等体组配置SoO属性

peer { group-name | ip-address [ mask-length ] } soo site-of-origin

缺省情况下,没有为BGP对等体/对等体组配置SoO属性

 

1.6  配置多角色主机

多角色主机特性的配置都在多角色主机所属Site接入的PE上进行,主要包括如下配置:

·     配置并应用策略路由:使得多角色主机发送的报文可以发送到多个VPN。

·     配置静态路由:使得其他VPN返回的报文能够发送给多角色主机。

1.6.1  配置并应用策略路由

表1-20 配置并应用策略路由

操作

命令

说明

进入系统视图

system-view

-

创建策略节点,并进入策略节点视图

policy-based-route policy-name { deny | permit } node node-number

缺省情况下,没有创建策略节点

配置策略节点的匹配规则

详细介绍请参见“三层技术-IP路由配置指导”中的“策略路由”

缺省情况下,没有配置策略节点的匹配规则,所有报文都满足该节点的匹配规则

本配置用来匹配来自多角色主机的报文

设置报文在指定VPN实例中进行转发

apply access-vpn vpn-instance vpn-instance-name&<1-n>

缺省情况下,未设置报文在指定VPN实例中进行转发

本配置中需要指定多个VPN实例,其中,第一个为多角色主机所属的VPN实例,其余为多角色主机需要访问的其他VPN实例。当满足匹配规则后,将根据第一个可用的VPN实例转发表进行转发

退回系统视图

quit

-

进入接入CE的接口视图

interface interface-type interface-number

-

对接口转发的报文应用策略

ip policy-based-route policy-name

缺省情况下,对接口转发的报文没有应用策略

 

1.6.2  配置静态路由

表1-21 配置静态路由

操作

命令

说明

进入系统视图

system-view

-

为指定VPN实例配置静态路由

ip route-static vpn-instance s-vpn-instance-name dest-address { mask-length | mask } vpn-instance d-vpn-instance-name next-hop-address [ track track-entry-number ] [ permanent ] [ preference preference-value ] [ tag tag-value ] [ description description-text ]

缺省情况下,没有配置静态路由

其中,d-vpn-instance-name为多角色主机所属的VPN实例,next-hop-address为多角色主机所在Site的CE设备的地址

 

1.7  配置HoVPN

在HoVPN组网中,UPE上仅需进行MPLS L3VPN基本配置,SPE上除了MPLS L3VPN基本配置外,还需进行以下配置:

·     指定BGP对等体或对等体组为UPE。

·     配置SPE向UPE发送路由的方式:向UPE发送指定VPN实例的缺省路由或通过路由策略的路由。

·     创建BGP-VPN实例:由于SPE上没有接口与用户网络直接相连,因此,SPE上不需要配置VPN实例与接口关联。为了根据RT属性将学习到的VPNv4路由添加到相应VPN实例的BGP路由表中,SPE上需要创建BGP-VPN实例。

配置HoVPN时,建议不要同时配置peer default-route-advertise vpn-instance命令和peer upe route-policy命令。

表1-22 配置HoVPN的SPE

操作

命令

说明

进入系统视图

system-view

-

进入BGP视图

bgp as-number

-

创建BGP对等体

peer { group-name | peer-address } as-number as-number

缺省情况下,设备上不存在任何BGP对等体

 

进入BGP VPNv4地址族视图

address-family vpnv4

-

使能本地路由器与指定对等体交换VPNv4路由信息的能力

peer { group-name | ip-address [ mask-length ] } enable

缺省情况下,本地路由器不能与对等体交换VPNv4路由信息

配置BGP对等体或对等体组为UPE

peer { group-name | ip-address [ mask-length ] } upe

缺省情况下,BGP对等体或对等体组不是HoVPN的UPE

向UPE发送指定VPN实例的缺省路由

peer { group-name | ip-address [ mask-length ] } default-route-advertise vpn-instance vpn-instance-name

二者必选其一

缺省情况下,不向对等体发布路由

执行peer default-route-advertise vpn-instance命令后,不论本地路由表中是否存在缺省路由,SPE都会向UPE发布一条下一跳地址为本地地址的缺省路由

只有BGP对等体或对等体组是UPE时,执行peer default-route-advertise vpn-instance命令后,设备才会向BGP对等体或对等体组发布VPN实例缺省路由

向UPE发送通过路由策略的路由

peer { group-name | ip-address [ mask-length ] } upe route-policy route-policy-name export

退回BGP视图

quit

-

创建BGP-VPN实例,并进入BGP-VPN实例视图

ip vpn-instance vpn-instance-name

缺省情况下,设备上不存在任何BGP-VPN实例

 

1.8  配置OSPF伪连接

在VPN PE间配置伪连接Sham-link后,Sham-link将被视为OSPF区域内路由。这一特性使经过MPLS VPN骨干网的路由成为OSPF区域内路由,避免VPN流量经后门路由转发。

Sham-link的源地址和目的地址应使用32位掩码的Loopback接口地址,且该Loopback接口需要绑定到VPN实例中,并通过BGP发布。

1.8.1  配置准备

在配置OSPF伪连接之前,需完成以下任务:

·     配置基本MPLS L3VPN(PE-CE间使用OSPF)

·     配置用户CE所在局域网的OSPF

1.8.2  配置Loopback接口

表1-23 配置Loopback接口

操作

命令

说明

进入系统视图

system-view

-

创建Loopback接口,并进入Loopback接口视图

interface loopback interface-number

缺省情况下,设备上不存在任何Loopback接口

将Loopback接口与VPN实例关联

ip binding vpn-instance vpn-instance-name

缺省情况下,接口不关联任何VPN实例,属于公网接口

配置Loopback接口的地址

ip address ip-address { mask | mask-length }

缺省情况下,未配置Loopback接口的地址

 

1.8.3  发布Loopback接口的路由

表1-24 发布Loopback接口的路由

操作

命令

说明

进入系统视图

system-view

-

进入BGP视图

bgp as-number

-

进入BGP-VPN实例视图

ip vpn-instance vpn-instance-name

-

进入BGP-VPN IPv4单播地址族视图

address-family ipv4 [ unicast ]

-

引入直连路由(将Loopback主机路由引入BGP)

import-route direct

缺省情况下,不会引入直连路由

 

1.8.4  创建伪连接

表1-25 创建伪连接

操作

命令

说明

进入系统视图

system-view

-

进入OSPF视图

ospf [ process-id | router-id router-id | vpn-instance vpn-instance-name ] *

建议用户启动OSPF进程时手工配置路由器ID

配置VPN引入路由的外部路由标记值

route-tag tag-value

缺省情况下,若MPLS骨干网上配置了BGP路由协议,并且BGP的AS号不大于65535,则外部路由标记值的前面两个字节固定为0xD000,后面的两个字节为本端BGP的AS号;否则,外部路由标记值为0

进入OSPF区域视图

area area-id

-

创建一条OSPF伪连接

sham-link source-ip-address destination-ip-address [ cost cost | dead dead-interval | hello hello-interval | { { hmac-md5 | md5 } key-id { cipher cipher-string | plain plain-string } | simple { cipher cipher-string | plain plain-string } } | retransmit retrans-interval | trans-delay delay ] *

缺省情况下,设备上不存在任何OSPF伪连接

 

1.9  配置Multi-VPN-Instance CE

Multi-VPN-Instance CE可以看作一种通过路由隔离实现业务隔离的组网方案。配置MCE的关键为:

·     配置MCE与站点之间的路由交换

·     配置MCE与PE之间的路由交换

在MCE组网方案中,路由计算时需要关闭PE上的路由环路检测功能,防止路由丢失;同时禁止各路由协议互操作功能,以节省系统资源。

在配置Multi-VPN-Instance CE之前,需要先在MCE上创建VPN实例,并将MCE连接站点和PE的接口与VPN实例绑定。

1.9.1  配置MCE与站点之间的路由交换

1. 配置MCE与站点之间使用静态路由

MCE可以通过静态路由与Site连接。传统CE配置的静态路由对全局生效,无法解决多VPN间的地址重叠问题。MCE功能可以将静态路由与VPN实例相绑定,将各VPN之间的静态路由进行隔离。

表1-26 配置MCE与站点之间使用静态路由

操作

命令

说明

进入系统视图

system-view

-

为指定VPN实例配置静态路由

ip route-static vpn-instance s-vpn-instance-name dest-address { mask-length | mask } { interface-type interface-number [ next-hop-address ] | next-hop-address [ public ] [ track track-entry-number ] | vpn-instance d-vpn-instance-name next-hop-address [ track track-entry-number ] } [ permanent ] [ preference preference-value ] [ tag tag-value ] [ description description-text ]

缺省情况下,没有配置静态路由

该配置在MCE上进行,站点上的配置方法与普通静态路由相同

(可选)配置静态路由的缺省优先级

ip route-static default-preference default-preference-value

缺省情况下,静态路由的缺省优先级为60

 

2. 配置MCE与站点之间使用RIP

一个RIP进程只能属于一个VPN实例。如果在启动RIP进程时不绑定到VPN实例,则该进程属于公网进程。通过在MCE上将RIP进程与VPN实例绑定,可以使不同VPN内的私网路由通过不同的RIP进程在Site和MCE间进行交互,保证了私网路由的隔离和安全。RIP的介绍和详细配置,请参见“三层技术-IP路由配置指导”中的“RIP”。

表1-27 配置MCE与站点之间使用RIP

操作

命令

说明

进入系统视图

system-view

-

创建MCE与站点间的RIP实例,并进入RIP视图

rip [ process-id ] vpn-instance vpn-instance-name

该配置在MCE上进行,站点上配置普通RIP即可

在指定网段接口上使能RIP

network network-address

缺省情况下,接口上的RIP功能处于关闭状态

引入由PE发布的远端站点的路由

import-route protocol [ process-id | all-processes | allow-ibgp ] [ allow-direct | cost cost | route-policy route-policy-name | tag tag ] *

缺省情况下,RIP未引入其它路由

(可选)配置引入路由的缺省度量值

default cost value

缺省情况下,引入路由的缺省度量值为0

 

3. 配置MCE与站点之间使用OSPF

一个OSPF进程只能属于一个VPN实例。如果在启动OSPF进程时不绑定到VPN实例,则该进程属于公网进程。

通过在MCE上将OSPF进程与VPN实例绑定,可以使不同VPN内的私网路由通过不同的OSPF进程在Site和MCE间进行交互,保证了私网路由的隔离和安全。

OSPF的介绍和详细配置,请参见“三层技术-IP路由配置指导”中的“OSPF”。

表1-28 配置MCE与站点之间使用OSPF

操作

命令

说明

进入系统视图

system-view

-

创建MCE与站点间的OSPF实例,并进入OSPF视图

ospf [ process-id | router-id router-id | vpn-instance vpn-instance-name ] *

该配置在MCE上进行,站点上配置普通OSPF即可

VPN实例绑定的OSPF进程中不使用系统视图下配置的公网Router ID,因此用户需要在启动进程时手工配置Router ID

一个OSPF进程只能属于一个VPN实例,但一个VPN实例可以使用多个OSPF进程为其传播私网路由

(可选)配置OSPF域标识符

domain-id domain-id [ secondary ]

缺省情况下,OSPF域标识符为0

该配置在MCE上进行

同一VPN内的OSPF进程应配置相同的域ID,以保证路由发布的正确性

引入由PE发布的远端站点的路由

import-route protocol [ process-id | all-processes | allow-ibgp ] [ allow-direct | cost cost | nssa-only | route-policy route-policy-name | tag tag | type type ] *

缺省情况下,没有引入其他协议的路由信息

配置OSPF区域,进入OSPF区域视图

area area-id

缺省情况下,没有配置OSPF区域

配置区域所包含的网段并在指定网段的接口上使能OSPF

network ip-address wildcard-mask

缺省情况下,接口不属于任何区域且OSPF功能处于关闭状态

 

4. 配置MCE与站点之间使用IS-IS

一个IS-IS进程只能属于一个VPN实例。如果在启动IS-IS进程时不绑定到VPN实例,则该进程属于公网进程。

通过在MCE上将IS-IS进程与VPN实例绑定,可以使不同VPN内的私网路由通过不同的IS-IS进程在Site和MCE间进行交互,保证了私网路由的隔离和安全。

IS-IS协议的介绍和详细配置,请参见“三层技术-IP路由配置指导”中的“IS-IS”。

表1-29 配置MCE与站点之间使用IS-IS

操作

命令

说明

进入系统视图

system-view

-

创建MCE与站点间的IS-IS实例,并进入IS-IS视图

isis [ process-id ] vpn-instance vpn-instance-name

该配置在MCE上进行,站点上配置普通IS-IS即可

配置网络实体名称

network-entity net

缺省情况下,没有配置网络实体名称

创建并进入IS-IS IPv4单播地址族视图

address-family ipv4 [ unicast ]

缺省情况下,没有创建IS-IS IPv4单播地址族视图

引入由PE发布的远端站点的路由

import-route protocol [ process-id | all-processes | allow-ibgp ] [ allow-direct | cost cost | cost-type { external | internal } | [ level-1 | level-1-2 | level-2 ] | route-policy route-policy-name | tag tag ] *

缺省情况下,IS-IS不引入其它协议的路由信息

如果import-route命令中不指定引入的级别,则默认为引入路由到Level-2路由表中

退回系统视图

quit

-

进入接口视图

interface interface-type interface-number

-

使能接口IS-IS并指定要关联的IS-IS进程号

isis enable [ process-id ]

缺省情况下,接口上没有使能IS-IS

 

5. 配置MCE与站点之间使用EBGP

MCE与站点间使用EBGP交换路由信息时,需要在MCE上为每个VPN实例配置BGP对等体,并在站点上引入相应VPN内的IGP路由信息。

MCE使用EBGP交换路由信息时,还可以通过Filter-policy对接收/发布的路由进行过滤。

(1)     MCE上的配置

表1-30 配置MCE与站点之间使用EBGP

操作

命令

说明

进入系统视图

system-view

-

启动BGP,并进入BGP视图

bgp as-number

缺省情况下,系统没有运行BGP

进入BGP-VPN实例视图

ip vpn-instance vpn-instance-name

BGP-VPN实例视图下的配置任务与BGP视图下的相同,有关介绍和详细配置,请参见“三层技术-IP路由配置指导”中的“BGP”

配置EBGP对等体或对等体组

peer { group-name | ip-address [ mask-length ] } as-number as-number

缺省情况下,设备上不存在任何BGP对等体和对等体组

进入BGP-VPN IPv4单播地址族视图

address-family ipv4 [ unicast ]

-

使能本地路由器与指定对等体交换IPv4单播路由信息的能力

peer { group-name | ip-address [ mask-length ] } enable

缺省情况下,本地路由器不能与对等体交换IPv4单播路由信息

配置对于从对等体/对等体组接收的路由,允许本地AS号在接收路由的AS_PATH属性中出现,并配置允许出现的次数

peer { group-name | ip-address [ mask-length ] } allow-as-loop [ number ]

缺省情况下,不允许本地AS号在接收路由的AS_PATH属性中出现

引入由PE发布的远端站点的路由

import-route protocol [ { process-id | all-processes } [ allow-direct | med med-value | route-policy route-policy-name ] * ]

缺省情况下,BGP不会引入IGP路由协议的路由信息

(可选)配置对发布的路由信息进行过滤

filter-policy { acl-number | prefix-list prefix-list-name } export [ protocol process-id ]

缺省情况下,不对发布的路由信息进行过滤

(可选)配置对接收的路由信息进行过滤

filter-policy { acl-number | prefix-list prefix-list-name } import

缺省情况下,不对接收的路由信息进行过滤

 

(2)     站点上的配置

表1-31 站点上的配置

操作

命令

说明

进入系统视图

system-view

-

启动BGP,并进入BGP视图

bgp as-number

缺省情况下,系统没有运行BGP

将MCE配置为EBGP对等体

peer { group-name | ip-address [ mask-length ] } as-number as-number

缺省情况下,设备上不存在任何BGP对等体和对等体组

进入BGP IPv4单播地址族视图

address-family ipv4 [ unicast ]

-

使能本地路由器与指定对等体交换IPv4单播路由信息的能力

peer { group-name | ip-address [ mask-length ] } enable

缺省情况下,本地路由器不能与对等体交换IPv4单播路由信息

配置引入VPN内的IGP路由

import-route protocol [ { process-id | all-processes } [ allow-direct | med med-value | route-policy route-policy-name ] * ]

缺省情况下,BGP不会引入IGP路由协议的路由信息

站点需要将自己所能到达的VPN网段地址发布给接入的MCE

 

6. 配置MCE与站点间使用IBGP

MCE与站点间使用IBGP交换路由信息时,需要在MCE上为每个VPN实例配置BGP对等体,并在站点上引入相应VPN内的IGP路由信息。

(1)     MCE上的配置

表1-32 配置MCE与站点之间使用IBGP

操作

命令

说明

进入系统视图

system-view

-

启动BGP,并进入BGP视图

bgp as-number

缺省情况下,系统没有运行BGP

进入BGP-VPN实例视图

ip vpn-instance vpn-instance-name

-

配置IBGP对等体

peer { group-name | ip-address [ mask-length ] } as-number as-number

缺省情况下,设备上不存在任何BGP对等体和对等体组

进入BGP-VPN IPv4单播地址族视图

address-family ipv4 [ unicast ]

-

使能本地路由器与指定对等体交换IPv4单播路由信息的能力

peer { group-name | ip-address [ mask-length ] } enable

缺省情况下,本地路由器不能与对等体交换IPv4单播路由信息

(可选)配置本地设备作为路由反射器,对端设备作为路由反射器的客户端

peer { group-name | ip-address [ mask-length ] } reflect-client

缺省情况下,没有配置路由反射器及其客户端

将站点配置为IBGP对等体时,从该站点学习的BGP路由不会向其它IBGP对等体(包括VPNv4对等体)发送。只有将站点配置为路由反射器的客户端后,才能向其它IBGP对等体发送从该站点学习的路由

引入由PE发布的远端站点的路由

import-route protocol [ { process-id | all-processes } [ allow-direct | med med-value | route-policy route-policy-name ] * ]

缺省情况下,BGP不引入且不通告其它协议的路由

(可选)配置对发布的路由信息进行过滤

filter-policy { acl-number | prefix-list prefix-list-name } export [ protocol process-id ]

缺省情况下,不对发布的路由信息进行过滤

(可选)配置对接收的路由信息进行过滤

filter-policy { acl-number | prefix-list prefix-list-name } import

缺省情况下,不对接收的路由信息进行过滤

 

(2)     站点上的配置

表1-33 站点上的配置

操作

命令

说明

进入系统视图

system-view

-

启动BGP,并进入BGP视图

bgp as-number

缺省情况下,系统没有运行BGP

将MCE配置为IBGP对等体

peer { group-name | ip-address [ mask-length ] } as-number as-number

缺省情况下,设备上不存在任何BGP对等体和对等体组

进入BGP IPv4单播地址族视图

address-family ipv4 [ unicast ]

-

使能本地路由器与指定对等体交换IPv4单播路由信息的能力

peer { group-name | ip-address [ mask-length ] } enable

缺省情况下,本地路由器不能与对等体交换IPv4单播路由信息

配置引入VPN内的IGP路由

import-route protocol [ { process-id | all-processes } [ allow-direct | med med-value | route-policy route-policy-name ] * ]

缺省情况下,BGP不引入且不通告其它协议的路由

站点需要将自己所能到达的VPN网段地址发布给接入的MCE

 

1.9.2  配置MCE与PE之间的路由交换

由于在MCE设备上已经将站点内的私网路由信息与VPN实例进行了绑定,因此,只需要在MCE与PE之间将接口与VPN实例进行绑定、进行简单的路由配置、并将MCE上维护的站点内的VPN路由引入到MCE-PE间的路由协议中,便可以实现私网VPN路由信息的传播。

本节中的配置均在MCE上进行,PE上的配置与基本MPLS L3VPN组网中PE上的配置相同,详细介绍请参见“1.3.4  配置PE-CE间路由交换”。

1. 配置MCE与PE之间使用静态路由

表1-34 配置MCE与PE之间使用静态路由

操作

命令

说明

进入系统视图

system-view

-

为指定VPN实例配置静态路由

ip route-static vpn-instance s-vpn-instance-name dest-address { mask-length | mask } { interface-type interface-number [ next-hop-address ] | next-hop-address [ public ] [ track track-entry-number ] | vpn-instance d-vpn-instance-name next-hop-address [ track track-entry-number ] } [ permanent ] [ preference preference-value ] [ tag tag-value ] [ description description-text ]

缺省情况下,设备上不存在任何静态路由

(可选)配置静态路由的缺省优先级

ip route-static default-preference default-preference-value

缺省情况下,静态路由的缺省优先级为60

 

2. 配置MCE与PE之间使用RIP

表1-35 配置MCE与PE之间使用RIP

操作

命令

说明

进入系统视图

system-view

-

创建MCE与PE间的RIP实例,并进入RIP视图

rip [ process-id ] vpn-instance vpn-instance-name

-

在指定网段接口上使能RIP

network network-address

缺省情况下,接口上的RIP功能处于关闭状态

引入站点内的VPN路由

import-route protocol [ process-id | all-processes | allow-ibgp ] [ allow-direct | cost cost | route-policy route-policy-name | tag tag ] *

缺省情况下,RIP未引入其它路由

(可选)配置引入路由的缺省度量值

default cost value

缺省情况下,引入路由的缺省度量值为0

 

3. 配置MCE与PE之间使用OSPF

表1-36 配置MCE与PE之间使用OSPF

操作

命令

说明

进入系统视图

system-view

-

创建MCE与PE间的OSPF实例,并进入OSPF视图

ospf [ process-id | router-id router-id | vpn-instance vpn-instance-name ] *

-

关闭OSPF实例的路由环路检测功能

vpn-instance-capability simple

缺省情况下,OSPF实例的路由环路检测功能处于开启状态

需要在MCE上通过本命令关闭OSPF实例的路由环路检测功能。否则,MCE不会接收PE发送过来的OSPF路由,导致路由丢失

(可选)配置OSPF域标识符

domain-id domain-id [ secondary ]

缺省情况下,OSPF域标识符为0

引入站点内的VPN路由

import-route protocol [ process-id | all-processes | allow-ibgp ] [ allow-direct | cost cost | nssa-only | route-policy route-policy-name | tag tag | type type ] *

缺省情况下,没有引入其他协议的路由信息

(可选)配置对发布的路由进行过滤

filter-policy { acl-number | prefix-list prefix-list-name } export [ protocol [ process-id ] ]

缺省情况下,没有对发布的路由信息进行过滤

(可选)配置引入外部路由时的参数缺省值(开销、标记、类型)(该配置仅连接PE端使用)

default { cost cost | tag tag | type type } *

缺省情况下,OSPF引入外部路由的度量值为1,外部路由标记值为1,引入的外部路由类型为Type2

配置OSPF区域,进入OSPF区域视图

area area-id

缺省情况下,没有配置OSPF区域

配置区域所包含的网段并在指定网段的接口上使能OSPF

network ip-address wildcard-mask

缺省情况下,接口不属于任何区域且OSPF功能处于关闭状态

 

4. 配置MCE与PE之间使用IS-IS

表1-37 配置MCE与PE之间使用IS-IS

操作

命令

说明

进入系统视图

system-view

-

创建MCE与PE间的IS-IS实例,并进入IS-IS视图

isis [ process-id ] vpn-instance vpn-instance-name

-

配置网络实体名称

network-entity net

缺省情况下,没有配置网络实体名称

创建并进入IS-IS IPv4单播地址族视图

address-family ipv4 [ unicast ]

缺省情况下,没有创建IS-IS IPv4单播地址族视图

引入站点内的VPN路由

import-route protocol [ process-id | all-processes | allow-ibgp ] [ allow-direct | cost cost | cost-type { external | internal } | [ level-1 | level-1-2 | level-2 ] | route-policy route-policy-name | tag tag ] *

缺省情况下,IS-IS不引入其它协议的路由信息

如果import-route命令中不指定引入的级别,则默认为引入路由到Level-2路由表中

(可选)对发布的路由进行过滤(该配置仅连接PE端使用)

filter-policy { acl-number | prefix-list prefix-list-name | route-policy route-policy-name } export [ protocol [ process-id ] ]

缺省情况下,IS-IS不对发布的路由信息进行过滤

退回系统视图

quit

-

进入接口视图

interface interface-type interface-number

-

使能接口IS-IS并指定要关联的IS-IS进程号

isis enable [ process-id ]

缺省情况下,接口上没有使能IS-IS

 

5. 配置MCE与PE之间使用EBGP

表1-38 配置MCE与PE之间使用EBGP

操作

命令

说明

进入系统视图

system-view

-

启动BGP,并进入BGP视图

bgp as-number

缺省情况下,系统没有运行BGP

进入BGP-VPN实例视图

ip vpn-instance vpn-instance-name

-

将PE配置为EBGP对等体

peer { group-name | ip-address [ mask-length ] } as-number as-number

缺省情况下,设备上不存在任何BGP对等体和对等体组

进入BGP-VPN IPv4单播地址族视图

address-family ipv4 [ unicast ]

-

使能本地路由器与指定对等体交换IPv4单播路由信息的能力

peer { group-name | ip-address [ mask-length ] } enable

缺省情况下,本地路由器不能与对等体交换IPv4单播路由信息

引入站点内的VPN路由

import-route protocol [ { process-id | all-processes } [ allow-direct | med med-value | route-policy route-policy-name ] * ]

缺省情况下,BGP不引入且不通告其它协议的路由

(可选)配置对发布的路由信息进行过滤

filter-policy { acl-number | prefix-list prefix-list-name } export [ protocol process-id ]

缺省情况下,不对发布的路由信息进行过滤

(可选)配置对接收的路由信息进行过滤

filter-policy { acl-number | prefix-list prefix-list-name } import

缺省情况下,不对接收的路由信息进行过滤

 

6. 配置MCE与PE之间使用IBGP

表1-39 配置MCE与PE之间使用IBGP

操作

命令

说明

进入系统视图

system-view

-

启动BGP,并进入BGP视图

bgp as-number

缺省情况下,系统没有运行BGP

进入BGP-VPN实例视图

ip vpn-instance vpn-instance-name

-

将PE配置为IBGP对等体

peer { group-name | ip-address [ mask-length ] } as-number as-number

缺省情况下,设备上不存在任何BGP对等体和对等体组

进入BGP-VPN IPv4单播地址族视图

address-family ipv4 [ unicast ]

-

使能本地路由器与指定对等体交换IPv4单播路由信息的能力

peer { group-name | ip-address [ mask-length ] } enable

缺省情况下,本地路由器不能与对等体交换IPv4单播路由信息

引入站点内的VPN路由

import-route protocol [ { process-id | all-processes } [ allow-direct | med med-value | route-policy route-policy-name ] * ]

缺省情况下,BGP不引入且不通告其它协议的路由

(可选)配置对发布的路由信息进行过滤

filter-policy { acl-number | prefix-list prefix-list-name } export [ protocol process-id ]

缺省情况下,不对发布的路由信息进行过滤

(可选)配置对接收的路由信息进行过滤

filter-policy { acl-number | prefix-list prefix-list-name } import

缺省情况下,不对接收的路由信息进行过滤

 

1.10  配置Egress PE上私网路由标签操作方式

Egress PE上私网路由的标签操作方式根据标签查找FIB进行转发与根据标签查找出接口进行转发两种:

·     私网标签的POPGO转发方式:标签分配时,都明确了标签跟出接口和下一跳的对应关系,弹出标签后,直接从出接口发送。

·     私网标签的POP转发方式:忽略标签分配时明确的标签跟出接口和下一跳对应关系,弹出标签后,再查FIB表转发。

表1-40 配置Egress PE上私网路由标签操作方式

操作

命令

说明

进入系统视图

system-view

-

进入BGP视图

bgp as-number

-

配置Egress PE上私网路由的标签操作方式为根据标签查找出接口转发

vpn popgo

缺省情况下,Egress PE上私网路由的标签操作方式为根据标签查找FIB进行转发

 

1.11  配置BGP的AS号替换和SoO属性

不同Site的CE具有相同的AS号时,PE上需要开启BGP的AS号替换功能,从而避免路由被丢弃。

使能了BGP的AS号替换功能后,当PE向指定CE发布路由时,如果路由的AS_PATH中有与CE相同的AS号,将被替换成PE的AS号后再发布。

PE使用不同接口连接同一站点的多个CE时,如果配置了BGP的AS号替换功能,则会导致路由环路。这种情况下,需要在PE上通过peer soo命令为从同一站点不同CE学习到的路由添加相同的SoO属性,且PE向CE发布路由时检查SoO属性,如果路由的SoO属性与为CE配置的SoO属性相同,则不将该路由发布给CE,从而避免路由环路。

本配置中各命令的详细介绍,请参见“三层技术-IP路由命令参考”中的“BGP”。

表1-41 配置BGP的AS号替换和SoO属性

操作

命令

说明

进入系统视图

system-view

-

进入BGP视图

bgp as-number

-

进入BGP-VPN实例视图

ip vpn-instance vpn-instance-name

-

使能BGP的AS号替换功能

peer { ip-address [ mask-length ] | group-name } substitute-as

缺省情况下,BGP的AS号替换功能是被禁止的

进入BGP-VPN IPv4单播地址族视图

address-family ipv4 [ unicast ]

-

(可选)为BGP对等体/对等体组配置SoO属性

peer { group-name | ip-address [ mask-length ] } soo site-of-origin

缺省情况下,没有为BGP对等体/对等体组配置SoO属性

 

1.12  配置MPLS L3VPN快速重路由

开启MPLS L3VPN快速重路由功能的方法有如下两种:

·     在BGP-VPN IPv4单播地址族视图下执行pic命令开启该地址族的快速重路由功能。采用这种方法时,设备会为当前VPN实例的所有BGP路由自动计算备份下一跳,即只要从不同BGP对等体学习到了到达同一目的网络的路由,且这些路由不等价,就会生成主备两条路由。

·     在BGP-VPN IPv4单播地址族视图下执行fast-reroute route-policy命令指定快速重路由引用的路由策略,并在引用的路由策略中,通过apply fast-reroute backup-nexthop命令指定备份下一跳的地址。采用这种方式时,只有为主路由计算出的备份下一跳地址与指定的地址相同时,才会为其生成备份下一跳;否则,不会为主路由生成备份下一跳。在引用的路由策略中,还可以配置if-match子句,用来决定哪些路由可以进行快速重路由保护,设备只会为通过if-match子句过滤的路由生成备份下一跳。

引用路由策略方式的优先级高于通过pic命令开启MPLS L3VPN快速重路由方式。

表1-42 配置MPLS L3VPN快速重路由

操作

命令

说明

进入系统视图

system-view

-

使能MPLS BFD功能

mpls bfd enable

二者选其一

在VPNv4路由备份VPNv4路由、IPv4路由备份VPNv4路由组网中,需要执行mpls bfd enable命令,该命令的详细介绍,请参见“MPLS命令参考”中的“MPLS OAM”

VPNv4路由备份IPv4路由组网中,若通过Echo方式的BFD会话检测主路由的下一跳是否可达,则需要执行bfd echo-source-ip命令,该命令的详细介绍,请参见“可靠性命令参考”中的“BFD”

配置echo报文的源IP地址

bfd echo-source-ip ip-address

配置使用BFD检测公网LSP或MPLS TE隧道的连通性

配置使用BFD检测指定FEC对应LSP的连通性

mpls bfd dest-addr mask-length [ nexthop nexthop-address [ discriminator local local-id remote remote-id ] ] [ template template-name ]

请根据公网隧道类型选择其一

缺省情况下,未使用BFD检测公网LSP和MPLS TE隧道的连通性

在VPNv4路由备份VPNv4路由、IPv4路由备份VPNv4路由组网中,需要执行本配置;VPNv4路由备份IPv4路由组网中,不需要执行本配置

本配置中各命令的详细介绍,请参见“MPLS命令参考”中的“MPLS OAM”

配置使用BFD检测当前隧道接口对应MPLS TE隧道的连通性

interface tunnel number mode mpls-te

mpls bfd [ discriminator local local-id remote remote-id ] [ template template-name ]

quit

创建路由策略,并进入路由策略视图

route-policy route-policy-name permit node node-number

缺省情况下,不存在任何路由策略

通过引用路由策略的方式开启MPLS L3VPN快速重路由功能时,必须执行本配置

本命令的详细介绍,请参见“三层技术-IP路由命令参考”中的“路由策略”

配置快速重路由的备份下一跳地址

apply fast-reroute  backup-nexthop ip-address

缺省情况下,没有指定快速重路由的备份下一跳地址

通过引用路由策略的方式开启MPLS L3VPN快速重路由功能时,必须执行本配置

本命令的详细介绍,请参见“三层技术-IP路由命令参考”中的“路由策略”

退回系统视图

quit

-

进入BGP视图

bgp as-number

-

(可选)配置通过Echo方式的BFD会话检测主路由的下一跳是否可达

primary-path-detect bfd echo

缺省情况下,通过ARP检测主路由的下一跳是否可达

VPNv4路由备份IPv4路由组网中,可以根据实际情况选择是否执行本配置;其他组网中,无需执行本配置

本命令的详细介绍,请参见“三层技术-IP路由命令参考”中的“BGP”

进入BGP-VPN实例视图

ip vpn-instance vpn-instance-name

-

进入BGP-VPN IPv4单播地址族视图

address-family ipv4 [ unicast ]

-

(二者选其一)开启MPLS L3VPN快速重路由功能

开启当前地址族的快速重路由功能

pic

缺省情况下,快速重路由功能处于关闭状态

在某些组网情况下,执行pic命令为所有BGP路由生成备份下一跳后,可能会导致路由环路,请谨慎使用本命令

本命令的详细介绍,请参见“三层技术-IP路由命令参考”中的“BGP”

在当前地址族视图下指定快速重路由引用的路由策略

fast-reroute route-policy route-policy-name

缺省情况下,快速重路由未引用任何路由策略

引用的路由策略中,只有apply fast-reroute backup-nexthop命令生效,其他apply子句不会生效

本命令的详细介绍,请参见“三层技术-IP路由命令参考”中的“BGP”

 

1.13  开启告警功能

开启L3VPN模块的告警功能后,在VPN实例内的路由数达到告警门限等情况下,L3VPN模块会产生RFC 4382中规定的告警信息。生成的告警信息将发送到设备的SNMP模块,通过设置SNMP中告警信息的发送参数,来决定告警信息输出的相关属性。

有关告警信息的详细介绍,请参见“网络管理和监控配置指导”中的“SNMP”。

表1-43 开启告警功能

操作

命令

说明

进入系统视图

system-view

-

开启L3VPN模块的告警功能

snmp-agent trap enable l3vpn

缺省情况下,L3VPN模块的告警功能处于开启状态

 

1.14  MPLS L3VPN显示和维护

1.14.1  复位BGP会话

当BGP配置变化后,可以通过软复位或复位BGP会话使新的配置生效。软复位BGP会话是指在不断开BGP邻居关系的情况下,更新BGP路由信息;复位BGP会话是指断开并重新建立BGP邻居关系的情况下,更新BGP路由信息。软复位需要BGP对等体具备路由刷新能力(支持ROUTE-REFRESH消息)。

请在用户视图下进行下列操作。下表中各命令的详细介绍,请参见“三层技术-IP路由命令参考”中的“BGP”。

表1-44 复位BGP会话

操作

命令

手工对VPNv4地址族下的BGP会话进行软复位

refresh bgp { ip-address [ mask-length ] | all | external | group group-name | internal } { export | import } vpnv4 [ vpn-instance vpn-instance-name ]

复位VPNv4地址族下的BGP会话

reset bgp { as-number | ip-address [ mask-length ] | all | external | internal | group group-name } vpnv4 [ vpn-instance vpn-instance-name ]

 

1.14.2  显示MPLS L3VPN的运行状态

在完成上述配置后,在任意视图下执行display命令可以显示配置后MPLS L3VPN的运行情况,通过查看显示信息验证配置的效果。

display bgp group vpnv4display bgp peer vpnv4display bgp update-group vpnv4命令的详细介绍,请参见“三层技术-IP路由命令参考”中的“BGP”。

表1-45 显示MPLS L3VPN的运行状态

操作

命令

显示与VPN实例相关联的IP路由表(本命令的详细介绍请参见“三层技术-IP路由命令参考”中的“IP路由基础命令”)

display ip routing-table vpn-instance vpn-instance-name [ statistics | verbose ]

显示指定VPN实例信息

display ip vpn-instance [ instance-name vpn-instance-name ]

显示指定VPN实例的FIB信息

display fib vpn-instance vpn-instance-name

显示指定VPN实例中与指定目的IP地址匹配的FIB信息

display fib vpn-instance vpn-instance-name ip-address [ mask | mask-length ]

显示BGP VPNv4对等体组信息

display bgp group vpnv4 [ vpn-instance vpn-instance-name ] [ group-name group-name ]

显示BGP VPNv4对等体信息

display bgp peer vpnv4 [ vpn-instance vpn-instance-name ] [ ip-address mask-length | { ip-address | group-name group-name } log-info | [ ip-address ] verbose ]

显示BGP VPNv4路由信息

display bgp routing-table vpnv4 [ [ route-distinguisher route-distinguisher ] [ network-address [ { mask | mask-length } [ longest-match ] ] | network-address [ mask | mask-length ] advertise-info | as-path-acl as-path-acl-number | community-list { { basic-community-list-number | comm-list-name } [ whole-match ] | adv-community-list-number } ] | [ vpn-instance vpn-instance-name ] peer ip-address { advertised-routes | received-routes } [ network-address [ mask | mask-length ] | statistics ] | statistics ]

显示BGP IPv4单播路由的入标签信息

display bgp routing-table ipv4 [ unicast ] [ vpn-instance vpn-instance-name ] inlabel

显示BGP IPv4单播路由的出标签信息

display bgp routing-table ipv4 [ unicast ] [ vpn-instance vpn-instance-name ] outlabel

显示所有BGP VPNv4路由的入标签信息

display bgp routing-table vpnv4 inlabel

显示所有BGP VPNv4路由的出标签信息

display bgp routing-table vpnv4 outlabel

显示BGP VPNv4地址族下打包组的相关信息

display bgp update-group vpnv4 [ vpn-instance vpn-instance-name ] [ ip-address ]

显示OSPF伪连接信息

display ospf [ process-id ] sham-link [ area area-id ]

 

1.15  MPLS L3VPN典型配置举例

1.15.1  配置MPLS L3VPN示例

1. 组网需求

·     CE 1、CE 3属于VPN 1,CE 2、CE 4属于VPN 2;

·     VPN 1使用的VPN Target属性为111:1,VPN 2使用的VPN Target属性为222:2。不同VPN用户之间不能互相访问;

·     CE与PE之间配置EBGP交换VPN路由信息;

·     PE与PE之间配置OSPF实现PE内部的互通、配置MP-IBGP交换VPN路由信息。

2. 组网图

图1-25 配置MPLS L3VPN组网图

设备

接口

IP地址

设备

接口

IP地址

CE 1

GE2/0/1

10.1.1.1/24

P

Loop0

2.2.2.9/32

PE 1

Loop0

1.1.1.9/32

 

POS2/1/0

172.1.1.2/24

 

GE2/0/1

10.1.1.2/24

 

POS2/1/1

172.2.1.1/24

 

GE2/0/2

10.2.1.2/24

PE 2

Loop0

3.3.3.9/32

 

POS2/1/0

172.1.1.1/24

 

GE2/0/1

10.3.1.2/24

CE 2

GE2/0/1

10.2.1.1/24

 

GE2/0/2

10.4.1.2/24

CE 3

GE2/0/1

10.3.1.1/24

 

POS2/1/0

172.2.1.2/24

CE 4

GE2/0/1

10.4.1.1/24

 

 

 

 

3. 配置步骤

(1)     在MPLS骨干网上配置IGP协议,实现骨干网PE和P的互通

# 配置PE 1。

<PE1> system-view

[PE1] interface loopback 0

[PE1-LoopBack0] ip address 1.1.1.9 32

[PE1-LoopBack0] quit

[PE1] interface pos 2/1/0

[PE1-Pos2/1/0] ip address 172.1.1.1 24

[PE1-Pos2/1/0] quit

[PE1] ospf

[PE1-ospf-1] area 0

[PE1-ospf-1-area-0.0.0.0] network 172.1.1.0 0.0.0.255

[PE1-ospf-1-area-0.0.0.0] network 1.1.1.9 0.0.0.0

[PE1-ospf-1-area-0.0.0.0] quit

[PE1-ospf-1] quit

# 配置P。

<P> system-view

[P] interface loopback 0

[P-LoopBack0] ip address 2.2.2.9 32

[P-LoopBack0] quit

[P] interface pos 2/1/0

[P-Pos2/1/0] ip address 172.1.1.2 24

[P-Pos2/1/0] quit

[P] interface pos 2/1/1

[P-Pos2/1/1] ip address 172.2.1.1 24

[P-Pos2/1/1] quit

[P] ospf

[P-ospf-1] area 0

[P-ospf-1-area-0.0.0.0] network 172.1.1.0 0.0.0.255

[P-ospf-1-area-0.0.0.0] network 172.2.1.0 0.0.0.255

[P-ospf-1-area-0.0.0.0] network 2.2.2.9 0.0.0.0

[P-ospf-1-area-0.0.0.0] quit

[P-ospf-1] quit

# 配置PE 2。

<PE2> system-view

[PE2] interface loopback 0

[PE2-LoopBack0] ip address 3.3.3.9 32

[PE2-LoopBack0] quit

[PE2] interface pos 2/1/0

[PE2-Pos2/1/0] ip address 172.2.1.2 24

[PE2-Pos2/1/0] quit

[PE2] ospf

[PE2-ospf-1] area 0

[PE2-ospf-1-area-0.0.0.0] network 172.2.1.0 0.0.0.255

[PE2-ospf-1-area-0.0.0.0] network 3.3.3.9 0.0.0.0

[PE2-ospf-1-area-0.0.0.0] quit

[PE2-ospf-1] quit

配置完成后,PE 1、P、PE 2之间应能建立OSPF邻居,执行display ospf peer命令可以看到邻居达到FULL状态。执行display ip routing-table命令可以看到PE之间学习到对方的Loopback路由。

(2)     在MPLS骨干网上配置MPLS基本能力和MPLS LDP,建立LDP LSP

# 配置PE 1。

[PE1] mpls lsr-id 1.1.1.9

[PE1] mpls ldp

[PE1-ldp] quit

[PE1] interface pos 2/1/0

[PE1-Pos2/1/0] mpls enable

[PE1-Pos2/1/0] mpls ldp enable

[PE1-Pos2/1/0] quit

# 配置P。

[P] mpls lsr-id 2.2.2.9

[P] mpls ldp

[P-ldp] quit

[P] interface pos 2/1/0

[P-Pos2/1/0] mpls enable

[P-Pos2/1/0] mpls ldp enable

[P-Pos2/1/0] quit

[P] interface pos 2/1/1

[P-Pos2/1/1] mpls enable

[P-Pos2/1/1] mpls ldp enable

[P-Pos2/1/1] quit

# 配置PE 2。

[PE2] mpls lsr-id 3.3.3.9

[PE2] mpls ldp

[PE2-ldp] quit

[PE2] interface pos 2/1/0

[PE2-Pos2/1/0] mpls enable

[PE2-Pos2/1/0] mpls ldp enable

[PE2-Pos2/1/0] quit

上述配置完成后,PE 1、P、PE 2之间应能建立LDP会话,执行display mpls ldp peer命令可以看到LDP会话的状态为Operational。执行display mpls ldp lsp命令,可以看到LDP LSP的建立情况。

(3)     在PE设备上配置VPN实例,将CE接入PE

# 配置PE 1。

[PE1] ip vpn-instance vpn1

[PE1-vpn-instance-vpn1] route-distinguisher 100:1

[PE1-vpn-instance-vpn1] vpn-target 111:1

[PE1-vpn-instance-vpn1] quit

[PE1] ip vpn-instance vpn2

[PE1-vpn-instance-vpn2] route-distinguisher 100:2

[PE1-vpn-instance-vpn2] vpn-target 222:2

[PE1-vpn-instance-vpn2] quit

[PE1] interface gigabitethernet 2/0/1

[PE1-GigabitEthernet2/0/1] ip binding vpn-instance vpn1

[PE1-GigabitEthernet2/0/1] ip address 10.1.1.2 24

[PE1-GigabitEthernet2/0/1] quit

[PE1] interface gigabitethernet 2/0/2

[PE1-GigabitEthernet2/0/2] ip binding vpn-instance vpn2

[PE1-GigabitEthernet2/0/2] ip address 10.2.1.2 24

[PE1-GigabitEthernet2/0/2] quit

# 配置PE 2。

[PE2] ip vpn-instance vpn1

[PE2-vpn-instance-vpn1] route-distinguisher 200:1

[PE2-vpn-instance-vpn1] vpn-target 111:1

[PE2-vpn-instance-vpn1] quit

[PE2] ip vpn-instance vpn2

[PE2-vpn-instance-vpn2] route-distinguisher 200:2

[PE2-vpn-instance-vpn2] vpn-target 222:2

[PE2-vpn-instance-vpn2] quit

[PE2] interface gigabitethernet 2/0/1

[PE2-GigabitEthernet2/0/1] ip binding vpn-instance vpn1

[PE2-GigabitEthernet2/0/1] ip address 10.3.1.2 24

[PE2-GigabitEthernet2/0/1] quit

[PE2] interface gigabitethernet 2/0/2

[PE2-GigabitEthernet2/0/2] ip binding vpn-instance vpn2

[PE2-GigabitEthernet2/0/2] ip address 10.4.1.2 24

[PE2-GigabitEthernet2/0/2] quit

# 图1-25配置各CE的接口IP地址,配置过程略。

配置完成后,在PE设备上执行display ip vpn-instance命令可以看到VPN实例的配置情况。各PE能ping通自己接入的CE。

以PE 1和CE 1为例:

[PE1] display ip vpn-instance

  Total VPN-Instances configured : 2

  VPN-Instance Name               RD                     Create time

  vpn1                            100:1                  2012/02/13 12:49:08

  vpn2                            100:2                  2012/02/13 12:49:20

[PE1] ping -vpn-instance vpn1 10.1.1.1

Ping 10.1.1.1 (10.1.1.1): 56 data bytes, press CTRL_C to break

56 bytes from 10.1.1.1: icmp_seq=0 ttl=255 time=1.000 ms

56 bytes from 10.1.1.1: icmp_seq=1 ttl=255 time=2.000 ms

56 bytes from 10.1.1.1: icmp_seq=2 ttl=255 time=0.000 ms

56 bytes from 10.1.1.1: icmp_seq=3 ttl=255 time=1.000 ms

56 bytes from 10.1.1.1: icmp_seq=4 ttl=255 time=0.000 ms

 

--- Ping statistics for 10.1.1.1 ---

5 packet(s) transmitted, 5 packet(s) received, 0.0% packet loss

round-trip min/avg/max/std-dev = 0.000/0.800/2.000/0.748 ms

(4)     在PE与CE之间建立EBGP对等体,引入VPN路由

# 配置CE 1。

<CE1> system-view

[CE1] bgp 65410

[CE1-bgp] peer 10.1.1.2 as-number 100

[CE1-bgp] address-family ipv4 unicast

[CE1-bgp-ipv4] peer 10.1.1.2 enable

[CE1-bgp-ipv4] import-route direct

[CE1-bgp-ipv4] quit

[CE1-bgp] quit

# 另外3个CE设备(CE 2~CE 4)配置与CE 1设备配置类似,配置过程省略。

# 配置PE 1。

[PE1] bgp 100

[PE1-bgp] ip vpn-instance vpn1

[PE1-bgp-vpn1] peer 10.1.1.1 as-number 65410

[PE1-bgp-vpn1] address-family ipv4 unicast

[PE1-bgp-ipv4-vpn1] peer 10.1.1.1 enable

[PE1-bgp-ipv4-vpn1] import-route direct

[PE1-bgp-ipv4-vpn1] quit

[PE1-bgp-vpn1] quit

[PE1-bgp] ip vpn-instance vpn2

[PE1-bgp-vpn2] peer 10.2.1.1 as-number 65420

[PE1-bgp-vpn2] address-family ipv4 unicast

[PE1-bgp-ipv4-vpn2] peer 10.2.1.1 enable

[PE1-bgp-ipv4-vpn2] import-route direct

[PE1-bgp-ipv4-vpn2] quit

[PE1-bgp-vpn1] quit

[PE1-bgp] quit

# PE 2的配置与PE 1类似,配置过程省略。

配置完成后,在PE设备上执行display bgp peer ipv4 vpn-instance命令,可以看到PE与CE之间的BGP对等体关系已建立,并达到Established状态。

(5)     在PE之间建立MP-IBGP对等体

# 配置PE 1。

[PE1] bgp 100

[PE1-bgp] peer 3.3.3.9 as-number 100

[PE1-bgp] peer 3.3.3.9 connect-interface loopback 0

[PE1-bgp] address-family vpnv4

[PE1-bgp-vpnv4] peer 3.3.3.9 enable

[PE1-bgp-vpnv4] quit

[PE1-bgp] quit

# 配置PE 2。

[PE2] bgp 100

[PE2-bgp] peer 1.1.1.9 as-number 100

[PE2-bgp] peer 1.1.1.9 connect-interface loopback 0

[PE2-bgp] address-family vpnv4

[PE2-bgp-vpnv4] peer 1.1.1.9 enable

[PE2-bgp-vpnv4] quit

[PE2-bgp] quit

配置完成后,在PE设备上执行display bgp peer vpnv4命令,可以看到PE之间的BGP对等体关系已建立,并达到Established状态。

4. 验证配置

在PE设备上执行display ip routing-table vpn-instance命令,可以看到去往对端CE的路由。

以PE 1上的VPN 1为例:

[PE1] display ip routing-table vpn-instance vpn1

 

Destinations : 13        Routes : 13

 

Destination/Mask    Proto  Pre  Cost         NextHop         Interface

0.0.0.0/32          Direct 0    0            127.0.0.1       InLoop0

10.1.1.0/24         Direct 0    0            10.1.1.2        GE2/0/1

10.1.1.0/32         Direct 0    0            10.1.1.2        GE2/0/1

10.1.1.2/32         Direct 0    0            127.0.0.1       InLoop0

10.1.1.255/32       Direct 0    0            10.1.1.2        GE2/0/1

10.3.1.0/24         BGP    255  0            3.3.3.9         POS2/1/0

127.0.0.0/8         Direct 0    0            127.0.0.1       InLoop0

127.0.0.0/32        Direct 0    0            127.0.0.1       InLoop0

127.0.0.1/32        Direct 0    0            127.0.0.1       InLoop0

127.255.255.255/32  Direct 0    0            127.0.0.1       InLoop0

224.0.0.0/4         Direct 0    0            0.0.0.0         NULL0

224.0.0.0/24        Direct 0    0            0.0.0.0         NULL0

255.255.255.255/32  Direct 0    0            127.0.0.1       InLoop0

同一VPN的CE能够相互Ping通,不同VPN的CE不能相互Ping通。

例如:CE 1能够Ping通CE 3(10.3.1.1),但不能Ping通CE 4(10.4.1.1)。

1.15.2  配置MPLS L3VPN采用GRE隧道示例

1. 组网需求

·     CE 1和CE 2属于VPN 1。

·     在运营商骨干网上,PE设备具备MPLS能力,P设备只提供纯IP功能,不具备MPLS能力。

·     在骨干网上使用GRE隧道封装并转发VPN报文,实现MPLS L3VPN。

·     在PE上配置隧道策略,指定VPN流量使用的隧道类型为GRE。(本配置可选)

2. 组网图

图1-26 配置采用GRE隧道的MPLS L3VPN组网图

设备

接口

IP地址

设备

接口

IP地址

CE 1

GE2/0/1

10.1.1.1/24

P

POS2/1/0

172.1.1.2/24

PE 1

Loop0

1.1.1.9/32

 

POS2/1/1

172.2.1.1/24

 

GE2/0/1

10.1.1.2/24

PE 2

Loop0

2.2.2.9/32

 

POS2/1/1

172.1.1.1/24

 

GE2/0/1

10.2.1.2/24

 

Tunnel0

20.1.1.1/24

 

POS2/1/0

172.2.1.2/24

CE 2

GE2/0/1

10.2.1.1/24

 

Tunnel0

20.1.1.2/24

 

3. 配置步骤

(1)     在MPLS骨干网上配置IGP协议,实现骨干网PE和P的互通

本例中采用OSPF发布接口(包括Loopback接口)所在网段的路由,具体配置过程略。

配置完成后,PE 1、P、PE 2之间应能建立OSPF邻居,执行display ospf peer命令可以看到邻居达到FULL状态。执行display ip routing-table命令可以看到PE之间学习到对方的Loopback路由。

(2)     在PE设备上使能MPLS基本能力

# 配置PE 1。

<PE1> system-view

[PE1] mpls lsr-id 1.1.1.9

# 配置PE 2。

<PE2> system-view

[PE2] mpls lsr-id 2.2.2.9

(3)     在PE设备上配置VPN实例,将CE接入PE,并在PE上应用隧道策略,指定使用GRE隧道转发VPN报文

# 配置PE 1。

[PE1] tunnel-policy gre1

[PE1-tunnel-policy-gre1] select-seq gre load-balance-number 1

[PE1-tunnel-policy-gre1] quit

[PE1] ip vpn-instance vpn1

[PE1-vpn-instance-vpn1] route-distinguisher 100:1

[PE1-vpn-instance-vpn1] vpn-target 100:1 both

[PE1-vpn-instance-vpn1] tnl-policy gre1

[PE1-vpn-instance-vpn1] quit

[PE1] interface gigabitethernet 2/0/1

[PE1-GigabitEthernet2/0/1] ip binding vpn-instance vpn1

[PE1-GigabitEthernet2/0/1] ip address 10.1.1.2 24

[PE1-GigabitEthernet2/0/1] quit

# 配置PE 2。

[PE2] tunnel-policy gre1

[PE2-tunnel-policy-gre1] select-seq gre load-balance-number 1

[PE2-tunnel-policy-gre1] quit

[PE2] ip vpn-instance vpn1

[PE2-vpn-instance-vpn1] route-distinguisher 100:2

[PE2-vpn-instance-vpn1] vpn-target 100:1 both

[PE2-vpn-instance-vpn1] tnl-policy gre1

[PE2-vpn-instance-vpn1] quit

[PE2] interface gigabitethernet 2/0/1

[PE2-GigabitEthernet2/0/1] ip binding vpn-instance vpn1

[PE2-GigabitEthernet2/0/1] ip address 10.2.1.2 24

[PE2-GigabitEthernet2/0/1] quit

# 配置CE 1。

<CE1> system-view

[CE1] interface gigabitethernet 2/0/1

[CE1-GigabitEthernet2/0/1] ip address 10.1.1.1 24

[CE1-GigabitEthernet2/0/1] quit

# 配置CE2。

<CE2> system-view

[CE2] interface gigabitethernet 2/0/1

[CE2-GigabitEthernet2/0/1] ip address 10.2.1.1 24

[CE2-GigabitEthernet2/0/1] quit

配置完成后,在PE设备上执行display ip vpn-instance命令可以看到VPN实例的配置情况。各PE能ping通自己接入的CE。

以PE 1为例:

[PE1] display ip vpn-instance

  Total VPN-Instances configured : 1

  VPN-Instance Name               RD                     Create time

  vpn1                            100:1                  2012/02/13 15:59:50

[PE1] ping -vpn-instance vpn1 10.1.1.1

Ping 10.1.1.1 (10.1.1.1): 56 data bytes, press CTRL_C to break

56 bytes from 10.1.1.1: icmp_seq=0 ttl=255 time=1.000 ms

56 bytes from 10.1.1.1: icmp_seq=1 ttl=255 time=0.000 ms

56 bytes from 10.1.1.1: icmp_seq=2 ttl=255 time=0.000 ms

56 bytes from 10.1.1.1: icmp_seq=3 ttl=255 time=0.000 ms

56 bytes from 10.1.1.1: icmp_seq=4 ttl=255 time=0.000 ms

 

--- Ping statistics for 10.1.1.1 ---

5 packet(s) transmitted, 5 packet(s) received, 0.0% packet loss

round-trip min/avg/max/std-dev = 0.000/0.200/1.000/0.400 ms

(4)     在PE与CE之间建立EBGP对等体,引入VPN路由

# 配置CE 1。

[CE1] bgp 65410

[CE1-bgp] peer 10.1.1.2 as-number 100

[CE1-bgp] address-family ipv4 unicast

[CE1-bgp-ipv4] peer 10.1.1.2 enable

[CE1-bgp-ipv4] import-route direct

[CE1-bgp-ipv4] quit

[CE1-bgp] quit

# 配置PE 1。

[PE1] bgp 100

[PE1-bgp] ip vpn-instance vpn1

[PE1-bgp-vpn1] peer 10.1.1.1 as-number 65410

[PE1-bgp-vpn1] address-family ipv4 unicast

[PE1-bgp-ipv4-vpn1] peer 10.1.1.1 enable

[PE1-bgp-ipv4-vpn1] peer 10.1.1.1 next-hop-local

[PE1-bgp-ipv4-vpn1] import-route direct

[PE1-bgp-ipv4-vpn1] quit

[PE1-bgp-vpn1] quit

[PE1-bgp] quit

# CE 2的配置与CE 1类似,PE 2的配置与PE 1类似,配置过程省略。

配置完成后,在PE设备上执行display bgp peer ipv4 vpn-instance命令,可以看到PE与CE之间的BGP对等体关系已建立,并达到Established状态。

(5)     在PE之间建立MP-IBGP对等体

# 配置PE 1。

[PE1] bgp 100

[PE1-bgp] peer 2.2.2.9 as-number 100

[PE1-bgp] peer 2.2.2.9 connect-interface loopback 0

[PE1-bgp] address-family vpnv4

[PE1-bgp-vpnv4] peer 2.2.2.9 enable

[PE1-bgp-vpnv4] quit

[PE1-bgp] quit

# PE 2的配置与PE 1类似,配置过程省略。

配置完成后,在PE设备上执行display bgp peer vpnv4命令,可以看到PE之间的BGP对等体关系已建立,并达到Established状态。

(6)     配置GRE隧道

# 配置PE 1。

[PE1] interface tunnel 0 mode gre

[PE1-Tunnel0] source loopback 0

[PE1-Tunnel0] destination 2.2.2.9

[PE1-Tunnel0] ip address 20.1.1.1 24

[PE1-Tunnel0] mpls enable

[PE1-Tunnel0] quit

# 配置PE 2。

[PE2] interface tunnel 0 mode gre

[PE2-Tunnel0] source loopback 0

[PE2-Tunnel0] destination 1.1.1.9

[PE2-Tunnel0] ip address 20.1.1.2 24

[PE2-Tunnel0] mpls enable

[PE2-Tunnel0] quit

4. 验证配置

# 配置完成后,CE能学到对端CE的接口路由。以CE 1为例:

[CE1] display ip routing-table

 

Destinations : 13        Routes : 13

 

Destination/Mask    Proto  Pre  Cost         NextHop         Interface

0.0.0.0/32          Direct 0    0            127.0.0.1       InLoop0

10.1.1.0/24         Direct 0    0            10.1.1.1        GE2/0/1

10.1.1.0/32         Direct 0    0            10.1.1.1        GE2/0/1

10.1.1.1/32         Direct 0    0            127.0.0.1       InLoop0

10.1.1.255/32       Direct 0    0            10.1.1.1        GE2/0/1

10.2.1.0/24         BGP    255  0            10.1.1.2        GE2/0/1

127.0.0.0/8         Direct 0    0            127.0.0.1       InLoop0

127.0.0.0/32        Direct 0    0            127.0.0.1       InLoop0

127.0.0.1/32        Direct 0    0            127.0.0.1       InLoop0

127.255.255.255/32  Direct 0    0            127.0.0.1       InLoop0

224.0.0.0/4         Direct 0    0            0.0.0.0         NULL0

224.0.0.0/24        Direct 0    0            0.0.0.0         NULL0

255.255.255.255/32  Direct 0    0            127.0.0.1       InLoop0

# CE 1和CE 2之间能够ping通。

1.15.3  配置Hub&Spoke组网示例

1. 组网需求

·     Spoke-CE之间不能直接通信,只能通过Hub-CE转发Spoke-CE之间的流量。

·     Spoke-CE与Spoke-PE之间、Hub-CE与Hub-PE之间配置EBGP交换VPN路由信息。

·     Spoke-PE与Hub-PE之间配置OSPF实现PE内部的互通、配置MP-IBGP交换VPN路由信息。

2. 组网图

图1-27 Hub&Spoke组网图

设备

接口

IP地址

设备

接口

IP地址

Spoke-CE 1

GE2/0/1

10.1.1.1/24

Hub-CE

GE2/0/1

10.3.1.1/24

Spoke-PE 1

Loop0

1.1.1.9/32

 

GE2/0/2

10.4.1.1/24

 

GE2/0/1

10.1.1.2/24

Hub-PE

Loop0

2.2.2.9/32

 

POS2/1/0

172.1.1.1/24

 

POS2/1/0

172.1.1.2/24

Spoke-CE 2

GE2/0/1

10.2.1.1/24

 

POS2/1/1

172.2.1.2/24

Spoke-PE 2

Loop0

3.3.3.9/32

 

GE2/0/1

10.3.1.2/24

 

GE2/0/1

10.2.1.2/24

 

GE2/0/2

10.4.1.2/24

 

POS2/1/0

172.2.1.1/24

 

 

 

 

3. 配置步骤

(1)     在MPLS骨干网上配置IGP协议,实现骨干网Spoke-PE、Hub-PE之间的互通

# 配置Spoke-PE 1。

<Spoke-PE1> system-view

[Spoke-PE1] interface loopback 0

[Spoke-PE1-LoopBack0] ip address 1.1.1.9 32

[Spoke-PE1-LoopBack0] quit

[Spoke-PE1] interface pos 2/1/0

[Spoke-PE1-Pos2/1/0] ip address 172.1.1.1 24

[Spoke-PE1-Pos2/1/0] quit

[Spoke-PE1] ospf

[Spoke-PE1-ospf-1] area 0

[Spoke-PE1-ospf-1-area-0.0.0.0] network 172.1.1.0 0.0.0.255

[Spoke-PE1-ospf-1-area-0.0.0.0] network 1.1.1.9 0.0.0.0

[Spoke-PE1-ospf-1-area-0.0.0.0] quit

[Spoke-PE1-ospf-1] quit

# 配置Spoke-PE 2。

<Spoke-PE2> system-view

[Spoke-PE2] interface loopback 0

[Spoke-PE2-LoopBack0] ip address 3.3.3.9 32

[Spoke-PE2-LoopBack0] quit

[Spoke-PE2] interface pos 2/1/0

[Spoke-PE2-Pos2/1/0] ip address 172.2.1.1 24

[Spoke-PE2-Pos2/1/0] quit

[Spoke-PE2] ospf

[Spoke-PE2-ospf-1] area 0

[Spoke-PE2-ospf-1-area-0.0.0.0] network 172.2.1.0 0.0.0.255

[Spoke-PE2-ospf-1-area-0.0.0.0] network 3.3.3.9 0.0.0.0

[Spoke-PE2-ospf-1-area-0.0.0.0] quit

[Spoke-PE2-ospf-1] quit

# 配置Hub-PE。

<Hub-PE> system-view

[Hub-PE] interface loopback 0

[Hub-PE-LoopBack0] ip address 2.2.2.9 32

[Hub-PE-LoopBack0] quit

[Hub-PE] interface pos 2/1/0

[Hub-PE-Pos2/1/0] ip address 172.1.1.2 24

[Hub-PE-Pos2/1/0] quit

[Hub-PE] interface pos 2/1/1

[Hub-PE-Pos2/1/1] ip address 172.2.1.2 24

[Hub-PE-Pos2/1/1] quit

[Hub-PE] ospf

[Hub-PE-ospf-1] area 0

[Hub-PE-ospf-1-area-0.0.0.0] network 172.1.1.0 0.0.0.255

[Hub-PE-ospf-1-area-0.0.0.0] network 172.2.1.0 0.0.0.255

[Hub-PE-ospf-1-area-0.0.0.0] network 2.2.2.9 0.0.0.0

[Hub-PE-ospf-1-area-0.0.0.0] quit

[Hub-PE-ospf-1] quit

配置完成后,Spoke-PE 1、Spoke-PE 2、Hub-PE之间应能建立OSPF邻居,执行display ospf peer命令可以看到邻居达到Full状态。执行display ip routing-table命令可以看到PE之间学习到对方的Loopback路由。

(2)     在MPLS骨干网上配置MPLS基本能力和MPLS LDP,建立LDP LSP

# 配置Spoke-PE 1。

[Spoke-PE1] mpls lsr-id 1.1.1.9

[Spoke-PE1] mpls ldp

[Spoke-PE1-ldp] quit

[Spoke-PE1] interface pos 2/1/0

[Spoke-PE1-Pos2/1/0] mpls enable

[Spoke-PE1-Pos2/1/0] mpls ldp enable

[Spoke-PE1-Pos2/1/0] quit

# 配置Spoke-PE 2。

[Spoke-PE2] mpls lsr-id 3.3.3.9

[Spoke-PE2] mpls ldp

[Spoke-PE2-ldp] quit

[Spoke-PE2] interface pos 2/1/0

[Spoke-PE2-Pos2/1/0] mpls enable

[Spoke-PE2-Pos2/1/0] mpls ldp enable

[Spoke-PE2-Pos2/1/0] quit

# 配置Hub-PE。

[Hub-PE] mpls lsr-id 2.2.2.9

[Hub-PE] mpls ldp

[Hub-PE-ldp] quit

[Hub-PE] interface pos 2/1/0

[Hub-PE-Pos2/1/0] mpls enable

[Hub-PE-Pos2/1/0] mpls ldp enable

[Hub-PE-Pos2/1/0] quit

[Hub-PE] interface pos 2/1/1

[Hub-PE-Pos2/1/1] mpls enable

[Hub-PE-Pos2/1/1] mpls ldp enable

[Hub-PE-Pos2/1/1] quit

上述配置完成后,Spoke-PE 1、Spoke-PE 2、Hub-PE之间应能建立LDP会话,执行display mpls ldp peer命令可以看到LDP会话的状态为Operational。执行display mpls ldp lsp命令,可以看到LDP LSP的建立情况。

(3)     在Spoke-PE和Hub-PE设备上配置VPN实例,将CE接入PE

# 配置Spoke-PE 1。

[Spoke-PE1] ip vpn-instance vpn1

[Spoke-PE1-vpn-instance-vpn1] route-distinguisher 100:1

[Spoke-PE1-vpn-instance-vpn1] vpn-target 111:1 import-extcommunity

[Spoke-PE1-vpn-instance-vpn1] vpn-target 222:2 export-extcommunity

[Spoke-PE1-vpn-instance-vpn1] quit

[Spoke-PE1] interface gigabitethernet 2/0/1

[Spoke-PE1-GigabitEthernet2/0/1] ip binding vpn-instance vpn1

[Spoke-PE1-GigabitEthernet2/0/1] ip address 10.1.1.2 24

[Spoke-PE1-GigabitEthernet2/0/1] quit

# 配置Spoke-PE 2。

[Spoke-PE2] ip vpn-instance vpn1

[Spoke-PE2-vpn-instance-vpn1] route-distinguisher 100:2

[Spoke-PE2-vpn-instance-vpn1] vpn-target 111:1 import-extcommunity

[Spoke-PE2-vpn-instance-vpn1] vpn-target 222:2 export-extcommunity

[Spoke-PE2-vpn-instance-vpn1] quit

[Spoke-PE2] interface gigabitethernet 2/0/1

[Spoke-PE2-GigabitEthernet2/0/1] ip binding vpn-instance vpn1

[Spoke-PE2-GigabitEthernet2/0/1] ip address 10.2.1.2 24

[Spoke-PE2-GigabitEthernet2/0/1] quit

# 配置Hub-PE。

[Hub-PE] ip vpn-instance vpn1-in

[Hub-PE-vpn-instance-vpn1-in] route-distinguisher 100:3

[Hub-PE-vpn-instance-vpn1-in] vpn-target 222:2 import-extcommunity

[Hub-PE-vpn-instance-vpn1-in] quit

[Hub-PE] ip vpn-instance vpn1-out

[Hub-PE-vpn-instance-vpn1-out] route-distinguisher 100:4

[Hub-PE-vpn-instance-vpn1-out] vpn-target 111:1 export-extcommunity

[Hub-PE-vpn-instance-vpn1-out] quit

[Hub-PE] interface gigabitethernet 2/0/1

[Hub-PE-GigabitEthernet2/0/1] ip binding vpn-instance vpn1-in

[Hub-PE-GigabitEthernet2/0/1] ip address 10.3.1.2 24

[Hub-PE-GigabitEthernet2/0/1] quit

[Hub-PE] interface gigabitethernet 2/0/2

[Hub-PE-GigabitEthernet2/0/2] ip binding vpn-instance vpn1-out

[Hub-PE-GigabitEthernet2/0/2] ip address 10.4.1.2 24

[Hub-PE-GigabitEthernet2/0/2] quit

# 图1-27配置各CE的接口IP地址,配置过程略。

配置完成后,在PE设备上执行display ip vpn-instance命令可以看到VPN实例的配置情况。各PE能ping通自己接入的CE。

以Spoke-PE 1和Spoke-CE 1为例:

[Spoke-PE1] display ip vpn-instance

  Total VPN-Instances configured : 1

  VPN-Instance Name               RD                     Create time

  vpn1                            100:1                  2009/04/08 10:55:07

[Spoke-PE1] ping -vpn-instance vpn1 10.1.1.1

Ping 10.1.1.1 (10.1.1.1): 56 data bytes, press CTRL_C to break

56 bytes from 10.1.1.1: icmp_seq=0 ttl=128 time=1.913 ms

56 bytes from 10.1.1.1: icmp_seq=1 ttl=128 time=2.381 ms

56 bytes from 10.1.1.1: icmp_seq=2 ttl=128 time=1.707 ms

56 bytes from 10.1.1.1: icmp_seq=3 ttl=128 time=1.666 ms

56 bytes from 10.1.1.1: icmp_seq=4 ttl=128 time=2.710 ms

 

--- Ping statistics for 10.1.1.1 ---

5 packet(s) transmitted, 5 packet(s) received, 0.0% packet loss

round-trip min/avg/max/std-dev = 1.666/2.075/2.710/0.406 ms

(4)     在PE与CE之间建立EBGP对等体,引入VPN路由

# 配置Spoke-CE 1。

<Spoke-CE1> system-view

[Spoke-CE1] bgp 65410

[Spoke-CE1-bgp] peer 10.1.1.2 as-number 100

[Spoke-CE1-bgp] address-family ipv4

[Spoke-CE1-bgp-ipv4] peer 10.1.1.2 enable

[Spoke-CE1-bgp-ipv4] import-route direct

[Spoke-CE1-bgp-ipv4] quit

[Spoke-CE1-bgp] quit

# 配置Spoke-CE 2。

<Spoke-CE2> system-view

[Spoke-CE2] bgp 65420

[Spoke-CE2-bgp] peer 10.2.1.2 as-number 100

[Spoke-CE2-bgp] address-family ipv4

[Spoke-CE2-bgp-ipv4] peer 10.2.1.2 enable

[Spoke-CE2-bgp-ipv4] import-route direct

[Spoke-CE2-bgp-ipv4] quit

[Spoke-CE2-bgp] quit

# 配置Hub-CE。

<Hub-CE> system-view

[Hub-CE] bgp 65430

[Hub-CE-bgp] peer 10.3.1.2 as-number 100

[Hub-CE-bgp] peer 10.4.1.2 as-number 100

[Hub-CE-bgp] address-family ipv4

[Hub-CE-bgp-ipv4] peer 10.3.1.2 enable

[Hub-CE-bgp-ipv4] peer 10.4.1.2 enable

[Hub-CE-bgp-ipv4] import-route direct

[Hub-CE-bgp-ipv4] quit

[Hub-CE-bgp] quit

# 配置Spoke-PE 1。

[Spoke-PE1] bgp 100

[Spoke-PE1-bgp] ip vpn-instance vpn1

[Spoke-PE1-bgp-vpn1] peer 10.1.1.1 as-number 65410

[Spoke-PE1-bgp-vpn1] address-family ipv4

[Spoke-PE1-bgp-ipv4-vpn1] peer 10.1.1.1 enable

[Spoke-PE1-bgp-ipv4-vpn1] import-route direct

[Spoke-PE1-bgp-ipv4-vpn1] quit

[Spoke-PE1-bgp-vpn1] quit

[Spoke-PE1-bgp] quit

# 配置Spoke-PE 2。

[Spoke-PE2] bgp 100

[Spoke-PE2-bgp] ip vpn-instance vpn1

[Spoke-PE2-bgp-vpn1] peer 10.2.1.1 as-number 65420

[Spoke-PE2-bgp-vpn1] address-family ipv4

[Spoke-PE2-bgp-ipv4-vpn1] peer 10.2.1.1 enable

[Spoke-PE2-bgp-ipv4-vpn1] import-route direct

[Spoke-PE2-bgp-ipv4-vpn1] quit

[Spoke-PE2-bgp-vpn1] quit

[Spoke-PE2-bgp] quit

# 配置Hub-PE。

[Hub-PE] bgp 100

[Hub-PE-bgp] ip vpn-instance vpn1-in

[Hub-PE-bgp-vpn1-in] peer 10.3.1.1 as-number 65430

[Hub-PE-bgp-vpn1-in] address-family ipv4

[Hub-PE-bgp-ipv4-vpn1-in] peer 10.3.1.1 enable

[Hub-PE-bgp-ipv4-vpn1-in] import-route direct

[Hub-PE-bgp-ipv4-vpn1-in] quit

[Hub-PE-bgp-vpn1-in] quit

[Hub-PE-bgp] ip vpn-instance vpn1-out

[Hub-PE-bgp-vpn1-out] peer 10.4.1.1 as-number 65430

[Hub-PE-bgp-vpn1-out] address-family ipv4

[Hub-PE-bgp-ipv4-vpn1-out] peer 10.4.1.1 enable

[Hub-PE-bgp-ipv4-vpn1-out] peer 10.4.1.1 allow-as-loop 2

[Hub-PE-bgp-ipv4-vpn1-out] import-route direct

[Hub-PE-bgp-ipv4-vpn1-out] quit

[Hub-PE-bgp-vpn1-out] quit

[Hub-PE-bgp] quit

配置完成后,在PE设备上执行display bgp peer ipv4 vpn-instance命令,可以看到PE与CE之间的BGP对等体关系已建立,并达到Established状态。

(5)     在Spoke-PE和Hub-PE之间建立MP-IBGP对等体

# 配置Spoke-PE 1。

[Spoke-PE1] bgp 100

[Spoke-PE1-bgp] peer 2.2.2.9 as-number 100

[Spoke-PE1-bgp] peer 2.2.2.9 connect-interface loopback 0

[Spoke-PE1-bgp] address-family vpnv4

[Spoke-PE1-bgp-vpnv4] peer 2.2.2.9 enable

[Spoke-PE1-bgp-vpnv4] quit

[Spoke-PE1-bgp] quit

# 配置Spoke-PE 2。

[Spoke-PE2] bgp 100

[Spoke-PE2-bgp] peer 2.2.2.9 as-number 100

[Spoke-PE2-bgp] peer 2.2.2.9 connect-interface loopback 0

[Spoke-PE2-bgp] address-family vpnv4

[Spoke-PE2-bgp-vpnv4] peer 2.2.2.9 enable

[Spoke-PE2-bgp-vpnv4] quit

[Spoke-PE2-bgp] quit

# 配置Hub-PE。

[Hub-PE] bgp 100

[Hub-PE-bgp] peer 1.1.1.9 as-number 100

[Hub-PE-bgp] peer 1.1.1.9 connect-interface loopback 0

[Hub-PE-bgp] peer 3.3.3.9 as-number 100

[Hub-PE-bgp] peer 3.3.3.9 connect-interface loopback 0

[Hub-PE-bgp] address-family vpnv4

[Hub-PE-bgp-vpnv4] peer 1.1.1.9 enable

[Hub-PE-bgp-vpnv4] peer 3.3.3.9 enable

[Hub-PE-bgp-vpnv4] quit

[Hub-PE-bgp] quit

配置完成后,在PE设备上执行display bgp peer vpnv4命令,可以看到PE之间的BGP对等体关系已建立,并达到Established状态。

4. 验证配置

# 在PE设备上执行display ip routing-table vpn-instance命令,可以看到去往各个CE的路由,且Spoke-PE上到达对端Spoke-CE的路由指向Hub-PE。以Spoke-PE 1为例:

[Spoke-PE1] display ip routing-table vpn-instance vpn1

 

Destinations : 15        Routes : 15

 

Destination/Mask   Proto   Pre Cost        NextHop         Interface

0.0.0.0/32         Direct  0   0           127.0.0.1       InLoop0

10.1.1.0/24        Direct  0   0           10.1.1.2        GE2/0/1

10.1.1.0/32        Direct  0   0           10.1.1.2        GE2/0/1

10.1.1.2/32        Direct  0   0           127.0.0.1       InLoop0

10.1.1.255/32      Direct  0   0           10.1.1.2        GE2/0/1

10.2.1.0/24        BGP     255 0           2.2.2.9         POS2/1/0

10.3.1.0/24        BGP     255 0           2.2.2.9         POS2/1/0

10.4.1.0/24        BGP     255 0           2.2.2.9         POS2/1/0

127.0.0.0/8        Direct  0   0           127.0.0.1       InLoop0

127.0.0.0/32       Direct  0   0           127.0.0.1       InLoop0

127.0.0.1/32       Direct  0   0           127.0.0.1       InLoop0

127.255.255.255/32 Direct  0   0           127.0.0.1       InLoop0

224.0.0.0/4        Direct  0   0           0.0.0.0         NULL0

224.0.0.0/24       Direct  0   0           0.0.0.0         NULL0

255.255.255.255/32 Direct  0   0           127.0.0.1       InLoop0

# Spoke-CE 1和Spoke-CE 2之间可以ping通。从TTL值可以推算出Spoke-CE 1到Spoke-CE 2经过6跳(255-250+1),即Spoke-CE 1和Spoke-CE 2之间的流量需要通过Hub-CE转发。以Spoke-CE 1为例:

[Spoke-CE1] ping 10.2.1.1

Ping 10.2.1.1 (10.2.1.1): 56 data bytes, press CTRL_C to break

56 bytes from 10.2.1.1: icmp_seq=0 ttl=250 time=1.000 ms

56 bytes from 10.2.1.1: icmp_seq=1 ttl=250 time=2.000 ms

56 bytes from 10.2.1.1: icmp_seq=2 ttl=250 time=0.000 ms

56 bytes from 10.2.1.1: icmp_seq=3 ttl=250 time=1.000 ms

56 bytes from 10.2.1.1: icmp_seq=4 ttl=250 time=0.000 ms

 

--- Ping statistics for 10.2.1.1 ---

5 packet(s) transmitted, 5 packet(s) received, 0.0% packet loss

round-trip min/avg/max/std-dev = 0.000/0.800/2.000/0.748 ms

1.15.4  配置跨域VPN-OptionA方式示例

1. 组网需求

·     CE 1和CE 2属于同一个VPN。

·     CE 1通过AS 100的PE 1接入,CE 2通过AS 200的PE 2接入。

·     采用OptionA方式实现跨域的MPLS L3VPN,即,采用VRF-to-VRF方式管理VPN路由。

·     同一个AS内部的MPLS骨干网使用OSPF作为IGP。

2. 组网图

图1-28 配置跨域VPN-OptionA方式组网图

设备

接口

IP地址

设备

接口

IP地址

CE 1

GE2/0/1

10.1.1.1/24

CE 2

GE2/0/1

10.2.1.1/24

PE 1

Loop0

1.1.1.9/32

PE 2

Loop0

4.4.4.9/32

 

GE2/0/1

10.1.1.2/24

 

GE2/0/1

10.2.1.2/24

 

POS2/1/0

172.1.1.2/24

 

POS2/1/0

162.1.1.2/24

ASBR-PE1

Loop0

2.2.2.9/32

ASBR-PE2

Loop0

3.3.3.9/32

 

POS2/1/0

172.1.1.1/24

 

POS2/1/0

162.1.1.1/24

 

POS2/1/1

192.1.1.1/24

 

POS2/1/1

192.1.1.2/24

 

3. 配置步骤

(1)     在MPLS骨干网上配置IGP协议,实现骨干网内互通

本例中采用OSPF发布接口(包括Loopback接口)所在网段的路由,具体配置步骤略。

配置完成后,ASBR-PE与本AS的PE之间应能建立OSPF邻居,执行display ospf peer命令可以看到邻居达到FULL状态,PE之间能学习到对方的Loopback地址。

ASBR-PE与本AS的PE之间能够互相ping通。

(2)     在MPLS骨干网上配置MPLS基本能力和MPLS LDP,建立LDP LSP

# 配置PE 1的MPLS基本能力,并在与ASBR-PE 1相连的接口上使能LDP。

<PE1> system-view

[PE1] mpls lsr-id 1.1.1.9

[PE1] mpls ldp

[PE1-ldp] quit

[PE1] interface pos 2/1/0

[PE1-Pos2/1/0] mpls enable

[PE1-Pos2/1/0] mpls ldp enable

[PE1-Pos2/1/0] quit

# 配置ASBR-PE 1的MPLS基本能力,并在与PE 1相连的接口上使能LDP。

<ASBR-PE1> system-view

[ASBR-PE1] mpls lsr-id 2.2.2.9

[ASBR-PE1] mpls ldp

[ASBR-PE1-ldp] quit

[ASBR-PE1] interface pos 2/1/0

[ASBR-PE1-Pos2/1/0] mpls enable

[ASBR-PE1-Pos2/1/0] mpls ldp enable

[ASBR-PE1-Pos2/1/0] quit

# 配置ASBR-PE 2的MPLS基本能力,并在与PE 2相连的接口上使能LDP。

<ASBR-PE2> system-view

[ASBR-PE2] mpls lsr-id 3.3.3.9

[ASBR-PE2] mpls ldp

[ASBR-PE2-ldp] quit

[ASBR-PE2] interface pos 2/1/0

[ASBR-PE2-Pos2/1/0] mpls enable

[ASBR-PE2-Pos2/1/0] mpls ldp enable

[ASBR-PE2-Pos2/1/0] quit

# 配置PE 2的MPLS基本能力,并在与ASBR-PE 2相连的接口上使能LDP。

<PE2> system-view

[PE2] mpls lsr-id 4.4.4.9

[PE2] mpls ldp

[PE2-ldp] quit

[PE2] interface pos 2/1/0

[PE2-Pos2/1/0] mpls enable

[PE2-Pos2/1/0] mpls ldp enable

[PE2-Pos2/1/0] quit

上述配置完成后,同一AS的PE和ASBR-PE之间应该建立起LDP邻居,在各设备上执行display mpls ldp peer命令可以看到LDP会话状态为“Operational”。

(3)     在PE设备上配置VPN实例,将CE接入PE

说明

同一AS内的ASBR-PE与PE的VPN实例的VPN Target应能匹配,不同AS的PE的VPN实例的VPN Target则不需要匹配。

 

# 配置CE 1。

<CE1> system-view

[CE1] interface gigabitethernet 2/0/1

[CE1-GigabitEthernet2/0/1] ip address 10.1.1.1 24

[CE1-GigabitEthernet2/0/1] quit

# 配置PE 1。

[PE1] ip vpn-instance vpn1

[PE1-vpn-instance-vpn1] route-distinguisher 100:1

[PE1-vpn-instance-vpn1] vpn-target 100:1 both

[PE1-vpn-instance-vpn1] quit

[PE1] interface gigabitethernet 2/0/1

[PE1-GigabitEthernet2/0/1] ip binding vpn-instance vpn1

[PE1-GigabitEthernet2/0/1] ip address 10.1.1.2 24

[PE1-GigabitEthernet2/0/1] quit

# 配置CE 2。

<CE2> system-view

[CE2] interface gigabitethernet 2/0/1

[CE2-GigabitEthernet2/0/1] ip address 10.2.1.1 24

[CE2-GigabitEthernet2/0/1] quit

# 配置PE 2。

[PE2] ip vpn-instance vpn1

[PE2-vpn-instance-vpn1] route-distinguisher 200:2

[PE2-vpn-instance-vpn1] vpn-target 200:1 both

[PE2-vpn-instance-vpn1] quit

[PE2] interface gigabitethernet 2/0/1

[PE2-GigabitEthernet2/0/1] ip binding vpn-instance vpn1

[PE2-GigabitEthernet2/0/1] ip address 10.2.1.2 24

[PE2-GigabitEthernet2/0/1] quit

# 配置ASBR-PE 1:创建VPN实例,并将此实例绑定到连接ASBR-PE 2的接口(ASBR-PE 1认为ASBR-PE 2是自己的CE)。

[ASBR-PE1] ip vpn-instance vpn1

[ASBR-PE1-vpn-vpn1] route-distinguisher 100:1

[ASBR-PE1-vpn-vpn1] vpn-target 100:1 both

[ASBR-PE1-vpn-vpn1] quit

[ASBR-PE1] interface pos 2/1/1

[ASBR-PE1-Pos2/1/1] ip binding vpn-instance vpn1

[ASBR-PE1-Pos2/1/1] ip address 192.1.1.1 24

[ASBR-PE1-Pos2/1/1] quit

# 配置ASBR-PE 2:创建VPN实例,并将此实例绑定到连接ASBR-PE 1的接口(ASBR-PE 2认为ASBR-PE 1是自己的CE)。

[ASBR-PE2] ip vpn-instance vpn1

[ASBR-PE2-vpn-vpn1] route-distinguisher 200:1

[ASBR-PE2-vpn-vpn1] vpn-target 200:1 both

[ASBR-PE2-vpn-vpn1] quit

[ASBR-PE2] interface pos 2/1/1

[ASBR-PE2-Pos2/1/1] ip binding vpn-instance vpn1

[ASBR-PE2-Pos2/1/1] ip address 192.1.1.2 24

[ASBR-PE2-Pos2/1/1] quit

上述配置完成后,在各PE设备上执行display ip vpn-instance命令能正确显示VPN实例配置。

各PE能ping通各自的CE。ASBR-PE之间也能互相ping通。

(4)     在PE与CE之间建立EBGP对等体,引入VPN路由

# 配置CE 1。

[CE1] bgp 65001

[CE1-bgp] peer 10.1.1.2 as-number 100

[CE1-bgp] address-family ipv4 unicast

[CE1-bgp-ipv4] peer 10.1.1.2 enable

[CE1-bgp-ipv4] import-route direct

[CE1-bgp-ipv4] quit

[CE1-bgp] quit

# 配置PE 1。

[PE1] bgp 100

[PE1-bgp] ip vpn-instance vpn1

[PE1-bgp-vpn1] peer 10.1.1.1 as-number 65001

[PE1-bgp-vpn1] address-family ipv4 unicast

[PE1-bgp-ipv4-vpn1] peer 10.1.1.1 enable

[PE1-bgp-ipv4-vpn1] quit

[PE1-bgp-vpn1] quit

[PE1-bgp] quit

# 配置CE 2。

[CE2] bgp 65002

[CE2-bgp] peer 10.2.1.2 as-number 200

[CE2-bgp] address-family ipv4 unicast

[CE2-bgp-ipv4] peer 10.2.1.2 enable

[CE2-bgp-ipv4] import-route direct

[CE2-bgp-ipv4] quit

[CE2-bgp] quit

# 配置PE 2。

[PE2] bgp 200

[PE2-bgp] ip vpn-instance vpn1

[PE2-bgp-vpn1] peer 10.2.1.1 as-number 65002

[PE2-bgp-vpn1] address-family ipv4 unicast

[PE2-bgp-ipv4-vpn1] peer 10.2.1.1 enable

[PE2-bgp-ipv4-vpn1] quit

[PE2-bgp-vpn1] quit

[PE2-bgp] quit

(5)     PE与本AS的ASBR-PE之间建立MP-IBGP对等体,ASBR-PE之间建立EBGP对等体

# 配置PE 1。

[PE1] bgp 100

[PE1-bgp] peer 2.2.2.9 as-number 100

[PE1-bgp] peer 2.2.2.9 connect-interface loopback 0

[PE1-bgp] address-family vpnv4

[PE1-bgp-vpnv4] peer 2.2.2.9 enable

[PE1-bgp-vpnv4] peer 2.2.2.9 next-hop-local

[PE1-bgp-vpnv4] quit

[PE1-bgp] quit

# 配置ASBR-PE 1。

[ASBR-PE1] bgp 100

[ASBR-PE1-bgp] ip vpn-instance vpn1

[ASBR-PE1-bgp-vpn1] peer 192.1.1.2 as-number 200

[ASBR-PE1-bgp-vpn1] address-family ipv4 unicast

[ASBR-PE1-bgp-ipv4-vpn1] peer 192.1.1.2 enable

[ASBR-PE1-bgp-ipv4-vpn1] quit

[ASBR-PE1-bgp-vpn1] quit

[ASBR-PE1-bgp] peer 1.1.1.9 as-number 100

[ASBR-PE1-bgp] peer 1.1.1.9 connect-interface loopback 0

[ASBR-PE1-bgp] address-family vpnv4

[ASBR-PE1-bgp-vpnv4] peer 1.1.1.9 enable

[ASBR-PE1-bgp-vpnv4] peer 1.1.1.9 next-hop-local

[ASBR-PE1-bgp-vpnv4] quit

[ASBR-PE1-bgp] quit

# 配置ASBR-PE 2。

[ASBR-PE2] bgp 200

[ASBR-PE2-bgp] ip vpn-instance vpn1

[ASBR-PE2-bgp-vpn1] peer 192.1.1.1 as-number 100

[ASBR-PE2-bgp-vpn1] address-family ipv4 unicast

[ASBR-PE2-bgp-ipv4-vpn1] peer 192.1.1.1 enable

[ASBR-PE2-bgp-ipv4-vpn1] quit

[ASBR-PE2-bgp-vpn1] quit

[ASBR-PE2-bgp] peer 4.4.4.9 as-number 200

[ASBR-PE2-bgp] peer 4.4.4.9 connect-interface loopback 0

[ASBR-PE2-bgp] address-family vpnv4

[ASBR-PE2-bgp-vpnv4] peer 4.4.4.9 enable

[ASBR-PE2-bgp-vpnv4] peer 4.4.4.9 next-hop-local

[ASBR-PE2-bgp-vpnv4] quit

[ASBR-PE2-bgp] quit

# 配置PE 2。

[PE2] bgp 200

[PE2-bgp] peer 3.3.3.9 as-number 200

[PE2-bgp] peer 3.3.3.9 connect-interface loopback 0

[PE2-bgp] address-family vpnv4

[PE2-bgp-vpnv4] peer 3.3.3.9 enable

[PE2-bgp-vpnv4] peer 3.3.3.9 next-hop-local

[PE2-bgp-vpnv4] quit

[PE2-bgp] quit

4. 验证配置

上述配置完成后,CE之间能学习到对方的接口路由,CE 1和CE 2能够相互ping通。

1.15.5  配置跨域VPN-OptionB方式示例

1. 组网需求

·     Site 1和Site 2属于同一个VPN,Site 1的CE 1通过AS 100的PE 1接入,Site 2的CE 2通过AS 600的PE 2接入;

·     同一自治系统内的PE设备之间运行IS-IS作为IGP;

·     PE 1与ASBR-PE 1间通过MP-IBGP交换VPNv4路由;

·     PE 2与ASBR-PE 2间通过MP-IBGP交换VPNv4路由;

·     ASBR-PE 1与ASBR-PE 2间通过MP-EBGP交换VPNv4路由;

·     ASBR上不对接收的VPNv4路由进行VPN Target过滤。

2. 组网图

图1-29 配置跨域VPN-OptionB方式组网图

设备

接口

IP地址

设备

接口

IP地址

PE 1

Loop0

2.2.2.9/32

PE 2

Loop0

5.5.5.9/32

 

GE2/0/1

30.0.0.1/8

 

GE2/0/1

20.0.0.1/8

 

POS2/1/0

1.1.1.2/8

 

POS2/1/0

9.1.1.2/8

ASBR-PE 1

Loop0

3.3.3.9/32

ASBR-PE 2

Loop0

4.4.4.9/32

 

POS2/1/0

1.1.1.1/8

 

POS2/1/0

9.1.1.1/8

 

POS2/1/1

11.0.0.2/8

 

POS2/1/1

11.0.0.1/8

 

3. 配置步骤

(1)     配置PE 1

# 在PE 1上运行IS-IS。

<PE1> system-view

[PE1] isis 1

[PE1-isis-1] network-entity 10.111.111.111.111.00

[PE1-isis-1] quit

# 配置LSR ID,使能MPLS和LDP。

[PE1] mpls lsr-id 2.2.2.9

[PE1] mpls ldp

[PE1-ldp] quit

# 配置接口POS2/1/0,在接口上运行IS-IS,并使能MPLS和LDP。

[PE1] interface pos 2/1/0

[PE1-Pos2/1/0] ip address 1.1.1.2 255.0.0.0

[PE1-Pos2/1/0] isis enable 1

[PE1-Pos2/1/0] mpls enable

[PE1-Pos2/1/0] mpls ldp enable

[PE1-Pos2/1/0] quit

# 创建Loopback0接口,在接口上运行IS-IS。

[PE1] interface loopback 0

[PE1-LoopBack0] ip address 2.2.2.9 32

[PE1-LoopBack0] isis enable 1

[PE1-LoopBack0] quit

# 创建一个VPN实例,名为vpn1,配置RD和VPN Target属性。

[PE1] ip vpn-instance vpn1

[PE1-vpn-instance-vpn1] route-distinguisher 11:11

[PE1-vpn-instance-vpn1] vpn-target 1:1 2:2 3:3 import-extcommunity

[PE1-vpn-instance-vpn1] vpn-target 3:3 export-extcommunity

[PE1-vpn-instance-vpn1] quit

# 将连接CE 1的接口绑定到创建的VPN实例。

[PE1] interface gigabitethernet 2/0/1

[PE1-GigabitEthernet2/0/1] ip binding vpn-instance vpn1

[PE1-GigabitEthernet2/0/1] ip address 30.0.0.1 8

[PE1-GigabitEthernet2/0/1] quit

# 在PE 1上运行BGP。

[PE1] bgp 100

# 配置IBGP对等体3.3.3.9为VPNv4对等体。

[PE1-bgp] peer 3.3.3.9 as-number 100

[PE1-bgp] peer 3.3.3.9 connect-interface loopback 0

[PE1-bgp] address-family vpnv4

[PE1-bgp-vpnv4] peer 3.3.3.9 enable

[PE1-bgp-vpnv4] quit

# 将直连路由引入vpn1的VPN路由表。

[PE1-bgp] ip vpn-instance vpn1

[PE1-bgp-vpn1] address-family ipv4 unicast

[PE1-bgp-ipv4-vpn1] import-route direct

[PE1-bgp-ipv4-vpn1] quit

[PE1-bgp-vpn1] quit

[PE1-bgp] quit

(2)     配置ASBR-PE 1

# 在ASBR-PE 1上运行IS-IS。

<ASBR-PE1> system-view

[ASBR-PE1] isis 1

[ASBR-PE1-isis-1] network-entity 10.222.222.222.222.00

[ASBR-PE1-isis-1] quit

# 配置LSR ID,使能MPLS和LDP。

[ASBR-PE1] mpls lsr-id 3.3.3.9

[ASBR-PE1] mpls ldp

[ASBR-PE1-ldp] quit

# 配置接口POS2/1/0,在接口上运行IS-IS,并使能MPLS和LDP。

[ASBR-PE1] interface pos 2/1/0

[ASBR-PE1-Pos2/1/0] ip address 1.1.1.1 255.0.0.0

[ASBR-PE1-Pos2/1/0] isis enable 1

[ASBR-PE1-Pos2/1/0] mpls enable

[ASBR-PE1-Pos2/1/0] mpls ldp enable

[ASBR-PE1-Pos2/1/0] quit

# 配置接口POS2/1/1,使能MPLS。

[ASBR-PE1] interface pos 2/1/1

[ASBR-PE1-Pos2/1/1] ip address 11.0.0.2 255.0.0.0

[ASBR-PE1-Pos2/1/1] mpls enable

[ASBR-PE1-Pos2/1/1] quit

# 创建Loopback0接口,并运行IS-IS。

[ASBR-PE1] interface loopback 0

[ASBR-PE1-LoopBack0] ip address 3.3.3.9 32

[ASBR-PE1-LoopBack0] isis enable 1

[ASBR-PE1-LoopBack0] quit

# 在ASBR-PE 1上运行BGP。

[ASBR-PE1] bgp 100

[ASBR-PE1-bgp] peer 2.2.2.9 as-number 100

[ASBR-PE1-bgp] peer 2.2.2.9 connect-interface loopback 0

[ASBR-PE1-bgp] peer 11.0.0.1 as-number 600

[ASBR-PE1-bgp] peer 11.0.0.1 connect-interface pos 2/1/1

# 不对接收的VPNv4路由进行Import VPN-target过滤。

[ASBR-PE1-bgp] address-family vpnv4

[ASBR-PE1-bgp-vpnv4] undo policy vpn-target

# 将IBGP对等体2.2.2.9和EBGP对等体11.0.0.1都配置为VPNv4对等体。

[ASBR-PE1-bgp-vpnv4] peer 11.0.0.1 enable

[ASBR-PE1-bgp-vpnv4] peer 2.2.2.9 enable

[ASBR-PE1-bgp-vpnv4] quit

(3)     配置ASBR-PE 2

# 在ASBR-PE 2上运行IS-IS。

<ASBR-PE2> system-view

[ASBR-PE2] isis 1

[ASBR-PE2-isis-1] network-entity 10.222.222.222.222.00

[ASBR-PE2-isis-1] quit

# 配置LSR ID,使能MPLS和LDP。

[ASBR-PE2] mpls lsr-id 4.4.4.9

[ASBR-PE2] mpls ldp

[ASBR-PE2-ldp] quit

# 配置接口POS2/1/0,在接口上运行IS-IS,并使能MPLS和LDP。

[ASBR-PE2] interface pos 2/1/0

[ASBR-PE2-Pos2/1/0] ip address 9.1.1.1 255.0.0.0

[ASBR-PE2-Pos2/1/0] isis enable 1

[ASBR-PE2-Pos2/1/0] mpls enable

[ASBR-PE2-Pos2/1/0] mpls ldp enable

[ASBR-PE2-Pos2/1/0] quit

# 配置接口POS2/1/1,使能MPLS。

[ASBR-PE2] interface pos 2/1/1

[ASBR-PE2-Pos2/1/1] ip address 11.0.0.1 255.0.0.0

[ASBR-PE2-Pos2/1/1] mpls enable

[ASBR-PE2-Pos2/1/1] quit

# 创建Loopback0接口,并运行IS-IS。

[ASBR-PE2] interface loopback 0

[ASBR-PE2-LoopBack0] ip address 4.4.4.9 32

[ASBR-PE2-LoopBack0] isis enable 1

[ASBR-PE2-LoopBack0] quit

# 在ASBR-PE 2上运行BGP。

[ASBR-PE2] bgp 600

[ASBR-PE2-bgp] peer 11.0.0.2 as-number 100

[ASBR-PE2-bgp] peer 11.0.0.2 connect-interface pos 2/1/1

[ASBR-PE2-bgp] peer 5.5.5.9 as-number 600

[ASBR-PE2-bgp] peer 5.5.5.9 connect-interface loopback 0

# 不对接收的VPNv4路由进行Import VPN-target过滤。

[ASBR-PE2-bgp] address-family vpnv4

[ASBR-PE2-bgp-vpnv4] undo policy vpn-target

# 将IBGP对等体5.5.5.9和EBGP对等体11.0.0.2都配置为VPNv4对等体。

[ASBR-PE2-bgp-vpnv4] peer 11.0.0.2 enable

[ASBR-PE2-bgp-vpnv4] peer 5.5.5.9 enable

[ASBR-PE2-bgp-vpnv4] quit

[ASBR-PE2-bgp] quit

(4)     配置PE 2

# 在PE 2上运行IS-IS。

<PE2> system-view

[PE2] isis 1

[PE2-isis-1] network-entity 10.111.111.111.111.00

[PE2-isis-1] quit

# 配置LSR ID,使能MPLS和LDP。

[PE2] mpls lsr-id 5.5.5.9

[PE2] mpls ldp

[PE2-ldp] quit

# 配置接口POS2/1/0,在接口上运行IS-IS,并使能MPLS和LDP。

[PE2] interface pos 2/1/0

[PE2-Pos2/1/0] ip address 9.1.1.2 255.0.0.0

[PE2-Pos2/1/0] isis enable 1

[PE2-Pos2/1/0] mpls enable

[PE2-Pos2/1/0] mpls ldp enable

[PE2-Pos2/1/0] quit

# 创建Loopback0接口,在接口上运行IS-IS。

[PE2] interface loopback 0

[PE2-LoopBack0] ip address 5.5.5.9 32

[PE2-LoopBack0] isis enable 1

[PE2-LoopBack0] quit

# 创建一个VPN实例,名为vpn1,配置RD和VPN Target属性。

[PE2] ip vpn-instance vpn1

[PE2-vpn-instance-vpn1] route-distinguisher 12:12

[PE2-vpn-instance-vpn1] vpn-target 1:1 2:2 3:3 import-extcommunity

[PE2-vpn-instance-vpn1] vpn-target 3:3 export-extcommunity

[PE2-vpn-instance-vpn1] quit

# 将连接CE 1的接口绑定到创建的VPN实例。

[PE2] interface gigabitethernet 2/0/1

[PE2-GigabitEthernet2/0/1] ip binding vpn-instance vpn1

[PE2-GigabitEthernet2/0/1] ip address 20.0.0.1 8

[PE2-GigabitEthernet2/0/1] quit

# 在PE 2上运行BGP。

[PE2] bgp 600

# 配置IBGP对等体4.4.4.9为VPNv4对等体。

[PE2-bgp] peer 4.4.4.9 as-number 600

[PE2-bgp] peer 4.4.4.9 connect-interface loopback 0

[PE2-bgp] address-family vpnv4

[PE2-bgp-vpnv4] peer 4.4.4.9 enable

[PE2-bgp-vpnv4] quit

# 将直连路由引入vpn1的VPN路由表。

[PE2-bgp] ip vpn-instance vpn1

[PE2-bgp-vpn1] address-family ipv4 unicast

[PE2-bgp-ipv4-vpn1] import-route direct

[PE2-bgp-ipv4-vpn1] quit

[PE2-bgp-vpn1] quit

[PE2-bgp] quit

4. 验证配置

# 配置完成后,PE 1和PE 2上连接CE的接口GigabitEthernet2/0/1之间可以互相Ping通。以PE 1为例:

[PE1] ping -a 30.0.0.1 -vpn-instance vpn1 20.0.0.1

Ping 20.0.0.1 (20.0.0.1) from 30.0.0.1: 56 data bytes, press CTRL_C to break

56 bytes from 20.0.0.1: icmp_seq=0 ttl=255 time=1.208 ms

56 bytes from 20.0.0.1: icmp_seq=1 ttl=255 time=0.867 ms

56 bytes from 20.0.0.1: icmp_seq=2 ttl=255 time=0.551 ms

56 bytes from 20.0.0.1: icmp_seq=3 ttl=255 time=0.566 ms

56 bytes from 20.0.0.1: icmp_seq=4 ttl=255 time=0.570 ms

 

--- Ping statistics for 20.0.0.1 ---

5 packet(s) transmitted, 5 packet(s) received, 0.0% packet loss

round-trip min/avg/max/std-dev = 0.551/0.752/1.208/0.257 ms

1.15.6  配置跨域VPN-OptionC方式示例

1. 组网需求

·     Site 1和Site 2属于同一个VPN,Site 1通过AS 100的PE 1接入,Site 2通过AS 600的PE 2接入;

·     同一自治系统内的PE设备之间运行IS-IS作为IGP;

·     PE 1与ASBR-PE 1间通过IBGP交换标签IPv4路由;

·     PE 2与ASBR-PE 2间通过IBGP交换标签IPv4路由;

·     PE 1与PE 2建立MP-EBGP对等体交换VPNv4路由;

·     ASBR-PE 1和ASBR-PE 2上分别配置路由策略,对从对方接收的路由压入标签;

·     ASBR-PE 1与ASBR-PE 2间通过EBGP交换标签IPv4路由。

2. 组网图

图1-30 配置跨域VPN-OptionC方式组网图

设备

接口

IP地址

设备

接口

IP地址

PE 1

Loop0

2.2.2.9/32

PE 2

Loop0

5.5.5.9/32

 

GE2/0/1

30.0.0.1/24

 

GE2/0/1

20.0.0.1/24

 

POS2/1/0

1.1.1.2/8

 

POS2/1/0

9.1.1.2/8

ASBR-PE 1

Loop0

3.3.3.9/32

ASBR-PE 2

Loop0

4.4.4.9/32

 

POS2/1/0

1.1.1.1/8

 

POS2/1/0

9.1.1.1/8

 

POS2/1/1

11.0.0.2/8

 

POS2/1/1

11.0.0.1/8

CE 1

GE2/0/1

30.0.0.2/24

CE 2

GE2/0/1

20.0.0.2/24

 

3. 配置步骤

(1)     配置CE 1

# 配置接口GigabitEthernet2/0/1的IP地址。

<CE1> system-view

[CE1] interface gigabitethernet 2/0/1

[CE1-GigabitEthernet2/0/1] ip address 30.0.0.2 24

[CE1-GigabitEthernet2/0/1] quit

# 配置CE 1与PE 1建立EBGP对等体,并引入VPN路由。

[CE1] bgp 65001

[CE1-bgp] peer 30.0.0.1 as-number 100

[CE1-bgp] address-family ipv4 unicast

[CE1-bgp-ipv4] peer 30.0.0.1 enable

[CE1-bgp-ipv4] import-route direct

[CE1-bgp-ipv4] quit

[CE1-bgp] quit

(2)     配置PE 1

# 在PE 1上运行IS-IS。

<PE1> system-view

[PE1] isis 1

[PE1-isis-1] network-entity 10.111.111.111.111.00

[PE1-isis-1] quit

# 配置LSR ID,使能MPLS和LDP。

[PE1] mpls lsr-id 2.2.2.9

[PE1] mpls ldp

[PE1-ldp] quit

# 配置接口POS2/1/0,在接口上运行IS-IS,并使能MPLS和LDP。

[PE1] interface pos 2/1/0

[PE1-Pos2/1/0] ip address 1.1.1.2 255.0.0.0

[PE1-Pos2/1/0] isis enable 1

[PE1-Pos2/1/0] mpls enable

[PE1-Pos2/1/0] mpls ldp enable

[PE1-Pos2/1/0] quit

# 创建Loopback0接口,在接口上运行IS-IS。

[PE1] interface loopback 0

[PE1-LoopBack0] ip address 2.2.2.9 32

[PE1-LoopBack0] isis enable 1

[PE1-LoopBack0] quit

# 创建VPN实例,名称为vpn1,为其配置RD和VPN Target属性。

[PE1] ip vpn-instance vpn1

[PE1-vpn-instance-vpn1] route-distinguisher 11:11

[PE1-vpn-instance-vpn1] vpn-target 1:1 2:2 3:3 import-extcommunity

[PE1-vpn-instance-vpn1] vpn-target 3:3 export-extcommunity

[PE1-vpn-instance-vpn1] quit

# 配置接口GigabitEthernet1/0/1与VPN实例vpn1绑定,并配置该接口的IP地址。

[PE1] interface gigabitethernet 2/0/1

[PE1-GigabitEthernet2/0/1] ip binding vpn-instance vpn1

[PE1-GigabitEthernet2/0/1] ip address 30.0.0.1 24

[PE1-GigabitEthernet2/0/1] quit

# 在PE 1上运行BGP。

[PE1] bgp 100

# 配置PE 1向IBGP对等体3.3.3.9发布标签路由及从3.3.3.9接收标签路由的能力。

[PE1-bgp] peer 3.3.3.9 as-number 100

[PE1-bgp] peer 3.3.3.9 connect-interface loopback 0

[PE1-bgp] address-family ipv4 unicast

[PE1-bgp-ipv4] peer 3.3.3.9 enable

[PE1-bgp-ipv4] peer 3.3.3.9 label-route-capability

[PE1-bgp-ipv4] quit

# 配置PE 1到EBGP对等体5.5.5.9的最大跳数为10。

[PE1-bgp] peer 5.5.5.9 as-number 600

[PE1-bgp] peer 5.5.5.9 connect-interface loopback 0

[PE1-bgp] peer 5.5.5.9 ebgp-max-hop 10

# 配置对等体5.5.5.9作为VPNv4对等体。

[PE1-bgp] address-family vpnv4

[PE1-bgp-vpnv4] peer 5.5.5.9 enable

[PE1-bgp-vpnv4] quit

# 配置PE 1与CE 1建立EBGP对等体,将学习到的BGP路由添加到VPN实例的路由表中。

[PE1-bgp] ip vpn-instance vpn1

[PE1-bgp-vpn1] peer 30.0.0.2 as-number 65001

[PE1-bgp-vpn1] address-family ipv4 unicast

[PE1-bgp-ipv4-vpn1] peer 30.0.0.2 enable

[PE1-bgp-ipv4-vpn1] quit

[PE1-bgp-vpn1] quit

[PE1-bgp] quit

(3)     配置ASBR-PE1

# 在ASBR-PE1上运行IS-IS。

<ASBR-PE1> system-view

[ASBR-PE1] isis 1

[ASBR-PE1-isis-1] network-entity 10.222.222.222.222.00

[ASBR-PE1-isis-1] quit

# 配置LSR ID,使能MPLS和LDP。

[ASBR-PE1] mpls lsr-id 3.3.3.9

[ASBR-PE1] mpls ldp

[ASBR-PE1-ldp] quit

# 配置接口POS2/1/0,在接口上运行IS-IS,并使能MPLS和LDP。

[ASBR-PE1] interface pos 2/1/0

[ASBR-PE1-Pos2/1/0] ip address 1.1.1.1 255.0.0.0

[ASBR-PE1-Pos2/1/0] isis enable 1

[ASBR-PE1-Pos2/1/0] mpls enable

[ASBR-PE1-Pos2/1/0] mpls ldp enable

[ASBR-PE1-Pos2/1/0] quit

# 配置接口POS2/1/1,并在接口上使能MPLS。

[ASBR-PE1] interface pos 2/1/1

[ASBR-PE1-Pos2/1/1] ip address 11.0.0.2 255.0.0.0

[ASBR-PE1-Pos2/1/1] mpls enable

[ASBR-PE1-Pos2/1/1] quit

# 创建Loopback0接口,在接口上运行IS-IS。

[ASBR-PE1] interface loopback 0

[ASBR-PE1-LoopBack0] ip address 3.3.3.9 32

[ASBR-PE1-LoopBack0] isis enable 1

[ASBR-PE1-LoopBack0] quit

# 创建路由策略。

[ASBR-PE1] route-policy policy1 permit node 1

[ASBR-PE1-route-policy-policy1-1] apply mpls-label

[ASBR-PE1-route-policy-policy1-1] quit

[ASBR-PE1] route-policy policy2 permit node 1

[ASBR-PE1-route-policy-policy2-1] if-match mpls-label

[ASBR-PE1-route-policy-policy2-1] apply mpls-label

[ASBR-PE1-route-policy-policy2-1] quit

# 在ASBR-PE 1上运行BGP,对向IBGP对等体2.2.2.9发布的路由应用已配置的路由策略policy2。

[ASBR-PE1] bgp 100

[ASBR-PE1-bgp] peer 2.2.2.9 as-number 100

[ASBR-PE1-bgp] peer 2.2.2.9 connect-interface loopback 0

[ASBR-PE1-bgp] address-family ipv4 unicast

[ASBR-PE1-bgp-ipv4] peer 2.2.2.9 enable

[ASBR-PE1-bgp-ipv4] peer 2.2.2.9 route-policy policy2 export

# 向IBGP对等体2.2.2.9发布标签路由及从2.2.2.9接收标签路由的能力。

[ASBR-PE1-bgp-ipv4] peer 2.2.2.9 label-route-capability

# 引入IS-IS进程1的路由。

[ASBR-PE1-bgp-ipv4] import-route isis 1

[ASBR-PE1-bgp-ipv4] quit

# 对向EBGP对等体11.0.0.1发布的路由应用已配置的路由策略policy1。

[ASBR-PE1-bgp] peer 11.0.0.1 as-number 600

[ASBR-PE1-bgp] address-family ipv4 unicast

[ASBR-PE1-bgp-ipv4] peer 11.0.0.1 enable

[ASBR-PE1-bgp-ipv4] peer 11.0.0.1 route-policy policy1 export

# 向EBGP对等体11.0.0.1发布标签路由及从11.0.0.1接收标签路由的能力。

[ASBR-PE1-bgp-ipv4] peer 11.0.0.1 label-route-capability

[ASBR-PE1-bgp-ipv4] quit

[ASBR-PE1-bgp] quit

(4)     配置ASBR-PE 2

# 在ASBR-PE 2上运行IS-IS。

<ASBR-PE2> system-view

[ASBR-PE2] isis 1

[ASBR-PE2-isis-1] network-entity 10.222.222.222.222.00

[ASBR-PE2-isis-1] quit

# 配置LSR ID,使能MPLS和LDP。

[ASBR-PE2] mpls lsr-id 4.4.4.9

[ASBR-PE2] mpls ldp

[ASBR-PE2-ldp] quit

# 配置接口POS2/1/0,在接口上运行IS-IS,并在接口上使能MPLS和LDP。

[ASBR-PE2] interface pos 2/1/0

[ASBR-PE2-Pos2/1/0] ip address 9.1.1.1 255.0.0.0

[ASBR-PE2-Pos2/1/0] isis enable 1

[ASBR-PE2-Pos2/1/0] mpls enable

[ASBR-PE2-Pos2/1/0] mpls ldp enable

[ASBR-PE2-Pos2/1/0] quit

# 创建Loopback0接口,在接口上运行IS-IS。

[ASBR-PE2] interface loopback 0

[ASBR-PE2-LoopBack0] ip address 4.4.4.9 32

[ASBR-PE2-LoopBack0] isis enable 1

[ASBR-PE2-LoopBack0] quit

# 配置接口POS2/1/1,在接口上使能MPLS。

[ASBR-PE2] interface pos 2/1/1

[ASBR-PE2-Pos2/1/1] ip address 11.0.0.1 255.0.0.0

[ASBR-PE2-Pos2/1/1] mpls enable

[ASBR-PE2-Pos2/1/1] quit

# 创建路由策略。

[ASBR-PE2] route-policy policy1 permit node 1

[ASBR-PE2-route-policy-policy1-1] apply mpls-label

[ASBR-PE2-route-policy-policy1-1] quit

[ASBR-PE2] route-policy policy2 permit node 1

[ASBR-PE2-route-policy-policy2-1] if-match mpls-label

[ASBR-PE2-route-policy-policy2-1] apply mpls-label

[ASBR-PE2-route-policy-policy2-1] quit

# 在ASBR-PE 2上运行BGP,向IBGP对等体5.5.5.9发布标签路由及从5.5.5.9接收标签路由的能力。

[ASBR-PE2] bgp 600

[ASBR-PE2-bgp] peer 5.5.5.9 as-number 600

[ASBR-PE2-bgp] peer 5.5.5.9 connect-interface loopback 0

[ASBR-PE2-bgp] address-family ipv4 unicast

[ASBR-PE2-bgp-ipv4] peer 5.5.5.9 enable

[ASBR-PE2-bgp-ipv4] peer 5.5.5.9 label-route-capability

# 对向IBGP对等体5.5.5.9发布的路由应用已配置的路由策略policy2。

[ASBR-PE2-bgp-ipv4] peer 5.5.5.9 route-policy policy2 export

# 引入IS-IS进程1的路由。

[ASBR-PE2-bgp-ipv4] import-route isis 1

[ASBR-PE2-bgp-ipv4] quit

# 对向EBGP对等体11.0.0.2发布的路由应用已配置的路由策略policy1。

[ASBR-PE2-bgp] peer 11.0.0.2 as-number 100

[ASBR-PE2-bgp] address-family ipv4 unicast

[ASBR-PE2-bgp-ipv4] peer 11.0.0.2 enable

[ASBR-PE2-bgp-ipv4] peer 11.0.0.2 route-policy policy1 export

# 向EBGP对等体11.0.0.2发布标签路由及从11.0.0.2接收标签路由的能力。

[ASBR-PE2-bgp-ipv4] peer 11.0.0.2 label-route-capability

[ASBR-PE2-bgp-ipv4] quit

[ASBR-PE2-bgp] quit

(5)     配置PE 2

# 在PE 2上运行IS-IS。

<PE2> system-view

[PE2] isis 1

[PE2-isis-1] network-entity 10.111.111.111.111.00

[PE2-isis-1] quit

# 配置LSR ID,使能MPLS和LDP。

[PE2] mpls lsr-id 5.5.5.9

[PE2] mpls ldp

[PE2-ldp] quit

# 配置接口POS2/1/0,在接口上运行IS-IS,并使能MPLS和LDP。

[PE2] interface pos 2/1/0

[PE2-Pos2/1/0] ip address 9.1.1.2 255.0.0.0

[PE2-Pos2/1/0] isis enable 1

[PE2-Pos2/1/0] mpls enable

[PE2-Pos2/1/0] mpls ldp enable

[PE2-Pos2/1/0] quit

# 创建Loopback0接口,在接口上运行IS-IS。

[PE2] interface loopback 0

[PE2-LoopBack0] ip address 5.5.5.9 32

[PE2-LoopBack0] isis enable 1

[PE2-LoopBack0] quit

# 创建VPN实例,名称为vpn1,为其配置RD和VPN Target属性。

[PE2] ip vpn-instance vpn1

[PE2-vpn-instance-vpn1] route-distinguisher 11:11

[PE2-vpn-instance-vpn1] vpn-target 1:1 2:2 3:3 import-extcommunity

[PE2-vpn-instance-vpn1] vpn-target 3:3 export-extcommunity

[PE2-vpn-instance-vpn1] quit

# 配置接口GigabitEthernet1/0/1与VPN实例vpn1绑定,并配置该接口的IP地址。

[PE2] interface gigabitethernet 2/0/1

[PE2-GigabitEthernet2/0/1] ip binding vpn-instance vpn1

[PE2-GigabitEthernet2/0/1] ip address 20.0.0.1 24

[PE2-GigabitEthernet2/0/1] quit

# 在PE 2上运行BGP。

[PE2] bgp 600

# 配置PE 2向IBGP对等体4.4.4.9发布标签路由及从4.4.4.9接收标签路由的能力。

[PE2-bgp] peer 4.4.4.9 as-number 600

[PE2-bgp] peer 4.4.4.9 connect-interface loopback 0

[PE2-bgp] address-family ipv4 unicast

[PE2-bgp-ipv4] peer 4.4.4.9 enable

[PE2-bgp-ipv4] peer 4.4.4.9 label-route-capability

[PE2-bgp-ipv4] quit

# 配置PE 2到EBGP对等体2.2.2.9的最大跳数为10。

[PE2-bgp] peer 2.2.2.9 as-number 100

[PE2-bgp] peer 2.2.2.9 connect-interface loopback 0

[PE2-bgp] peer 2.2.2.9 ebgp-max-hop 10

# 配置对等体2.2.2.9作为VPNv4对等体。

[PE2-bgp] address-family vpnv4

[PE2-bgp-vpnv4] peer 2.2.2.9 enable

[PE2-bgp-vpnv4] quit

# 配置PE 2与CE 2建立EBGP对等体,将学习到的BGP路由添加到VPN实例的路由表中。

[PE2-bgp] ip vpn-instance vpn1

[PE2-bgp-vpn1] peer 20.0.0.2 as-number 65002

[PE2-bgp-vpn1] address-family ipv4 unicast

[PE2-bgp-ipv4-vpn1] peer 20.0.0.2 enable

[PE2-bgp-ipv4-vpn1] quit

[PE2-bgp-vpn1] quit

[PE2-bgp] quit

(6)     配置CE 2

# 配置接口GigabitEthernet1/0/1的IP地址。

<CE2> system-view

[CE2] interface gigabitethernet 2/0/1

[CE2-GigabitEthernet2/0/1] ip address 20.0.0.2 24

[CE2-GigabitEthernet2/0/1] quit

# 配置CE 2与PE 2建立EBGP对等体,并引入VPN路由。

[CE2] bgp 65002

[CE2-bgp] peer 20.0.0.1 as-number 600

[CE2-bgp] address-family ipv4 unicast

[CE2-bgp-ipv4] peer 20.0.0.1 enable

[CE2-bgp-ipv4] import-route direct

[CE2-bgp-ipv4] quit

[CE2-bgp] quit

4. 验证配置

# 配置完成后,在CE 1和CE 2上执行display ip routing-table命令可以查看到到达对方的路由,且CE 1和CE 2互相可以ping通。

1.15.7  配置运营商的运营商(相同AS)示例

1. 组网需求

二级运营商向自己的客户提供MPLS L3VPN服务。

图1-31中:

·     PE 1和PE 2是一级运营商骨干网的PE设备;

·     CE 1和CE 2是二级运营商的设备,作为CE接入一级运营商的骨干网;

·     PE 3和PE 4是二级运营商的设备,为二级运营商的客户提供接入;

·     CE 3和CE 4是二级运营商的客户;

·     一级运营商和二级运营商位于同一个AS。

运营商的运营商的配置关键在于理解两类路由的交换过程,即:

·     二级运营商VPN内部路由在一级运营商骨干网上的交换:一级运营商将二级运营商作为自己的CE接入;

·     二级运营商本身客户的VPN路由在二级运营商PE设备间的交换:需要在二级运营商PE设备(PE 3和PE 4)间建立MP-IBGP对等体关系。

2. 组网图

图1-31 配置Carriers’ carriers(相同AS)组网图

设备

接口

IP地址

设备

接口

IP地址

CE 3

GE2/0/1

100.1.1.1/24

CE 4

GE2/0/1

120.1.1.1/24

PE 3

Loop0

1.1.1.9/32

PE 4

Loop0

6.6.6.9/32

 

GE2/0/1

100.1.1.2/24

 

GE2/0/1

120.1.1.2/24

 

POS2/1/1

10.1.1.1/24

 

POS2/1/1

20.1.1.2/24

CE 1

Loop0

2.2.2.9/32

CE 2

Loop0

5.5.5.9/32

 

POS2/1/0

10.1.1.2/24

 

POS2/1/0

21.1.1.2/24

 

POS2/1/1

11.1.1.1/24

 

POS2/1/1

20.1.1.1/24

PE 1

Loop0

3.3.3.9/32

PE 2

Loop0

4.4.4.9/32

 

POS2/1/0

11.1.1.2/24

 

POS2/1/0

30.1.1.2/24

 

POS2/1/1

30.1.1.1/24

 

POS2/1/1

21.1.1.1/24

 

3. 配置步骤

(1)     配置一级运营商骨干网的MPLS L3VPN,使用IS-IS作为骨干网的IGP协议,PE 1和PE 2之间使能LDP,并建立MP-IBGP对等体关系

# 配置PE 1。

<PE1> system-view

[PE1] interface loopback 0

[PE1-LoopBack0] ip address 3.3.3.9 32

[PE1-LoopBack0] quit

[PE1] mpls lsr-id 3.3.3.9

[PE1] mpls ldp

[PE1-ldp] quit

[PE1] isis 1

[PE1-isis-1] network-entity 10.0000.0000.0000.0004.00

[PE1-isis-1] quit

[PE1] interface loopback 0

[PE1-LoopBack0] isis enable 1

[PE1-LoopBack0] quit

[PE1] interface pos 2/1/1

[PE1-Pos2/1/1] ip address 30.1.1.1 24

[PE1-Pos2/1/1] isis enable 1

[PE1-Pos2/1/1] mpls enable

[PE1-Pos2/1/1] mpls ldp enable

[PE1-Pos2/1/1] mpls ldp transport-address interface

[PE1-Pos2/1/1] quit

[PE1] bgp 100

[PE1-bgp] peer 4.4.4.9 as-number 100

[PE1-bgp] peer 4.4.4.9 connect-interface loopback 0

[PE1-bgp] address-family vpnv4

[PE1-bgp-vpnv4] peer 4.4.4.9 enable

[PE1-bgp-vpnv4] quit

[PE1-bgp] quit

# PE 2的配置与PE 1类似,配置过程省略。

配置完成后,在PE 1或PE 2上执行display mpls ldp peer命令可以看到LDP会话建立成功,状态为Operational;执行display bgp peer vpnv4命令可以看到BGP对等体关系已建立,并达到Established状态;执行display isis peer命令可以看到IS-IS邻居关系已建立,状态为up。

(2)     配置二级运营商网络:使用IS-IS作为IGP协议,PE 3和CE 1、PE 4和CE 2之间分别使能LDP

# 配置PE 3。

<PE3> system-view

[PE3] interface loopback 0

[PE3-LoopBack0] ip address 1.1.1.9 32

[PE3-LoopBack0] quit

[PE3] mpls lsr-id 1.1.1.9

[PE3] mpls ldp

[PE3-ldp] quit

[PE3] isis 2

[PE3-isis-2] network-entity 10.0000.0000.0000.0001.00

[PE3-isis-2] quit

[PE3] interface loopback 0

[PE3-LoopBack0] isis enable 2

[PE3-LoopBack0] quit

[PE3] interface pos 2/1/1

[PE3-Pos2/1/1] ip address 10.1.1.1 24

[PE3-Pos2/1/1] isis enable 2

[PE3-Pos2/1/1] mpls enable

[PE3-Pos2/1/1] mpls ldp enable

[PE3-Pos2/1/1] mpls ldp transport-address interface

[PE3-Pos2/1/1] quit

# 配置CE 1。

<CE1> system-view

[CE1] interface loopback 0

[CE1-LoopBack0] ip address 2.2.2.9 32

[CE1-LoopBack0] quit

[CE1] mpls lsr-id 2.2.2.9

[CE1] mpls ldp

[CE1-ldp] quit

[CE1] isis 2

[CE1-isis-2] network-entity 10.0000.0000.0000.0002.00

[CE1-isis-2] quit

[CE1] interface loopback 0

[CE1-LoopBack0] isis enable 2

[CE1-LoopBack0] quit

[CE1] interface pos 2/1/0

[CE1-Pos2/1/0] ip address 10.1.1.2 24

[CE1-Pos2/1/0] isis enable 2

[CE1-Pos2/1/0] mpls enable

[CE1-Pos2/1/0] mpls ldp enable

[CE1-Pos2/1/0] mpls ldp transport-address interface

[CE1-Pos2/1/0] quit

配置完成后,PE 3和CE 1之间应能建立LDP和IS-IS邻居关系。

# PE 4和CE 2之间的配置与PE 3和CE 1之间的配置类似,配置过程省略。

(3)     配置二级运营商CE接入到一级运营商的PE,并在PE上配置IS-IS引入BGP路由、BGP引入IS-IS路由

# 配置PE1。

[PE1] ip vpn-instance vpn1

[PE1-vpn-instance-vpn1] route-distinguisher 200:1

[PE1-vpn-instance-vpn1] vpn-target 1:1

[PE1-vpn-instance-vpn1] quit

[PE1] mpls ldp

[PE1-ldp] vpn-instance vpn1

[PE1-ldp-vpn-instance-vpn1] quit

[PE1-ldp] quit

[PE1] isis 2 vpn-instance vpn1

[PE1-isis-2] network-entity 10.0000.0000.0000.0003.00

[PE1-isis-2] address-family ipv4

[PE1-isis-2-ipv4] import-route bgp

[PE1-isis-2-ipv4] quit

[PE1-isis-2] quit

[PE1] interface pos 2/1/0

[PE1-Pos2/1/0] ip binding vpn-instance vpn1

[PE1-Pos2/1/0] ip address 11.1.1.2 24

[PE1-Pos2/1/0] isis enable 2

[PE1-Pos2/1/0] mpls enable

[PE1-Pos2/1/0] mpls ldp enable

[PE1-Pos2/1/0] mpls ldp transport-address interface

[PE1-Pos2/1/0] quit

[PE1] bgp 100

[PE1-bgp] ip vpn-instance vpn1

[PE1-bgp-vpn1] address-family ipv4 unicast

[PE1-bgp-ipv4-vpn1] import isis 2

[PE1-bgp-ipv4-vpn1] quit

[PE1-bgp-vpn1] quit

[PE1-bgp] quit

# 配置CE1。

[CE1] interface pos 2/1/1

[CE1-Pos2/1/1] ip address 11.1.1.1 24

[CE1-Pos2/1/1] isis enable 2

[CE1-Pos2/1/1] mpls enable

[CE1-Pos2/1/1] mpls ldp enable

[CE1-Pos2/1/1] mpls ldp transport-address interface

[CE1-Pos2/1/1] quit

配置完成后,PE 1和CE 1之间应能建立LDP和IS-IS邻居关系。

# PE 2和CE 2之间的配置与PE 1和CE 1之间的配置类似,配置过程省略。

(4)     配置二级运营商的客户接入PE

# 配置CE 3。

<CE3> system-view

[CE3] interface gigabitethernet 2/0/1

[CE3-GigabitEthernet2/0/1] ip address 100.1.1.1 24

[CE3-GigabitEthernet2/0/1] quit

[CE3] bgp 65410

[CE3-bgp] peer 100.1.1.2 as-number 100

[CE3-bgp] address-family ipv4 unicast

[CE3-bgp-ipv4] peer 100.1.1.2 enable

[CE3-bgp-ipv4] import-route direct

[CE3-bgp-ipv4] quit

[CE3-bgp] quit

# 配置PE 3。

[PE3] ip vpn-instance vpn1

[PE3-vpn-instance-vpn1] route-distinguisher 100:1

[PE3-vpn-instance-vpn1] vpn-target 1:1

[PE3-vpn-instance-vpn1] quit

[PE3] interface gigabitethernet 2/0/1

[PE3-GigabitEthernet2/0/1] ip binding vpn-instance vpn1

[PE3-GigabitEthernet2/0/1] ip address 100.1.1.2 24

[PE3-GigabitEthernet2/0/1] quit

[PE3] bgp 100

[PE3-bgp] ip vpn-instance vpn1

[PE3-bgp-vpn1] peer 100.1.1.1 as-number 65410

[PE3-bgp-vpn1] address-family ipv4 unicast

[PE3-bgp-ipv4-vpn1] peer 100.1.1.1 enable

[PE3-bgp-ipv4-vpn1] import-route direct

[PE3-bgp-ipv4-vpn1] quit

[PE3-bgp-vpn1] quit

[PE3-bgp] quit

# PE 4和CE 4之间的配置与PE 3和CE 3之间的配置类似,配置过程省略。

(5)     在二级运营商的PE之间建立MP-IBGP对等体关系,交换二级运营商的客户的VPN路由

# 配置PE 3。

[PE3] bgp 100

[PE3-bgp] peer 6.6.6.9 as-number 100

[PE3-bgp] peer 6.6.6.9 connect-interface loopback 0

[PE3-bgp] address-family vpnv4

[PE3-bgp-vpnv4] peer 6.6.6.9 enable

[PE3-bgp-vpnv4] quit

[PE3-bgp] quit

# PE 4的配置与PE 3类似,配置过程省略。

4. 验证配置

# 在PE 1和PE 2上执行display ip routing-table命令,可以看到PE 1和PE 2的公网路由表中只有一级运营商网络的路由。以PE 1为例:

[PE1] display ip routing-table

 

Destinations : 14        Routes : 14

 

Destination/Mask   Proto   Pre Cost        NextHop         Interface

0.0.0.0/32         Direct  0   0           127.0.0.1       InLoop0

3.3.3.9/32         Direct  0   0           127.0.0.1       InLoop0

4.4.4.9/32         IS_L1   15  10          30.1.1.2        POS2/1/1

30.1.1.0/24        Direct  0   0           30.1.1.1        POS2/1/1

30.1.1.0/32        Direct  0   0           30.1.1.1        POS2/1/1

30.1.1.1/32        Direct  0   0           127.0.0.1       InLoop0

30.1.1.255/32      Direct  0   0           30.1.1.1        POS2/1/1

127.0.0.0/8        Direct  0   0           127.0.0.1       InLoop0

127.0.0.0/32       Direct  0   0           127.0.0.1       InLoop0

127.0.0.1/32       Direct  0   0           127.0.0.1       InLoop0

127.255.255.255/32 Direct  0   0           127.0.0.1       InLoop0

224.0.0.0/4        Direct  0   0           0.0.0.0         NULL0

224.0.0.0/24       Direct  0   0           0.0.0.0         NULL0

255.255.255.255/32 Direct  0   0           127.0.0.1       InLoop0

# 在PE 1和PE 2上执行display ip routing-table vpn-instance命令,可以看到VPN路由表中有二级运营商网络的内部路由,但没有二级运营商维护的VPN路由。以PE 1为例:

[PE1] display ip routing-table vpn-instance vpn1

 

Destinations : 18        Routes : 18

 

Destination/Mask   Proto   Pre Cost        NextHop         Interface

0.0.0.0/32         Direct  0   0           127.0.0.1       InLoop0

1.1.1.9/32         IS_L1   15  20          11.1.1.1        POS2/1/0

2.2.2.9/32         IS_L1   15  10          11.1.1.1        POS2/1/0

5.5.5.9/32         BGP     255 10          4.4.4.9         POS2/1/1

6.6.6.9/32         BGP     255 20          4.4.4.9         POS2/1/1

10.1.1.0/24        IS_L1   15  20          11.1.1.1        POS2/1/0

11.1.1.0/24        Direct  0   0           11.1.1.2        POS2/1/0

11.1.1.0/32        Direct  0   0           11.1.1.2        POS2/1/0

11.1.1.2/32        Direct  0   0           127.0.0.1       InLoop0

11.1.1.255/32      Direct  0   0           11.1.1.2        POS2/1/0

20.1.1.0/24        BGP     255 20          4.4.4.9         POS2/1/1

127.0.0.0/8        Direct  0   0           127.0.0.1       InLoop0

127.0.0.0/32       Direct  0   0           127.0.0.1       InLoop0

127.0.0.1/32       Direct  0   0           127.0.0.1       InLoop0

127.255.255.255/32 Direct  0   0           127.0.0.1       InLoop0

224.0.0.0/4        Direct  0   0           0.0.0.0         NULL0

224.0.0.0/24       Direct  0   0           0.0.0.0         NULL0

255.255.255.255/32 Direct  0   0           127.0.0.1       InLoop0

# 在CE 1和CE 2上执行display ip routing-table命令,可以看到公网路由表中有二级运营商网络的内部路由,但没有二级运营商维护的VPN路由。以CE 1为例:

[CE1] display ip routing-table

 

Destinations : 21        Routes : 21

 

Destination/Mask   Proto   Pre Cost        NextHop         Interface

0.0.0.0/32         Direct  0   0           127.0.0.1       InLoop0

1.1.1.9/32         IS_L1   15  10          10.1.1.1        POS2/1/0

2.2.2.9/32         Direct  0   0           127.0.0.1       InLoop0

5.5.5.9/32         IS_L2   15  74          11.1.1.2        POS2/1/1

6.6.6.9/32         IS_L2   15  74          11.1.1.2        POS2/1/1

10.1.1.0/24        Direct  0   0           10.1.1.2        POS2/1/0

10.1.1.0/32        Direct  0   0           10.1.1.2        POS2/1/0

10.1.1.2/32        Direct  0   0           127.0.0.1       InLoop0

10.1.1.255/32      Direct  0   0           10.1.1.2        POS2/1/0

11.1.1.0/24        Direct  0   0           11.1.1.1        POS2/1/1

11.1.1.0/32        Direct  0   0           11.1.1.1        POS2/1/1

11.1.1.1/32        Direct  0   0           127.0.0.1       InLoop0

11.1.1.255/32      Direct  0   0           11.1.1.1        POS2/1/1

20.1.1.0/24        IS_L2   15  74          11.1.1.2        POS2/1/1

127.0.0.0/8        Direct  0   0           127.0.0.1       InLoop0

127.0.0.0/32       Direct  0   0           127.0.0.1       InLoop0

127.0.0.1/32       Direct  0   0           127.0.0.1       InLoop0

127.255.255.255/32 Direct  0   0           127.0.0.1       InLoop0

224.0.0.0/4        Direct  0   0           0.0.0.0         NULL0

224.0.0.0/24       Direct  0   0           0.0.0.0         NULL0

255.255.255.255/32 Direct  0   0           127.0.0.1       InLoop0

# 在PE 3和PE 4上执行display ip routing-table命令,可以看到公网路由表中有二级运营商网络的内部路由。以PE 3为例:

[PE3] display ip routing-table

 

Destinations : 18        Routes : 18

 

Destination/Mask   Proto   Pre Cost        NextHop         Interface

0.0.0.0/32         Direct  0   0           127.0.0.1       InLoop0

1.1.1.9/32         Direct  0   0           127.0.0.1       InLoop0

2.2.2.9/32         IS_L1   15  10          10.1.1.2        POS2/1/1

5.5.5.9/32         IS_L2   15  84          10.1.1.2        POS2/1/1

6.6.6.9/32         IS_L2   15  84          10.1.1.2        POS2/1/1

10.1.1.0/24        Direct  0   0           10.1.1.1        POS2/1/1

10.1.1.0/32        Direct  0   0           10.1.1.1        POS2/1/1

10.1.1.1/32        Direct  0   0           127.0.0.1       InLoop0

10.1.1.255/32      Direct  0   0           10.1.1.1        POS2/1/1

11.1.1.0/24        IS_L1   15  20          10.1.1.2        POS2/1/1

20.1.1.0/24        IS_L2   15  84          10.1.1.2        POS2/1/1

127.0.0.0/8        Direct  0   0           127.0.0.1       InLoop0

127.0.0.0/32       Direct  0   0           127.0.0.1       InLoop0

127.0.0.1/32       Direct  0   0           127.0.0.1       InLoop0

127.255.255.255/32 Direct  0   0           127.0.0.1       InLoop0

224.0.0.0/4        Direct  0   0           0.0.0.0         NULL0

224.0.0.0/24       Direct  0   0           0.0.0.0         NULL0

255.255.255.255/32 Direct  0   0           127.0.0.1       InLoop0

# 在PE 3和PE 4上执行display ip routing-table vpn-instance命令,可以看到VPN路由表中有远端VPN客户的路由。以PE 3为例:

[PE3] display ip routing-table vpn-instance vpn1

 

Destinations : 13        Routes : 13

 

Destination/Mask   Proto   Pre Cost        NextHop         Interface

0.0.0.0/32         Direct  0   0           127.0.0.1       InLoop0

100.1.1.0/24       Direct  0   0           100.1.1.2       GE2/0/1

100.1.1.0/32       Direct  0   0           100.1.1.2       GE2/0/1

100.1.1.2/32       Direct  0   0           127.0.0.1       InLoop0

100.1.1.255/32     Direct  0   0           100.1.1.2       GE2/0/1

127.0.0.0/8        Direct  0   0           127.0.0.1       InLoop0

127.0.0.0/32       Direct  0   0           127.0.0.1       InLoop0

127.0.0.1/32       Direct  0   0           127.0.0.1       InLoop0

127.255.255.255/32 Direct  0   0           127.0.0.1       InLoop0

120.1.1.0/24       BGP     255 0           6.6.6.9         POS2/1/1

224.0.0.0/4        Direct  0   0           0.0.0.0         NULL0

224.0.0.0/24       Direct  0   0           0.0.0.0         NULL0

255.255.255.255/32 Direct  0   0           127.0.0.1       InLoop0

# PE 3和PE 4可以相互Ping通。

# CE 3和CE 4可以互相Ping通。

1.15.8  配置运营商的运营商(不同AS)示例

1. 组网需求

二级运营商向自己的客户提供MPLS L3VPN服务。

图1-32中:

·     PE 1和PE 2是一级运营商骨干网的PE设备;

·     CE 1和CE 2是二级运营商的设备,作为CE接入一级运营商的骨干网;

·     PE 3和PE 4是二级运营商的设备,为二级运营商的客户提供接入;

·     CE 3和CE 4是二级运营商的客户;

·     一级运营商和二级运营商位于不同的AS。

运营商的运营商的配置关键在于理解两类路由的交换过程,即:

·     二级运营商VPN内部路由在一级运营商骨干网上的交换:一级运营商将二级运营商作为自己的CE接入;

·     二级运营商本身客户的VPN路由在二级运营商PE设备间的交换:需要在二级运营商PE设备(PE 3和PE 4)间建立MP-EBGP对等体关系。

2. 组网图

图1-32 配置Carriers’ carriers(不同AS)组网图

设备

接口

IP地址

设备

接口

IP地址

CE 3

GE2/0/1

100.1.1.1/24

CE 4

GE2/0/1

120.1.1.1/24

PE 3

Loop0

1.1.1.9/32

PE 4

Loop0

6.6.6.9/32

 

GE2/0/1

100.1.1.2/24

 

GE2/0/1

120.1.1.2/24

 

POS2/1/1

10.1.1.1/24

 

POS2/1/1

20.1.1.2/24

CE 1

Loop0

2.2.2.9/32

CE 2

Loop0

5.5.5.9/32

 

POS2/1/0

10.1.1.2/24

 

POS2/1/0

21.1.1.2/24

 

POS2/1/1

11.1.1.1/24

 

POS2/1/1

20.1.1.1/24

PE 1

Loop0

3.3.3.9/32

PE 2

Loop0

4.4.4.9/32

 

POS2/1/0

11.1.1.2/24

 

POS2/1/0

30.1.1.2/24

 

POS2/1/1

30.1.1.1/24

 

POS2/1/1

21.1.1.1/24

 

3. 配置步骤

(1)     配置一级运营商骨干网的MPLS L3VPN,使用IS-IS作为骨干网的IGP协议,PE 1和PE 2之间使能LDP,并建立MP-IBGP对等体关系

# 配置PE 1。

<PE1> system-view

[PE1] interface loopback 0

[PE1-LoopBack0] ip address 3.3.3.9 32

[PE1-LoopBack0] quit

[PE1] mpls lsr-id 3.3.3.9

[PE1] mpls ldp

[PE1-ldp] quit

[PE1] isis 1

[PE1-isis-1] network-entity 10.0000.0000.0000.0004.00

[PE1-isis-1] quit

[PE1] interface loopback 0

[PE1-LoopBack0] isis enable 1

[PE1-LoopBack0] quit

[PE1] interface pos 2/1/1

[PE1-Pos2/1/1] ip address 30.1.1.1 24

[PE1-Pos2/1/1] isis enable 1

[PE1-Pos2/1/1] mpls enable

[PE1-Pos2/1/1] mpls ldp enable

[PE1-Pos2/1/1] mpls ldp transport-address interface

[PE1-Pos2/1/1] quit

[PE1] bgp 200

[PE1-bgp] peer 4.4.4.9 as-number 200

[PE1-bgp] peer 4.4.4.9 connect-interface loopback 0

[PE1-bgp] address-family vpnv4

[PE1-bgp-vpnv4] peer 4.4.4.9 enable

[PE1-bgp-vpnv4] quit

[PE1-bgp] quit

# PE 2的配置与PE 1类似,配置过程省略。

配置完成后,在PE 1或PE 2上执行display mpls ldp peer命令可以看到LDP会话建立成功,状态为Operational;执行display bgp peer vpnv4命令可以看到BGP对等体关系已建立,并达到Established状态;执行display isis peer命令可以看到IS-IS邻居关系已建立,状态为up。

(2)     配置二级运营商网络:使用IS-IS作为IGP协议,PE 3和CE 1、PE 4和CE 2之间分别使能LDP

# 配置PE 3。

<PE3> system-view

[PE3] interface loopback 0

[PE3-LoopBack0] ip address 1.1.1.9 32

[PE3-LoopBack0] quit

[PE3] mpls lsr-id 1.1.1.9

[PE3] mpls ldp

[PE3-ldp] quit

[PE3] isis 2

[PE3-isis-2] network-entity 10.0000.0000.0000.0001.00

[PE3-isis-2] quit

[PE3] interface loopback 0

[PE3-LoopBack0] isis enable 2

[PE3-LoopBack0] quit

[PE3] interface pos 2/1/1

[PE3-Pos2/1/1] ip address 10.1.1.1 24

[PE3-Pos2/1/1] isis enable 2

[PE3-Pos2/1/1] mpls enable

[PE3-Pos2/1/1] mpls ldp enable

[PE3-Pos2/1/1] mpls ldp transport-address interface

[PE3-Pos2/1/1] quit

# 配置CE 1。

<CE1> system-view

[CE1] interface loopback 0

[CE1-LoopBack0] ip address 2.2.2.9 32

[CE1-LoopBack0] quit

[CE1] mpls lsr-id 2.2.2.9

[CE1] mpls ldp

[CE1-ldp] import bgp

[CE1-ldp] quit

[CE1] isis 2

[CE1-isis-2] network-entity 10.0000.0000.0000.0002.00

[CE1-isis-2] address-family ipv4

[CE1-isis-2-ipv4] import-route bgp

[CE1-isis-2-ipv4] quit

[CE1-isis-2] quit

[CE1] interface loopback 0

[CE1-LoopBack0] isis enable 2

[CE1-LoopBack0] quit

[CE1] interface pos 2/1/0

[CE1-Pos2/1/0] ip address 10.1.1.2 24

[CE1-Pos2/1/0] isis enable 2

[CE1-Pos2/1/0] mpls enable

[CE1-Pos2/1/0] mpls ldp enable

[CE1-Pos2/1/0] mpls ldp transport-address interface

[CE1-Pos2/1/0] quit

配置完成后,PE 3和CE 1之间应能建立LDP和IS-IS邻居关系。

# PE 4和CE 2之间的配置与PE 3和CE 1之间的配置类似,配置过程省略。

(3)     配置二级运营商CE接入到一级运营商的PE

# 配置PE 1。

[PE1] ip vpn-instance vpn1

[PE1-vpn-instance-vpn1] route-distinguisher 200:1

[PE1-vpn-instance-vpn1] vpn-target 1:1

[PE1-vpn-instance-vpn1] quit

[PE1] interface pos 2/1/0

[PE1-Pos2/1/0] ip binding vpn-instance vpn1

[PE1-Pos2/1/0] ip address 11.1.1.2 24

[PE1-Pos2/1/0] mpls enable

[PE1-Pos2/1/0] quit

[PE1] bgp 200

[PE1-bgp] ip vpn-instance vpn1

[PE1-bgp-vpn1] peer 11.1.1.1 as-number 100

[PE1-bgp-vpn1] address-family ipv4 unicast

[PE1-bgp-ipv4-vpn1] peer 11.1.1.1 enable

[PE1-bgp-ipv4-vpn1] peer 11.1.1.1 label-route-capability

[PE1-bgp-ipv4-vpn1] peer 11.1.1.1 route-policy csc export

[PE1-bgp-ipv4-vpn1] quit

[PE1-bgp-vpn1] quit

[PE1-bgp] quit

[PE1] route-policy csc permit node 0

[PE1-route-policy-csc-0] apply mpls-label

[PE1-route-policy-csc-0] quit

# 配置CE 1。

[CE1] interface pos 2/1/1

[CE1-Pos2/1/1] ip address 11.1.1.1 24

[CE1-Pos2/1/1] mpls enable

[CE1-Pos2/1/1] quit

[CE1] bgp 100

[CE1-bgp] peer 11.1.1.2 as-number 200

[CE1-bgp] address-family ipv4 unicast

[CE1-bgp-ipv4] peer 11.1.1.2 enable

[CE1-bgp-ipv4] peer 11.1.1.2 label-route-capability

[PE1-bgp-ipv4] peer 11.1.1.2 route-policy csc export

[CE1-bgp-ipv4] import isis 2

[CE1-bgp-ipv4] quit

[CE1-bgp] quit

[CE1] route-policy csc permit node 0

[CE1-route-policy-csc-0] apply mpls-label

[CE1-route-policy-csc-0] quit

配置完成后,PE 1和CE 1之间应能建立BGP会话,且可以通过BGP交互带标签的IPv4单播路由。

# PE 2和CE 2之间的配置与PE 1和CE 1之间的配置类似,配置过程省略。

(4)     配置二级运营商的客户接入PE

# 配置CE 3。

<CE3> system-view

[CE3] interface gigabitethernet 2/0/1

[CE3-GigabitEthernet2/0/1] ip address 100.1.1.1 24

[CE3-GigabitEthernet2/0/1] quit

[CE3] bgp 65410

[CE3-bgp] peer 100.1.1.2 as-number 100

[CE3-bgp] address-family ipv4 unicast

[CE3-bgp-ipv4] peer 100.1.1.2 enable

[CE3-bgp-ipv4] import-route direct

[CE3-bgp-ipv4] quit

[CE3-bgp] quit

# 配置PE 3。

[PE3] ip vpn-instance vpn1

[PE3-vpn-instance-vpn1] route-distinguisher 100:1

[PE3-vpn-instance-vpn1] vpn-target 1:1

[PE3-vpn-instance-vpn1] quit

[PE3] interface gigabitethernet 2/0/1

[PE3-GigabitEthernet2/0/1] ip binding vpn-instance vpn1

[PE3-GigabitEthernet2/0/1] ip address 100.1.1.2 24

[PE3-GigabitEthernet2/0/1] quit

[PE3] bgp 100

[PE3-bgp] ip vpn-instance vpn1

[PE3-bgp-vpn1] peer 100.1.1.1 as-number 65410

[PE3-bgp-vpn1] address-family ipv4 unicast

[PE3-bgp-ipv4-vpn1] peer 100.1.1.1 enable

[PE3-bgp-ipv4-vpn1] import-route direct

[PE3-bgp-ipv4-vpn1] quit

[PE3-bgp-vpn1] quit

[PE3-bgp] quit

# PE 4和CE 4之间的配置与PE 3和CE 3之间的配置类似,配置过程省略。

(5)     在二级运营商的PE之间建立MP-EBGP对等体关系,交换二级运营商的客户的VPN路由

# 配置PE 3。

[PE3] bgp 100

[PE3-bgp] peer 6.6.6.9 as-number 300

[PE3-bgp] peer 6.6.6.9 connect-interface loopback 0

[PE3-bgp] peer 6.6.6.9 ebgp-max-hop 10

[PE3-bgp] address-family vpnv4

[PE3-bgp-vpnv4] peer 6.6.6.9 enable

[PE3-bgp-vpnv4] quit

[PE3-bgp] quit

# PE 4的配置与PE 3类似,配置过程省略。

4. 验证配置

# 在PE 1和PE 2上执行display ip routing-table命令,可以看到PE 1和PE 2的公网路由表中只有一级运营商网络的路由。以PE 1为例:

[PE1] display ip routing-table

 

Destinations : 14        Routes : 14

 

Destination/Mask   Proto   Pre Cost        NextHop         Interface

0.0.0.0/32         Direct  0   0           127.0.0.1       InLoop0

3.3.3.9/32         Direct  0   0           127.0.0.1       InLoop0

4.4.4.9/32         IS_L1   15  10          30.1.1.2        POS2/1/1

30.1.1.0/24        Direct  0   0           30.1.1.1        POS2/1/1

30.1.1.0/32        Direct  0   0           30.1.1.1        POS2/1/1

30.1.1.1/32        Direct  0   0           127.0.0.1       InLoop0

30.1.1.255/32      Direct  0   0           30.1.1.1        POS2/1/1

127.0.0.0/8        Direct  0   0           127.0.0.1       InLoop0

127.0.0.0/32       Direct  0   0           127.0.0.1       InLoop0

127.0.0.1/32       Direct  0   0           127.0.0.1       InLoop0

127.255.255.255/32 Direct  0   0           127.0.0.1       InLoop0

224.0.0.0/4        Direct  0   0           0.0.0.0         NULL0

224.0.0.0/24       Direct  0   0           0.0.0.0         NULL0

255.255.255.255/32 Direct  0   0           127.0.0.1       InLoop0

# 在PE 1和PE 2上执行display ip routing-table vpn-instance命令,可以看到VPN路由表中有二级运营商网络的内部路由,但没有二级运营商维护的VPN路由。以PE 1为例:

[PE1] display ip routing-table vpn-instance vpn1

 

Destinations : 14        Routes : 14

 

Destination/Mask   Proto   Pre Cost        NextHop         Interface

0.0.0.0/32         Direct  0   0           127.0.0.1       InLoop0

1.1.1.9/32         BGP     255 10          11.1.1.1        POS2/1/0

6.6.6.9/32         BGP     255 10          4.4.4.9         POS2/1/1

11.1.1.0/24        Direct  0   0           11.1.1.2        POS2/1/0

11.1.1.0/32        Direct  0   0           11.1.1.2        POS2/1/0

11.1.1.2/32        Direct  0   0           127.0.0.1       InLoop0

11.1.1.255/32      Direct  0   0           11.1.1.2        POS2/1/0

127.0.0.0/8        Direct  0   0           127.0.0.1       InLoop0

127.0.0.0/32       Direct  0   0           127.0.0.1       InLoop0

127.0.0.1/32       Direct  0   0           127.0.0.1       InLoop0

127.255.255.255/32 Direct  0   0           127.0.0.1       InLoop0

224.0.0.0/4        Direct  0   0           0.0.0.0         NULL0

224.0.0.0/24       Direct  0   0           0.0.0.0         NULL0

255.255.255.255/32 Direct  0   0           127.0.0.1       InLoop0

# 在CE 1和CE 2上执行display ip routing-table命令,可以看到公网路由表中有二级运营商网络的内部路由,但没有二级运营商维护的VPN路由。以CE 1为例:

[CE1] display ip routing-table

 

Destinations : 19        Routes : 19

 

Destination/Mask   Proto   Pre Cost        NextHop         Interface

0.0.0.0/32         Direct  0   0           127.0.0.1       InLoop0

1.1.1.9/32         IS_L1   15  10          10.1.1.1        POS2/1/0

2.2.2.9/32         Direct  0   0           127.0.0.1       InLoop0

6.6.6.9/32         BGP     255 0           11.1.1.2        POS2/1/1

10.1.1.0/24        Direct  0   0           10.1.1.2        POS2/1/0

10.1.1.0/32        Direct  0   0           10.1.1.2        POS2/1/0

10.1.1.2/32        Direct  0   0           127.0.0.1       InLoop0

10.1.1.255/32      Direct  0   0           10.1.1.2        POS2/1/0

11.1.1.0/24        Direct  0   0           11.1.1.1        POS2/1/1

11.1.1.0/32        Direct  0   0           11.1.1.1        POS2/1/1

11.1.1.1/32        Direct  0   0           127.0.0.1       InLoop0

11.1.1.255/32      Direct  0   0           11.1.1.1        POS2/1/1

127.0.0.0/8        Direct  0   0           127.0.0.1       InLoop0

127.0.0.0/32       Direct  0   0           127.0.0.1       InLoop0

127.0.0.1/32       Direct  0   0           127.0.0.1       InLoop0

127.255.255.255/32 Direct  0   0           127.0.0.1       InLoop0

224.0.0.0/4        Direct  0   0           0.0.0.0         NULL0

224.0.0.0/24       Direct  0   0           0.0.0.0         NULL0

255.255.255.255/32 Direct  0   0           127.0.0.1       InLoop0

# 在PE 3和PE 4上执行display ip routing-table命令,可以看到公网路由表中有二级运营商网络的内部路由。以PE 3为例:

[PE3] display ip routing-table

 

Destinations : 15        Routes : 15

 

Destination/Mask   Proto   Pre Cost        NextHop         Interface

0.0.0.0/32         Direct  0   0           127.0.0.1       InLoop0

1.1.1.9/32         Direct  0   0           127.0.0.1       InLoop0

2.2.2.9/32         IS_L1   15  10          10.1.1.2        POS2/1/1

6.6.6.9/32         IS_L2   15  74          10.1.1.2        POS2/1/1

10.1.1.0/24        Direct  0   0           10.1.1.1        POS2/1/1

10.1.1.0/32        Direct  0   0           10.1.1.1        POS2/1/1

10.1.1.1/32        Direct  0   0           127.0.0.1       InLoop0

10.1.1.255/32      Direct  0   0           10.1.1.1        POS2/1/1

127.0.0.0/8        Direct  0   0           127.0.0.1       InLoop0

127.0.0.0/32       Direct  0   0           127.0.0.1       InLoop0

127.0.0.1/32       Direct  0   0           127.0.0.1       InLoop0

127.255.255.255/32 Direct  0   0           127.0.0.1       InLoop0

224.0.0.0/4        Direct  0   0           0.0.0.0         NULL0

224.0.0.0/24       Direct  0   0           0.0.0.0         NULL0

255.255.255.255/32 Direct  0   0           127.0.0.1       InLoop0

# 在PE 3和PE 4上执行display ip routing-table vpn-instance命令,可以看到VPN路由表中有远端VPN客户的路由。以PE 3为例:

[PE3] display ip routing-table vpn-instance vpn1

 

Destinations : 13        Routes : 13

 

Destination/Mask   Proto   Pre Cost        NextHop         Interface

0.0.0.0/32         Direct  0   0           127.0.0.1       InLoop0

100.1.1.0/24       Direct  0   0           100.1.1.2       GE2/0/1

100.1.1.0/32       Direct  0   0           100.1.1.2       GE2/0/1

100.1.1.2/32       Direct  0   0           127.0.0.1       InLoop0

100.1.1.255/32     Direct  0   0           100.1.1.2       GE2/0/1

127.0.0.0/8        Direct  0   0           127.0.0.1       InLoop0

127.0.0.0/32       Direct  0   0           127.0.0.1       InLoop0

127.0.0.1/32       Direct  0   0           127.0.0.1       InLoop0

127.255.255.255/32 Direct  0   0           127.0.0.1       InLoop0

120.1.1.0/24       BGP     255 0           6.6.6.9         POS2/1/1

224.0.0.0/4        Direct  0   0           0.0.0.0         NULL0

224.0.0.0/24       Direct  0   0           0.0.0.0         NULL0

255.255.255.255/32 Direct  0   0           127.0.0.1       InLoop0

# PE 3和PE 4可以相互Ping通。

# CE 3和CE 4可以互相Ping通。

1.15.9  配置嵌套VPN示例

1. 组网需求

运营商向用户提供嵌套VPN服务。如图1-33所示:

·     PE 1和PE 2是运营商骨干网的PE设备,支持嵌套VPN功能;

·     CE 1和CE 2是运营商CE设备,接入运营商的骨干网,该CE设备支持发送VPNv4路由;

·     PE 3和PE 4是用户网络内部的PE设备,支持MPLS L3VPN;

·     CE 3、CE 4、CE 5和CE 6是用户网络内部子VPN的CE设备。

配置嵌套VPN的关键在于理解子VPN路由在运营商PE设备上的处理过程:

·     运营商PE(PE 1和PE 2)收到运营商CE(CE 1和CE 2)发送来的VPNv4路由时,需要将该VPNv4路由的RD更换为运营商CE所处VPN的RD,同时将运营商CE所处VPN的Export Target添加到路由的扩展团体属性列表中,然后再按照一般的VPNv4路由发送出去;

·     为了实现用户网络内部子VPN的路由在用户PE和运营商PE间交换,需要在运营商PE和运营商CE间建立MP-EBGP对等体关系。

2. 组网图

图1-33 嵌套VPN组网图

设备

接口

IP地址

设备

接口

IP地址

CE 1

Loop0

2.2.2.9/32

CE 2

Loop0

5.5.5.9/32

 

POS2/1/0

10.1.1.2/24

 

POS2/1/0

21.1.1.2/24

 

POS2/1/1

11.1.1.1/24

 

POS2/1/1

20.1.1.1/24

CE 3

GE2/0/1

100.1.1.1/24

CE 4

GE2/0/1

120.1.1.1/24

CE 5

GE2/0/1

110.1.1.1/24

CE 6

GE2/0/1

130.1.1.1/24

PE 1

Loop0

3.3.3.9/32

PE 2

Loop0

4.4.4.9/32

 

POS2/1/0

11.1.1.2/24

 

POS2/1/0

30.1.1.2/24

 

POS2/1/1

30.1.1.1/24

 

POS2/1/1

21.1.1.1/24

PE 3

Loop0

1.1.1.9/32

PE 4

Loop0

6.6.6.9/32

 

GE2/0/1

100.1.1.2/24

 

GE2/0/1

120.1.1.2/24

 

GE2/0/2

110.1.1.2/24

 

GE2/0/2

130.1.1.2/24

 

POS2/1/1

10.1.1.1/24

 

POS2/1/1

20.1.1.2/24

 

3. 配置步骤

(1)     配置运营商骨干网的MPLS L3VPN,使用IS-IS作为骨干网的IGP协议,PE 1和PE 2之间使能LDP,并建立MP-IBGP对等体关系

# 配置PE 1。

<PE1> system-view

[PE1] interface loopback 0

[PE1-LoopBack0] ip address 3.3.3.9 32

[PE1-LoopBack0] quit

[PE1] mpls lsr-id 3.3.3.9

[PE1] mpls ldp

[PE1-ldp] quit

[PE1] isis 1

[PE1-isis-1] network-entity 10.0000.0000.0000.0004.00

[PE1-isis-1] quit

[PE1] interface loopback 0

[PE1-LoopBack0] isis enable 1

[PE1-LoopBack0] quit

[PE1] interface pos 2/1/1

[PE1-Pos2/1/1] ip address 30.1.1.1 24

[PE1-Pos2/1/1] isis enable 1

[PE1-Pos2/1/1] mpls enable

[PE1-Pos2/1/1] mpls ldp enable

[PE1-Pos2/1/1] mpls ldp transport-address interface

[PE1-Pos2/1/1] quit

[PE1] bgp 100

[PE1-bgp] peer 4.4.4.9 as-number 100

[PE1-bgp] peer 4.4.4.9 connect-interface loopback 0

[PE1-bgp] address-family vpnv4

[PE1-bgp-vpnv4] peer 4.4.4.9 enable

[PE1-bgp-vpnv4] quit

[PE1-bgp] quit

# PE 2的配置与PE 1类似,配置过程略。

配置完成后,在PE 1或PE 2上执行display mpls ldp peer命令可以看到LDP会话建立成功,LDP会话状态为Operational;执行display bgp peer vpnv4命令可以看到BGP对等体关系已建立,并达到Established状态;执行display isis peer命令可以看到IS-IS邻居关系已建立,状态为up。

(2)     配置用户网络:使用IS-IS作为IGP协议,PE 3和CE 1、PE 4和CE 2之间分别使能LDP

# 配置PE 3。

<PE3> system-view

[PE3] interface loopback 0

[PE3-LoopBack0] ip address 1.1.1.9 32

[PE3-LoopBack0] quit

[PE3] mpls lsr-id 1.1.1.9

[PE3] mpls ldp

[PE3-ldp] quit

[PE3] isis 2

[PE3-isis-2] network-entity 10.0000.0000.0000.0001.00

[PE3-isis-2] quit

[PE3] interface loopback 0

[PE3-LoopBack0] isis enable 2

[PE3-LoopBack0] quit

[PE3] interface pos 2/1/1

[PE3-Pos2/1/1] ip address 10.1.1.1 24

[PE3-Pos2/1/1] isis enable 2

[PE3-Pos2/1/1] mpls enable

[PE3-Pos2/1/1] mpls ldp enable

[PE3-Pos2/1/1] quit

# 配置CE 1。

<CE1> system-view

[CE1] interface loopback 0

[CE1-LoopBack0] ip address 2.2.2.9 32

[CE1-LoopBack0] quit

[CE1] mpls lsr-id 2.2.2.9

[CE1] mpls ldp

[CE1-ldp] quit

[CE1] isis 2

[CE1-isis-2] network-entity 10.0000.0000.0000.0002.00

[CE1-isis-2] quit

[CE1] interface loopback 0

[CE1-LoopBack0] isis enable 2

[CE1-LoopBack0] quit

[CE1] interface pos 2/1/0

[CE1-Pos2/1/0] ip address 10.1.1.2 24

[CE1-Pos2/1/0] isis enable 2

[CE1-Pos2/1/0] mpls enable

[CE1-Pos2/1/0] mpls ldp enable

[CE1-Pos2/1/0] quit

配置完成后,PE 3和CE 1之间可以建立LDP和IS-IS邻居关系。

# PE 4和CE 2之间的配置与PE 3和CE 1之间的配置类似,配置过程略。

(3)     配置运营商CE接入到运营商的PE

# 配置PE 1。

[PE1] ip vpn-instance vpn1

[PE1-vpn-instance-vpn1] route-distinguisher 200:1

[PE1-vpn-instance-vpn1] vpn-target 1:1

[PE1-vpn-instance-vpn1] quit

[PE1] interface pos 2/1/0

[PE1-Pos2/1/0] ip binding vpn-instance vpn1

[PE1-Pos2/1/0] ip address 11.1.1.2 24

[PE1-Pos2/1/0] mpls enable

[PE1-Pos2/1/0] quit

[PE1] bgp 100

[PE1-bgp] ip vpn-instance vpn1

[PE1-bgp-vpn1] peer 11.1.1.1 as-number 200

[PE1-bgp-vpn1] address-family ipv4

[PE1-bgp-ipv4-vpn1] peer 11.1.1.1 enable

[PE1-bgp-ipv4-vpn1] quit

[PE1-bgp-vpn1] quit

[PE1-bgp] quit

# 配置CE 1。

[CE1] interface pos 2/1/1

[CE1-Pos2/1/1] ip address 11.1.1.1 24

[CE1-Pos2/1/1] mpls enable

[CE1-Pos2/1/1] quit

[CE1] bgp 200

[CE1-bgp] peer 11.1.1.2 as-number 100

[CE1-bgp-vpn1] address-family ipv4

[CE1-bgp-ipv4-vpn1] peer 11.1.1.2 enable

[CE1-bgp-ipv4-vpn1] quit

[CE1-bgp] quit

# PE 2和CE 2之间的配置与PE 1和CE 1之间的配置类似,配置过程省略。

(4)     配置用户CE接入用户网络的PE

# 配置CE 3。

<CE3> system-view

[CE3] interface gigabitethernet 2/0/1

[CE3-GigabitEthernet2/0/1] ip address 100.1.1.1 24

[CE3-GigabitEthernet2/0/1] quit

[CE3] bgp 65410

[CE3-bgp] peer 100.1.1.2 as-number 200

[CE3-bgp] address-family ipv4 unicast

[CE3-bgp-ipv4] peer 100.1.1.2 enable

[CE3-bgp-ipv4] import-route direct

[CE3-bgp-ipv4] quit

[CE3-bgp] quit

# 配置CE 5。

<CE5> system-view

[CE5] interface gigabitethernet 2/0/1

[CE5-GigabitEthernet2/0/1] ip address 110.1.1.1 24

[CE5-GigabitEthernet2/0/1] quit

[CE5] bgp 65411

[CE5-bgp] peer 110.1.1.2 as-number 200

[CE5-bgp] address-family ipv4 unicast

[CE5-bgp-ipv4] peer 110.1.1.2 enable

[CE5-bgp-ipv4] import-route direct

[CE5-bgp-ipv4] quit

[CE5-bgp] quit

# 配置PE 3。

[PE3] ip vpn-instance SUB_VPN1

[PE3-vpn-instance-SUB_VPN1] route-distinguisher 100:1

[PE3-vpn-instance-SUB_VPN1] vpn-target 2:1

[PE3-vpn-instance-SUB_VPN1] quit

[PE3] interface gigabitethernet 2/0/1

[PE3-GigabitEthernet2/0/1] ip binding vpn-instance SUB_VPN1

[PE3-GigabitEthernet2/0/1] ip address 100.1.1.2 24

[PE3-GigabitEthernet2/0/1] quit

[PE3] ip vpn-instance SUB_VPN2

[PE3-vpn-instance-SUB_VPN2] route-distinguisher 101:1

[PE3-vpn-instance-SUB_VPN2] vpn-target 2:2

[PE3-vpn-instance-SUB_VPN2] quit

[PE3] interface gigabitethernet 2/0/2

[PE3-GigabitEthernet2/0/2] ip binding vpn-instance SUB_VPN2

[PE3-GigabitEthernet2/0/2] ip address 110.1.1.2 24

[PE3-GigabitEthernet2/0/2] quit

[PE3] bgp 200

[PE3-bgp] ip vpn-instance SUB_VPN1

[PE3-bgp-SUB_VPN1] peer 100.1.1.1 as-number 65410

[PE3-bgp-SUB_VPN1] address-family ipv4 unicast

[PE3-bgp-ipv4-SUB_VPN1] peer 100.1.1.1 enable

[PE3-bgp-ipv4-SUB_VPN1] import-route direct

[PE3-bgp-ipv4-SUB_VPN1] quit

[PE3-bgp-SUB_VPN1] quit

[PE3-bgp] ip vpn-instance SUB_VPN2

[PE3-bgp-SUB_VPN2] peer 110.1.1.1 as-number 65411

[PE3-bgp-SUB_VPN2] address-family ipv4 unicast

[PE3-bgp-ipv4-SUB_VPN2] peer 110.1.1.1 enable

[PE3-bgp-ipv4-SUB_VPN2] import-route direct

[PE3-bgp-ipv4-SUB_VPN2] quit

[PE3-bgp-SUB_VPN2] quit

[PE3-bgp] quit

# PE 4和CE 4,CE 6之间的配置与PE 3和CE 3,CE 5之间的配置类似,配置过程省略。

(5)     在运营商的PE和运营商CE之间建立MP-EBGP对等体关系,交换用户的VPNv4路由

# 在PE 1上使能嵌套VPN功能,并使能PE 1与CE 1交互VPNv4路由的能力。

[PE1] bgp 100

[PE1-bgp] address-family vpnv4

[PE1-bgp-vpnv4] nesting-vpn

[PE1-bgp-vpnv4] quit

[PE1-bgp] ip vpn-instance vpn1

[PE1-bgp-vpn1] address-family vpnv4

[PE1-bgp-vpnv4-vpn1] peer 11.1.1.1 enable

[PE1-bgp-vpnv4-vpn1] quit

[PE1-bgp-vpn1] quit

[PE1-bgp] quit

# 在CE 1上使能其与PE 1交互VPNv4路由的能力。

[CE1] bgp 200

[CE1-bgp] address-family vpnv4

[CE1-bgp-vpnv4] peer 11.1.1.2 enable

# 在CE 1上配置允许本地AS号在所接收的路由的AS_PATH属性中出现。

[CE1-bgp-vpnv4] peer 11.1.1.2 allow-as-loop 2

# 在CE 1上配置接收所有VPNv4路由。

[CE1-bgp-vpnv4] undo policy vpn-target

[CE1-bgp-vpnv4] quit

[CE1-bgp] quit

# PE 2和CE 2之间的配置与PE 1和CE 1之间的配置类似,配置过程省略。

(6)     在用户PE和运营商CE之间建立MP-IBGP对等体关系,交换用户内部子VPN的VPNv4路由

# 配置PE 3。

[PE3] bgp 200

[PE3-bgp] peer 2.2.2.9 as-number 200

[PE3-bgp] peer 2.2.2.9 connect-interface loopback 0

[PE3-bgp] address-family vpnv4

[PE3-bgp-vpnv4] peer 2.2.2.9 enable

# 配置允许本地AS号在所接收的路由的AS_PATH属性中出现。

[PE3-bgp-vpnv4] peer 2.2.2.9 allow-as-loop 2

[PE3-bgp-vpnv4] quit

[PE3-bgp] quit

# 配置CE 1。

[CE1] bgp 200

[CE1-bgp] peer 1.1.1.9 as-number 200

[CE1-bgp] peer 1.1.1.9 connect-interface loopback 0

[CE1-bgp] address-family vpnv4

[CE1-bgp-vpnv4] peer 1.1.1.9 enable

[CE1-bgp-vpnv4] undo policy vpn-target

[CE1-bgp-vpnv4] quit

[CE1-bgp] quit

# PE 4和CE 2之间的配置与PE 3和CE 1之间的配置类似,配置过程省略。

4. 验证配置

# 在PE 1和PE 2上执行display ip routing-table命令,可以看到PE 1和PE 2的公网路由表中只有运营商网络的路由。以PE 1为例:

[PE1] display ip routing-table

 

Destinations : 14        Routes : 14

 

Destination/Mask   Proto   Pre Cost        NextHop         Interface

0.0.0.0/32         Direct  0   0           127.0.0.1       InLoop0

3.3.3.9/32         Direct  0   0           127.0.0.1       InLoop0

4.4.4.9/32         IS_L1   15  10          30.1.1.2        POS2/1/1

30.1.1.0/24        Direct  0   0           30.1.1.1        POS2/1/1

30.1.1.0/32        Direct  0   0           30.1.1.1        POS2/1/1

30.1.1.1/32        Direct  0   0           127.0.0.1       InLoop0

30.1.1.255/32      Direct  0   0           30.1.1.1        POS2/1/1

127.0.0.0/8        Direct  0   0           127.0.0.1       InLoop0

127.0.0.0/32       Direct  0   0           127.0.0.1       InLoop0

127.0.0.1/32       Direct  0   0           127.0.0.1       InLoop0

127.255.255.255/32 Direct  0   0           127.0.0.1       InLoop0

224.0.0.0/4        Direct  0   0           0.0.0.0         NULL0

224.0.0.0/24       Direct  0   0           0.0.0.0         NULL0

255.255.255.255/32 Direct  0   0           127.0.0.1       InLoop0

# 在PE 1和PE 2上执行display ip routing-table vpn-instance命令,可以看到VPN路由表中有用户子VPN网络的路由。以PE 1为例:

[PE1] display ip routing-table vpn-instance vpn1

 

Destinations : 16        Routes : 16

 

Destination/Mask   Proto   Pre Cost        NextHop         Interface

0.0.0.0/32         Direct  0   0           127.0.0.1       InLoop0

11.1.1.0/24        Direct  0   0           11.1.1.2        POS2/1/0

11.1.1.0/32        Direct  0   0           11.1.1.2        POS2/1/0

11.1.1.2/32        Direct  0   0           127.0.0.1       InLoop0

11.1.1.255/32      Direct  0   0           11.1.1.2        POS2/1/0

100.1.1.0/24       BGP     255 0           11.1.1.1        POS2/1/0

110.1.1.0/24       BGP     255 0           11.1.1.1        POS2/1/0

120.1.1.0/24       BGP     255 0           4.4.4.9         POS2/1/1

127.0.0.0/8        Direct  0   0           127.0.0.1       InLoop0

127.0.0.0/32       Direct  0   0           127.0.0.1       InLoop0

127.0.0.1/32       Direct  0   0           127.0.0.1       InLoop0

127.255.255.255/32 Direct  0   0           127.0.0.1       InLoop0

130.1.1.0/24       BGP     255 0           4.4.4.9         POS2/1/1

224.0.0.0/4        Direct  0   0           0.0.0.0         NULL0

224.0.0.0/24       Direct  0   0           0.0.0.0         NULL0

255.255.255.255/32 Direct  0   0           127.0.0.1       InLoop0

# 在CE 1和CE 2上执行display bgp routing-table vpnv4命令,可以看到用户网络中VPNv4路由表中有所有子VPN网络的内部路由。以CE 1为例:

[CE1] display bgp routing-table vpnv4

 

 BGP local router ID is 2.2.2.9

 Status codes: * - valid, > - best, d - dampened, h - history,

               s - suppressed, S - stale, i - internal, e - external

               Origin: i - IGP, e - EGP, ? - incomplete

 

 Total number of routes from all PEs: 4

 

 Route distinguisher: 100:1

 Total number of routes: 1

 

     Network            NextHop         MED        LocPrf     PrefVal Path/Ogn

 

* >i 100.1.1.0/24       1.1.1.9         0          100        0       200 65410?

 

 Route distinguisher: 101:1

 Total number of routes: 1

 

     Network            NextHop         MED        LocPrf     PrefVal Path/Ogn

 

* >i 110.1.1.0/24       1.1.1.9         0          100        0       200 65411?

 

 Route distinguisher: 200:1

 Total number of routes: 1

 

     Network            NextHop         MED        LocPrf     PrefVal Path/Ogn

 

* >e 120.1.1.0/24       11.1.1.2                              0       100 200

                                                                      65420?

 

 Route Distinguisher: 201:1

 Total number of routes: 1

 

     Network            NextHop         MED        LocPrf     PrefVal Path/Ogn

 

* >e 130.1.1.0/24       11.1.1.2                              0       100 200

                                                                      65421?

# 在PE 3和PE 4上执行display ip routing-table vpn-instance SUB_VPN1命令,可以看到私网路由表中有从运营商PE发布到用户网络子VPN内部的路由。以PE 3为例:

[PE3] display ip routing-table vpn-instance SUB_VPN1

 

Destinations : 13        Routes : 13

 

Destination/Mask   Proto   Pre Cost        NextHop         Interface

0.0.0.0/32         Direct  0   0           127.0.0.1       InLoop0

100.1.1.0/24       Direct  0   0           100.1.1.2       GE2/0/1

100.1.1.0/32       Direct  0   0           100.1.1.2       GE2/0/1

100.1.1.2/32       Direct  0   0           127.0.0.1       InLoop0

100.1.1.255/32     Direct  0   0           100.1.1.2       GE2/0/1

120.1.1.0/24       BGP     255 0           2.2.2.9         POS2/1/1

127.0.0.0/8        Direct  0   0           127.0.0.1       InLoop0

127.0.0.0/32       Direct  0   0           127.0.0.1       InLoop0

127.0.0.1/32       Direct  0   0           127.0.0.1       InLoop0

127.255.255.255/32 Direct  0   0           127.0.0.1       InLoop0

224.0.0.0/4        Direct  0   0           0.0.0.0         NULL0

224.0.0.0/24       Direct  0   0           0.0.0.0         NULL0

255.255.255.255/32 Direct  0   0           127.0.0.1       InLoop0

# 在CE 3和CE 4上执行display ip routing-table命令,可以看到路由表中有远端子VPN的路由。以CE 3为例:

[CE3] display ip routing-table

 

Destinations : 13        Routes : 13

 

Destination/Mask   Proto   Pre Cost        NextHop         Interface

0.0.0.0/32         Direct  0   0           127.0.0.1       InLoop0

100.1.1.0/24       Direct  0   0           100.1.1.1       GE2/0/1

100.1.1.0/32       Direct  0   0           100.1.1.1       GE2/0/1

100.1.1.1/32       Direct  0   0           127.0.0.1       InLoop0

100.1.1.255/24     Direct  0   0           100.1.1.1       GE2/0/1

120.1.1.0/24       BGP     255 0           100.1.1.2       GE2/0/1

127.0.0.0/8        Direct  0   0           127.0.0.1       InLoop0

127.0.0.0/32       Direct  0   0           127.0.0.1       InLoop0

127.0.0.1/32       Direct  0   0           127.0.0.1       InLoop0

127.255.255.255/32 Direct  0   0           127.0.0.1       InLoop0

224.0.0.0/4        Direct  0   0           0.0.0.0         NULL0

224.0.0.0/24       Direct  0   0           0.0.0.0         NULL0

255.255.255.255/32 Direct  0   0           127.0.0.1       InLoop0

# 在CE 5和CE 6上执行display ip routing-table命令,可以看到路由表中有远端子VPN的路由。以CE 5为例:

[CE5] display ip routing-table

 

Destinations : 13        Routes : 13

 

Destination/Mask   Proto   Pre Cost        NextHop         Interface

0.0.0.0/32         Direct  0   0           127.0.0.1       InLoop0

110.1.1.0/24       Direct  0   0           110.1.1.1       GE2/0/1

110.1.1.0/32       Direct  0   0           110.1.1.1       GE2/0/1

110.1.1.1/32       Direct  0   0           127.0.0.1       InLoop0

110.1.1.255/32     Direct  0   0           110.1.1.1       GE2/0/1

127.0.0.0/8        Direct  0   0           127.0.0.1       InLoop0

127.0.0.0/32       Direct  0   0           127.0.0.1       InLoop0

127.0.0.1/32       Direct  0   0           127.0.0.1       InLoop0

127.255.255.255/32 Direct  0   0           127.0.0.1       InLoop0

130.1.1.0/24       BGP     255 0           110.1.1.2       GE2/0/1

224.0.0.0/4        Direct  0   0           0.0.0.0         NULL0

224.0.0.0/24       Direct  0   0           0.0.0.0         NULL0

255.255.255.255/32 Direct  0   0           127.0.0.1       InLoop0

# CE 3和CE 4可以互相Ping通。

# CE 5和CE 6可以互相Ping通。

# CE 3和CE 6不能互相Ping通。

1.15.10  配置多角色主机示例

1. 组网需求

·     主机Host A通过CE 1接入,其IP地址为100.1.1.2。Host A可以访问VPN 1和VPN 2。

·     主机Host B通过CE 1接入,其IP地址为100.1.1.3。Host B只可以访问VPN 1。

2. 组网图

图1-34 配置多角色主机组网图

 

3. 配置步骤

(1)     配置CE 1

# 配置CE 1的接口IP地址。

<CE1> system-view

[CE1] interface gigabitethernet 2/0/1

[CE1-GigabitEthernet2/0/1] ip address 100.1.1.1 24

[CE1-GigabitEthernet2/0/1] quit

[CE1] interface pos 2/1/0

[CE1-Pos2/1/0] ip address 1.1.1.2 24

[CE1-Pos2/1/0] quit

# 在CE 1上配置一条指向PE 1的缺省路由。

[CE1] ip route-static 0.0.0.0 0 1.1.1.1

(2)     配置PE 1

# 在PE 1上为VPN 1和VPN 2分别创建VPN实例,并配置RD和不同的VPN Target属性。

<PE1> system-view

[PE1] ip vpn-instance vpn1

[PE1-vpn-instance-vpn1] route-distinguisher 100:1

[PE1-vpn-instance-vpn1] vpn-target 100:1 both

[PE1-vpn-instance-vpn1] quit

[PE1] ip vpn-instance vpn2

[PE1-vpn-instance-vpn2] route-distinguisher 100:2

[PE1-vpn-instance-vpn2] vpn-target 100:2 both

[PE1-vpn-instance-vpn2] quit

# 将PE 1与CE 1相连的接口关联到VPN 1。

[PE1] interface pos 2/1/1

[PE1-Pos2/1/1] ip binding vpn-instance vpn1

[PE1-Pos2/1/1] ip address 1.1.1.1 255.255.255.0

[PE1-Pos2/1/1] quit

# 配置静态路由,并引入到BGP中,使Host A访问VPN 2的返回报文能够在PE 1的VPN实例vpn1中找到正确的路由,返回到Host A。

[PE1] ip route-static vpn-instance vpn2 100.1.1.0 24 vpn-instance vpn1 1.1.1.2

[PE1] bgp 100

[PE1-bgp] ip vpn-instance vpn2

[PE1-bgp-vpn2] address-family ipv4

[PE1-bgp-ipv4-vpn2] import-route static

[PE1-bgp-ipv4-vpn2] quit

[PE1-bgp-vpn2] quit

[PE1-bgp] quit

# 配置策略路由,对于Host A发出的报文,如果在本接口所属的VPN实例vpn1中没有找到路由,就在名为vpn2的VPN实例中查找私网路由并转发。

[PE1] acl number 3001

[PE1-acl-adv-3001] rule 0 permit ip vpn-instance vpn1 source 100.1.1.2 0

[PE1-acl-adv-3001] quit

[PE1] policy-based-route policy1 permit node 10

[PE1-policy-based-route] if-match acl 3001

[PE1-policy-based-route] apply access-vpn vpn-instance vpn1 vpn2

[PE1-policy-based-route] quit

# 在接口POS2/1/1上应用定义的策略路由。

[PE1] interface pos 2/1/1

[PE1-Pos2/1/1] ip policy-based-route policy1

(3)     配置基本MPLS L3VPN。(配置过程略)

4. 验证配置

配置完成后,在Host A上可以ping通Host C,在Host B上无法ping通Host C。

1.15.11  配置HoVPN示例

1. 组网需求

以一个包括省骨干和地市的MPLS VPN网络为例:

·     SPE作为省网的PE设备,接入地市的MPLS VPN网络;

·     UPE作为下层地市网络的PE设备,最终接入VPN客户。对UPE的性能要求低于对SPE的性能要求。

·     SPE将通过路由策略的路由发送给UPE,限制不同Site之间的互相访问权限,使得VPN 1内的CE 1和CE 3可以互相访问,VPN 2内的CE 2和CE 4不能互相访问。

2. 组网图

图1-35 配置HoVPN组网图

设备

接口

IP地址

设备

接口

IP地址

CE 1

GE2/0/1

10.2.1.1/24

CE 3

GE2/0/1

10.1.1.1/24

CE 2

GE2/0/1

10.4.1.1/24

CE 4

GE2/0/1

10.3.1.1/24

UPE 1

Loop0

1.1.1.9/32

UPE 2

Loop0

4.4.4.9/32

 

GE2/0/1

10.2.1.2/24

 

GE2/0/1

172.2.1.1/24

 

GE2/0/2

10.4.1.2/24

 

GE2/0/2

10.1.1.2/24

 

GE2/0/3

172.1.1.1/24

 

GE2/0/3

10.3.1.2/24

SPE 1

Loop0

2.2.2.9/32

SPE 2

Loop0

3.3.3.9/32

 

GE2/0/1

172.1.1.2/24

 

GE2/0/1

180.1.1.2/24

 

GE2/0/2

180.1.1.1/24

 

GE2/0/2

172.2.1.2/24

 

3. 配置步骤

(1)     配置UPE 1

# 配置MPLS基本能力和MPLS LDP能力,建立LDP LSP。

<UPE1> system-view

[UPE1] interface loopback 0

[UPE1-LoopBack0] ip address 1.1.1.9 32

[UPE1-LoopBack0] quit

[UPE1] mpls lsr-id 1.1.1.9

[UPE1] mpls ldp

[UPE1-ldp] quit

[UPE1] interface gigabitethernet 2/0/3

[UPE1-GigabitEthernet2/0/3] ip address 172.1.1.1 24

[UPE1-GigabitEthernet2/0/3] mpls enable

[UPE1-GigabitEthernet2/0/3] mpls ldp enable

[UPE1-GigabitEthernet2/0/3] quit

# 配置IGP协议,以OSPF为例。

[UPE1] ospf

[UPE1-ospf-1] area 0

[UPE1-ospf-1-area-0.0.0.0] network 172.1.1.0 0.0.0.255

[UPE1-ospf-1-area-0.0.0.0] network 1.1.1.9 0.0.0.0

[UPE1-ospf-1-area-0.0.0.0] quit

[UPE1-ospf-1] quit

# 配置VPN实例vpn1和vpn2,将CE 1和CE 2接入UPE 1。

[UPE1] ip vpn-instance vpn1

[UPE1-vpn-instance-vpn1] route-distinguisher 100:1

[UPE1-vpn-instance-vpn1] vpn-target 100:1 both

[UPE1-vpn-instance-vpn1] quit

[UPE1] ip vpn-instance vpn2

[UPE1-vpn-instance-vpn2] route-distinguisher 100:2

[UPE1-vpn-instance-vpn2] vpn-target 100:2 both

[UPE1-vpn-instance-vpn2] quit

[UPE1] interface gigabitethernet 2/0/1

[UPE1-GigabitEthernet2/0/1] ip binding vpn-instance vpn1

[UPE1-GigabitEthernet2/0/1] ip address 10.2.1.2 24

[UPE1-GigabitEthernet2/0/1] quit

[UPE1] interface gigabitethernet 2/0/2

[UPE1-GigabitEthernet2/0/2] ip binding vpn-instance vpn2

[UPE1-GigabitEthernet2/0/2] ip address 10.4.1.2 24

[UPE1-GigabitEthernet2/0/2] quit

# 配置UPE 1与SPE 1建立MP-IBGP对等体。

[UPE1] bgp 100

[UPE1-bgp] peer 2.2.2.9 as-number 100

[UPE1-bgp] peer 2.2.2.9 connect-interface loopback 0

[UPE1-bgp] address-family vpnv4

[UPE1-bgp-vpnv4] peer 2.2.2.9 enable

[UPE1-bgp-vpnv4] quit

# 配置UPE 1与CE 1建立EBGP对等体,并引入VPN路由。

[UPE1-bgp] ip vpn-instance vpn1

[UPE1-bgp-vpn1] peer 10.2.1.1 as-number 65410

[UPE1-bgp-vpn1] address-family ipv4 unicast

[UPE1-bgp-ipv4-vpn1] peer 10.2.1.1 enable

[UPE1-bgp-ipv4-vpn1] import-route direct

[UPE1-bgp-ipv4-vpn1] quit

[UPE1-bgp-vpn1] quit

# 配置UPE 1与CE 2建立EBGP对等体,并引入VPN路由。

[UPE1-bgp] ip vpn-instance vpn2

[UPE1-bgp-vpn2] peer 10.4.1.1 as-number 65420

[UPE1-bgp-vpn2] address-family ipv4 unicast

[UPE1-bgp-ipv4-vpn2] peer 10.4.1.1 enable

[UPE1-bgp-ipv4-vpn2] import-route direct

[UPE1-bgp-ipv4-vpn2] quit

[UPE1-bgp-vpn2] quit

[UPE1-bgp] quit

(2)     配置CE 1

<CE1> system-view

[CE1] interface gigabitethernet 2/0/1

[CE1-GigabitEthernet2/0/1] ip address 10.2.1.1 255.255.255.0

[CE1-GigabitEthernet2/0/1] quit

[CE1] bgp 65410

[CE1-bgp] peer 10.2.1.2 as-number 100

[CE1-bgp] address-family ipv4 unicast

[CE1-bgp-ipv4] peer 10.2.1.2 enable

[CE1-bgp-ipv4] import-route direct

[CE1-bgp-ipv4] quit

[CE1-bgp] quit

(3)     配置CE 2

<CE2> system-view

[CE2] interface gigabitethernet 2/0/1

[CE2-GigabitEthernet2/0/1] ip address 10.4.1.1 255.255.255.0

[CE2-GigabitEthernet2/0/1] quit

[CE2] bgp 65420

[CE2-bgp] peer 10.4.1.2 as-number 100

[CE2-bgp] address-family ipv4 unicast

[CE2-bgp-ipv4] peer 10.4.1.2 enable

[CE2-bgp-ipv4] import-route direct

[CE2-bgp-ipv4] quit

[CE2-bgp] quit

(4)     配置UPE 2

# 配置MPLS基本能力和MPLS LDP能力,建立LDP LSP。

<UPE2> system-view

[UPE2] interface loopback 0

[UPE2-LoopBack0] ip address 4.4.4.9 32

[UPE2-LoopBack0] quit

[UPE2] mpls lsr-id 4.4.4.9

[UPE2] mpls ldp

[UPE2-ldp] quit

[UPE2] interface gigabitethernet 2/0/1

[UPE2-GigabitEthernet2/0/1] ip address 172.2.1.1 24

[UPE2-GigabitEthernet2/0/1] mpls enable

[UPE2-GigabitEthernet2/0/1] mpls ldp enable

[UPE2-GigabitEthernet2/0/1] quit

# 配置IGP协议,以OSPF为例。

[UPE2] ospf

[UPE2-ospf-1] area 0

[UPE2-ospf-1-area-0.0.0.0] network 172.2.1.0 0.0.0.255

[UPE2-ospf-1-area-0.0.0.0] network 4.4.4.9 0.0.0.0

[UPE2-ospf-1-area-0.0.0.0] quit

[UPE2-ospf-1] quit

# 配置VPN实例vpn1和vpn2,将CE 3和CE 4接入UPE 2。

[UPE2] ip vpn-instance vpn1

[UPE2-vpn-instance-vpn1] route-distinguisher 300:1

[UPE2-vpn-instance-vpn1] vpn-target 100:1 both

[UPE2-vpn-instance-vpn1] quit

[UPE2] ip vpn-instance vpn2

[UPE2-vpn-instance-vpn2] route-distinguisher 400:2

[UPE2-vpn-instance-vpn2] vpn-target 100:2 both

[UPE2-vpn-instance-vpn2] quit

[UPE2] interface gigabitethernet 2/0/2

[UPE2-GigabitEthernet2/0/2] ip binding vpn-instance vpn1

[UPE2-GigabitEthernet2/0/2] ip address 10.1.1.2 24

[UPE2-GigabitEthernet2/0/2] quit

[UPE2] interface gigabitethernet 2/0/3

[UPE2-GigabitEthernet2/0/3] ip binding vpn-instance vpn2

[UPE2-GigabitEthernet2/0/3] ip address 10.3.1.2 24

[UPE2-GigabitEthernet2/0/3] quit

# 配置UPE 2与SPE 2建立MP-IBGP对等体。

[UPE2] bgp 100

[UPE2-bgp] peer 3.3.3.9 as-number 100

[UPE2-bgp] peer 3.3.3.9 connect-interface loopback 0

[UPE2-bgp] address-family vpnv4

[UPE2-bgp-vpnv4] peer 3.3.3.9 enable

[UPE2-bgp-vpnv4] quit

# 配置UPE 2与CE 3建立EBGP对等体,并引入VPN路由。

[UPE2-bgp] ip vpn-instance vpn1

[UPE2-bgp-vpn1] peer 10.1.1.1 as-number 65430

[UPE2-bgp-vpn1] address-family ipv4 unicast

[UPE2-bgp-ipv4-vpn1] peer 10.1.1.1 enable

[UPE2-bgp-ipv4-vpn1] import-route direct

[UPE2-bgp-ipv4-vpn1] quit

[UPE2-bgp-vpn1] quit

# 配置UPE 2与CE 4建立EBGP对等体,并引入VPN路由。

[UPE2-bgp] ip vpn-instance vpn2

[UPE2-bgp-vpn2] peer 10.3.1.1 as-number 65440

[UPE2-bgp-vpn2] address-family ipv4 unicast

[UPE2-bgp-ipv4-vpn2] peer 10.3.1.1 enable

[UPE2-bgp-ipv4-vpn2] import-route direct

[UPE2-bgp-ipv4-vpn2] quit

[UPE2-bgp-vpn2] quit

[UPE2-bgp] quit

(5)     配置CE 3

<CE3> system-view

[CE3] interface gigabitethernet 2/0/1

[CE3-GigabitEthernet2/0/1] ip address 10.1.1.1 255.255.255.0

[CE3-GigabitEthernet2/0/1] quit

[CE3] bgp 65430

[CE3-bgp] peer 10.1.1.2 as-number 100

[CE3-bgp] address-family ipv4 unicast

[CE3-bgp-ipv4] peer 10.1.1.2 enable

[CE3-bgp-ipv4] import-route direct

[CE3-bgp-ipv4] quit

[CE3-bgp] quit

(6)     配置CE 4

<CE4> system-view

[CE4] interface gigabitethernet 2/0/1

[CE4-GigabitEthernet2/0/1] ip address 10.3.1.1 255.255.255.0

[CE4-GigabitEthernet2/0/1] quit

[CE4] bgp 65440

[CE4-bgp] peer 10.3.1.2 as-number 100

[CE4-bgp] address-family ipv4 unicast

[CE4-bgp-ipv4] peer 10.3.1.2 enable

[CE4-bgp-ipv4] import-route direct

[CE4-bgp-ipv4] quit

[CE4-bgp] quit

(7)     配置SPE 1

# 配置MPLS基本能力和MPLS LDP能力,建立LDP LSP。

<SPE1> system-view

[SPE1] interface loopback 0

[SPE1-LoopBack0] ip address 2.2.2.9 32

[SPE1-LoopBack0] quit

[SPE1] mpls lsr-id 2.2.2.9

[SPE1] mpls ldp

[SPE1-ldp] quit

[SPE1] interface gigabitethernet 2/0/1

[SPE1-GigabitEthernet2/0/1] ip address 172.1.1.2 24

[SPE1-GigabitEthernet2/0/1] mpls enable

[SPE1-GigabitEthernet2/0/1] mpls ldp enable

[SPE1-GigabitEthernet2/0/1] quit

[SPE1] interface gigabitethernet 1/0/2

[SPE1-GigabitEthernet2/0/2] ip address 180.1.1.1 24

[SPE1-GigabitEthernet2/0/2] mpls enable

[SPE1-GigabitEthernet2/0/2] mpls ldp enable

[SPE1-GigabitEthernet2/0/2] quit

# 配置IGP协议,以OSPF为例。

[SPE1] ospf

[SPE1-ospf-1] area 0

[SPE1-ospf-1-area-0.0.0.0] network 2.2.2.9 0.0.0.0

[SPE1-ospf-1-area-0.0.0.0] network 172.1.1.0 0.0.0.255

[SPE1-ospf-1-area-0.0.0.0] network 180.1.1.0 0.0.0.255

[SPE1-ospf-1-area-0.0.0.0] quit

[SPE1-ospf-1] quit

# 配置VPN实例vpn1和vpn2。

[SPE1] ip vpn-instance vpn1

[SPE1-vpn-instance-vpn1] route-distinguisher 500:1

[SPE1-vpn-instance-vpn1] vpn-target 100:1 both

[SPE1-vpn-instance-vpn1] quit

[SPE1] ip vpn-instance vpn2

[SPE1-vpn-instance-vpn2] route-distinguisher 700:1

[SPE1-vpn-instance-vpn2] vpn-target 100:2 both

[SPE1-vpn-instance-vpn2] quit

# 配置SPE 1与SPE 2、UPE 1建立MP-IBGP对等体,并指定UPE 1为UPE。

[SPE1] bgp 100

[SPE1-bgp] peer 1.1.1.9 as-number 100

[SPE1-bgp] peer 1.1.1.9 connect-interface loopback 0

[SPE1-bgp] peer 3.3.3.9 as-number 100

[SPE1-bgp] peer 3.3.3.9 connect-interface loopback 0

[SPE1-bgp] address-family vpnv4

[SPE1-bgp-vpnv4] peer 3.3.3.9 enable

[SPE1-bgp-vpnv4] peer 1.1.1.9 enable

[SPE1-bgp-vpnv4] peer 1.1.1.9 upe

[SPE1-bgp-vpnv4] peer 1.1.1.9 next-hop-local

[SPE1-bgp-vpnv4] quit

# 为VPN实例vpn1和vpn2分别创建BGP-VPN实例,以便根据RT属性将学习到的VPNv4路由添加到相应VPN实例的BGP路由表中。

[SPE1-bgp] ip vpn-instance vpn1

[SPE1-bgp-vpn1] quit

[SPE1-bgp] ip vpn-instance vpn2

[SPE1-bgp-vpn2] quit

[SPE1-bgp] quit

# 配置SPE 1向UPE 1发送通过策略的路由信息,允许CE 3的路由发送给UPE 1。

[SPE1] ip prefix-list hope index 10 permit 10.1.1.1 24

[SPE1] route-policy hope permit node 0

[SPE1-route-policy-hope-0] if-match ip address prefix-list hope

[SPE1-route-policy-hope-0] quit

[SPE1] bgp 100

[SPE1-bgp] address-family vpnv4

[SPE1-bgp-vpnv4] peer 1.1.1.9 upe route-policy hope export

(8)     配置SPE 2

# 配置MPLS基本能力和MPLS LDP能力,建立LDP LSP。

<SPE2> system-view

[SPE2] interface loopback 0

[SPE2-LoopBack0] ip address 3.3.3.9 32

[SPE2-LoopBack0] quit

[SPE2] mpls lsr-id 3.3.3.9

[SPE2] mpls ldp

[SPE2-ldp] quit

[SPE2] interface gigabitethernet 2/0/1

[SPE2-GigabitEthernet2/0/1] ip address 180.1.1.2 24

[SPE2-GigabitEthernet2/0/1] mpls enable

[SPE2-GigabitEthernet2/0/1] mpls ldp enable

[SPE2-GigabitEthernet2/0/1] quit

[SPE2] interface gigabitethernet 2/0/2

[SPE2-GigabitEthernet2/0/2] ip address 172.2.1.2 24

[SPE2-GigabitEthernet2/0/2] mpls enable

[SPE2-GigabitEthernet2/0/2] mpls ldp enable

[SPE2-GigabitEthernet2/0/2] quit

# 配置IGP协议,以OSPF为例。

[SPE2] ospf

[SPE2-ospf-1] area 0

[SPE2-ospf-1-area-0.0.0.0] network 3.3.3.9 0.0.0.0

[SPE2-ospf-1-area-0.0.0.0] network 172.2.1.0 0.0.0.255

[SPE2-ospf-1-area-0.0.0.0] network 180.1.1.0 0.0.0.255

[SPE2-ospf-1-area-0.0.0.0] quit

[SPE2-ospf-1] quit

# 配置VPN实例vpn1和vpn2。

[SPE2] ip vpn-instance vpn1

[SPE2-vpn-instance-vpn1] route-distinguisher 600:1

[SPE2-vpn-instance-vpn1] vpn-target 100:1 both

[SPE2-vpn-instance-vpn1] quit

[SPE2] ip vpn-instance vpn2

[SPE2-vpn-instance-vpn2] route-distinguisher 800:1

[SPE2-vpn-instance-vpn2] vpn-target 100:2 both

[SPE2-vpn-instance-vpn2] quit

# 配置SPE 2与SPE 1、UPE 2建立MP-IBGP对等体,并指定UPE 2为UPE。

[SPE2] bgp 100

[SPE2-bgp] peer 4.4.4.9 as-number 100

[SPE2-bgp] peer 4.4.4.9 connect-interface loopback 0

[SPE2-bgp] peer 2.2.2.9 as-number 100

[SPE2-bgp] peer 2.2.2.9 connect-interface loopback 0

[SPE2-bgp] address-family vpnv4

[SPE2-bgp-vpnv4] peer 2.2.2.9 enable

[SPE2-bgp-vpnv4] peer 4.4.4.9 enable

[SPE2-bgp-vpnv4] peer 4.4.4.9 upe

[SPE2-bgp-vpnv4] peer 4.4.4.9 next-hop-local

[SPE2-bgp-vpnv4] quit

# 为VPN实例vpn1和vpn2分别创建BGP-VPN实例,以便根据RT属性将学习到的VPNv4路由添加到相应VPN实例的BGP路由表中。

[SPE2-bgp] ip vpn-instance vpn1

[SPE2-bgp-vpn1] quit

[SPE2-bgp] ip vpn-instance vpn2

[SPE2-bgp-vpn2] quit

[SPE2-bgp] quit

# 配置SPE 2向UPE 2发送通过策略的路由信息,允许CE 1的路由发送给UPE 2。

[SPE2] ip prefix-list hope index 10 permit 10.2.1.1 24

[SPE2] route-policy hope permit node 0

[SPE2-route-policy-hope-0] if-match ip address prefix-list hope

[SPE2-route-policy-hope-0] quit

[SPE2] bgp 100

[SPE2-bgp] address-family vpnv4

[SPE2-bgp-vpnv4] peer 4.4.4.9 upe route-policy hope export

4. 验证配置

上述配置完成后,CE 1和CE 3能够学习到对方的接口路由,CE 1和CE 3能够相互ping通;CE 2和CE 4不能学习到对方的接口路由,CE 2和CE 4不能相互ping通。

1.15.12  配置OSPF伪连接

1. 组网需求

·     CE 1和CE 2都属于VPN 1,它们分别接入PE 1和PE 2;

·     CE 1和CE 2在同一个OSPF区域中;

·     CE 1与CE 2之间的VPN流量通过MPLS骨干网转发,不使用OSPF的区域内路由。

2. 组网图

图1-36 OSPF伪连接配置组网图

设备

接口

IP地址

设备

接口

IP地址

CE 1

GE2/0/1

100.1.1.1/24

CE 2

GE2/0/1

120.1.1.1/24

 

POS2/1/1

20.1.1.1/24

 

POS2/1/1

30.1.1.2/24

PE 1

Loop0

1.1.1.9/32

PE 2

Loop0

2.2.2.9/32

 

Loop1

3.3.3.3/32

 

Loop1

5.5.5.5/32

 

GE2/0/1

100.1.1.2/24

 

GE2/0/1

120.1.1.2/24

 

POS2/1/1

10.1.1.1/24

 

POS2/1/0

10.1.1.2/24

Router A

POS2/1/0

30.1.1.1/24

 

 

 

 

POS2/1/1

20.1.1.2/24

 

 

 

 

3. 配置步骤

(1)     配置用户网络上的OSPF

在CE 1、Router A、CE 2上配置普通OSPF,发布图1-36中所示各接口的网段地址,并配置CE 1和Router A、CE 2和Router A之间的链路开销值为2。具体配置过程略。

配置完成后,执行display ip routing-table命令,可以看到CE 1和CE 2学到了到达对端的路由。

(2)     在骨干网上配置MPLS L3VPN

# 配置PE 1的MPLS基本能力和MPLS LDP能力,建立LDP LSP。

<PE1> system-view

[PE1] interface loopback 0

[PE1-LoopBack0] ip address 1.1.1.9 32

[PE1-LoopBack0] quit

[PE1] mpls lsr-id 1.1.1.9

[PE1] mpls ldp

[PE1-ldp] quit

[PE1] interface pos 2/1/1

[PE1-Pos2/1/1] ip address 10.1.1.1 24

[PE1-Pos2/1/1] mpls enable

[PE1-Pos2/1/1] mpls ldp enable

[PE1-Pos2/1/1] quit

# 配置PE 1的MP-IBGP对等体为PE2。

[PE1] bgp 100

[PE1-bgp] peer 2.2.2.9 as-number 100

[PE1-bgp] peer 2.2.2.9 connect-interface loopback 0

[PE1-bgp] address-family vpnv4

[PE1-bgp-vpnv4] peer 2.2.2.9 enable

[PE1-bgp-vpnv4] quit

[PE1-bgp] quit

# 配置PE 1的OSPF。

[PE1] ospf 1

[PE1-ospf-1] area 0

[PE1-ospf-1-area-0.0.0.0] network 1.1.1.9 0.0.0.0

[PE1-ospf-1-area-0.0.0.0] network 10.1.1.0 0.0.0.255

[PE1-ospf-1-area-0.0.0.0] quit

[PE1-ospf-1] quit

# 配置PE 2的MPLS基本能力和MPLS LDP能力,建立LDP LSP。

<PE2> system-view

[PE2] interface loopback 0

[PE2-LoopBack0] ip address 2.2.2.9 32

[PE2-LoopBack0] quit

[PE2] mpls lsr-id 2.2.2.9

[PE2] mpls ldp

[PE2-ldp] quit

[PE2] interface pos 2/1/1

[PE2-Pos2/1/1] ip address 10.1.1.2 24

[PE2-Pos2/1/1] mpls enable

[PE2-Pos2/1/1] mpls ldp enable

[PE2-Pos2/1/1] quit

# 配置PE 2的MP-IBGP对等体为PE1。

[PE2] bgp 100

[PE2-bgp] peer 1.1.1.9 as-number 100

[PE2-bgp] peer 1.1.1.9 connect-interface loopback 0

[PE2-bgp] address-family vpnv4

[PE2-bgp-vpnv4] peer 1.1.1.9 enable

[PE2-bgp-vpnv4] quit

[PE2-bgp] quit

# 配置PE 2的OSPF。

[PE2] ospf 1

[PE2-ospf-1] area 0

[PE2-ospf-1-area-0.0.0.0] network 2.2.2.9 0.0.0.0

[PE2-ospf-1-area-0.0.0.0] network 10.1.1.0 0.0.0.255

[PE2-ospf-1-area-0.0.0.0] quit

[PE2-ospf-1] quit

(3)     配置PE接入CE

# 配置PE 1接入CE 1。

[PE1] ip vpn-instance vpn1

[PE1-vpn-instance-vpn1] route-distinguisher 100:1

[PE1-vpn-instance-vpn1] vpn-target 1:1

[PE1-vpn-instance-vpn1] quit

[PE1] interface gigabitethernet 2/0/1

[PE1-GigabitEthernet2/0/1] ip binding vpn-instance vpn1

[PE1-GigabitEthernet2/0/1] ip address 100.1.1.2 24

[PE1-GigabitEthernet2/0/1] quit

[PE1] ospf 100 vpn-instance vpn1

[PE1-ospf-100] domain-id 10

[PE1-ospf-100] area 1

[PE1-ospf-100-area-0.0.0.1] network 100.1.1.0 0.0.0.255

[PE1-ospf-100-area-0.0.0.1] quit

[PE1-ospf-100] quit

[PE1] bgp 100

[PE1-bgp] ip vpn-instance vpn1

[PE1-bgp-vpn1] address-family ipv4 unicast

[PE1-bgp-ipv4-vpn1] import-route ospf 100

[PE1-bgp-ipv4-vpn1] import-route direct

[PE1-bgp-ipv4-vpn1] quit

[PE1-bgp-vpn1] quit

[PE1-bgp] quit

# 配置PE 2接入CE 2。

[PE2] ip vpn-instance vpn1

[PE2-vpn-instance-vpn1] route-distinguisher 100:2

[PE2-vpn-instance-vpn1] vpn-target 1:1

[PE2-vpn-instance-vpn1] quit

[PE2] interface gigabitethernet 2/0/1

[PE2-GigabitEthernet2/0/1] ip binding vpn-instance vpn1

[PE2-GigabitEthernet2/0/1] ip address 120.1.1.2 24

[PE2-GigabitEthernet2/0/1] quit

[PE2] ospf 100 vpn-instance vpn1

[PE2-ospf-100] domain-id 10

[PE2-ospf-100] area 1

[PE2-ospf-100-area-0.0.0.1] network 120.1.1.0 0.0.0.255

[PE2-ospf-100-area-0.0.0.1] quit

[PE2-ospf-100] quit

[PE2] bgp 100

[PE2-bgp] ip vpn-instance vpn1

[PE2-bgp-vpn1] address-family ipv4 unicast

[PE2-bgp-ipv4-vpn1] import-route ospf 100

[PE2-bgp-ipv4-vpn1] import-route direct

[PE2-bgp-ipv4-vpn1] quit

[PE2-bgp-vpn1] quit

[PE2-bgp] quit

完成上述配置后,在PE设备上执行display ip routing-table vpn-instance命令,可以看到去往对端CE的路由是通过用户网络的OSPF路由,不是通过骨干网的BGP路由。

(4)     配置Sham-link

# 配置PE 1。

[PE1] interface loopback 1

[PE1-LoopBack1] ip binding vpn-instance vpn1

[PE1-LoopBack1] ip address 3.3.3.3 32

[PE1-LoopBack1] quit

[PE1] ospf 100

[PE1-ospf-100] area 1

[PE1-ospf-100-area-0.0.0.1] sham-link 3.3.3.3 5.5.5.5

[PE1-ospf-100-area-0.0.0.1] quit

[PE1-ospf-100] quit

# 配置PE 2。

[PE2] interface loopback 1

[PE2-LoopBack1] ip binding vpn-instance vpn1

[PE2-LoopBack1] ip address 5.5.5.5 32

[PE2-LoopBack1] quit

[PE2] ospf 100

[PE2-ospf-100] area 1

[PE2-ospf-100-area-0.0.0.1] sham-link 5.5.5.5 3.3.3.3

[PE2-ospf-100-area-0.0.0.1] quit

[PE2-ospf-100] quit

4. 验证配置

完成上述配置后,在PE设备上再次执行display ip routing-table vpn-instance命令,可以看到去往对端CE的路由变成了通过骨干网的BGP路由,并且有去往Sham-link目的地址的路由。

在CE设备上执行display ip routing-table命令,可以看到去往对端CE的OSPF路由下一跳变为接入PE的GigabitEthernet接口,即去往对端的VPN流量将通过骨干网转发。

在PE上执行display ospf sham-link命令可以看到Sham-link的建立情况。

以PE 1为例:

[PE1] display ospf sham-link

 

          OSPF Process 100 with Router ID 100.1.1.2

                  Sham link

 

 Area            Neighbor ID     Source IP       Destination IP  State  Cost

 0.0.0.1         120.1.1.2       3.3.3.3         5.5.5.5         P-2-P  1

执行display ospf sham-link area命令可以看到对端状态为Full。

[PE1] display ospf sham-link area 1

 

          OSPF Process 100 with Router ID 100.1.1.2

 

 Sham link: 3.3.3.3 --> 5.5.5.5

 Neighbor ID: 120.1.1.2        State: Full

 Area: 0.0.0.1

 Cost: 1  State: P-2-P  Type: Sham

 Timers: Hello 10, Dead 40, Retransmit 5, Transmit Delay 1

 Request list: 0  Retransmit list: 0

1.15.13  配置MCE示例

1. 组网需求

MCE设备连接两个VPN:VPN 1和VPN 2。其中,VPN 2内运行RIP路由协议。MCE设备将两个VPN之间的路由隔离,并通过OSPF将各VPN的路由发布到PE 1。

2. 组网图

图1-37 配置MCE组网图

 

3. 配置步骤

为区分设备,假设MCE系统名为“MCE”,VPN 1和VPN 2的边缘设备分别名为“VR1”和“VR2”,PE 1系统名为“PE1”。

(1)     在MCE和PE 1上配置VPN实例

# 在MCE设备上配置VPN实例,名称分别为vpn1和vpn2,RD分别取值为10:1和20:1,VPN Target取值与RD取相同数值,Export和Import均取此值。

<MCE> system-view

[MCE] ip vpn-instance vpn1

[MCE-vpn-instance-vpn1] route-distinguisher 10:1

[MCE-vpn-instance-vpn1] vpn-target 10:1

[MCE-vpn-instance-vpn1] quit

[MCE] ip vpn-instance vpn2

[MCE-vpn-instance-vpn2] route-distinguisher 20:1

[MCE-vpn-instance-vpn2] vpn-target 20:1

[MCE-vpn-instance-vpn2] quit

# 配置接口GigabitEthernet2/0/1与VPN实例vpn1绑定,并配置该接口的地址。

[MCE] interface gigabitethernet 2/0/1